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Abstract. An adaptive algorithm for computing eigenmodes and propagation constants of
optical fibers is proposed. The algorithm is built using a dual-weighted residual error estimator.
The residuals are based on the eigensystem for leaky hybrid modes obtained from Maxwell equations
truncated to a finite domain after a transformation by a perfectly matched layer. The adaptive
algorithm is then applied to compute practically interesting modes for multiple fiber microstructures.
Emerging microstructured optical fibers are characterized by complex geometrical features in their
transverse cross-section. Their leaky modes, useful for confining and propagating light in their
cores, often exhibit fine scale features. The adaptive algorithm automatically captures these features
without any expert input. The results also show that confinement losses of these modes are captured
accurately on the adaptively found meshes.
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1. Introduction. Microstructured optical fibers with complex features are in-
creasingly being fabricated and used [6]. An important consideration in their design
is their confinement loss or radiation loss. This loss can be extracted from a complex
eigenvalue of an eigenproblem arising from the Maxwell system governing the propa-
gation of light within optical fibers. The corresponding eigenfunctions are practically
interesting since they form the leaky modes of fibers capable of propagating substan-
tial portions of the input energy through the fiber. The electric fields of these modes
generally have both transverse and longitudinal vector components, so they are also
referred to as “hybrid modes” [30]. The purpose of this paper is to give an adaptive
algorithm for capturing such modes with sufficient accuracy. The algorithm is based
on the mathematical technique of dual-weighted residual (DWR) error estimators [1].
We detail how to apply this approach to a finite element discretization of the eigen-
problem for hybrid modes combined with a domain truncation after a transformation
by the perfectly matched layer (PML) [2, 5].

Not all microstructured fiber designs use the same physical mechanism for guid-
ing light. Some fibers use confinement by anti-resonant reflection effects [23, 8, 15]
while others use confinement by resonances of guided modes, total internal reflection,
and photonic confinement within defects of periodic arrangements [11, 14, 22]. The
diversity of these physical mechanisms necessitate expert guidance in each fiber’s nu-
merical simulation, thus posing challenges in creating general purpose simulation tools
for these fibers. This paper contributes to addressing this challenge. Specifically, sev-
eral practically useful leaky modes of varied microstructured fibers have been found to
exhibit fine-scale ripples in varied locations. As shown in [31], accuracy of computed

∗Submitted to the editors 04/04/2024.
Funding: This work was supported in part by AFOSR Grant FA9550-23-1-0103 and NSF Grant

2245077. The work also benefited from activities organized under the auspices of NSF RTG Grant
2136228.

† The Fariborz Maseeh Department of Mathematics + Statistics, Portland State University, PO
Box 751, Portland, OR, USA (gjay@pdx.edu, gpin2@pdx.edu, piet2@pdx.edu).

‡ Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Ave SE, Kirtland
Air Force Base, Albuquerque, NM (AFRL.RDL.OrgBox@us.af.mil).

1

mailto:gjay@pdx.edu
mailto:gpin2@pdx.edu
mailto:piet2@pdx.edu
mailto:AFRL.RDL.OrgBox@us.af.mil


2 J. GOPALAKRISHNAN, J. GROSEK, G. PINOCHET-SOTO, AND P. VANDENBERGE

confinement losses depend on resolving such fine-scale features. To do so without ex-
pert insight and to facilitate design optimization, an algorithm that can automatically
detect such fine-scale features accompanied by appropriate mesh refinement is useful.
This paper provides such an algorithm, basing it on sound mathematical principles in-
dependent of fiber design. A prior work proposing a goal-oriented adaptivity strategy
for computing losses accurately is [35], but as best as we can see, the goal functional
proposed there is not a continuous functional and we do not know how to make their
technique mathematically rigorous. Instead, we develop an alternate approach based
on the ideas in [12] which directly target the eigenvalue error.

The eigenvalues of the Maxwell system for hybrid modes are squares of the phys-
ical propagation constant β of the modes. Confinement loss of a fiber is a scalar
multiple of the imaginary part of β. Typical values of β have real parts of the order of
106 and imaginary parts, Im(β), that can range in orders of magnitude 10−6 to 103,
depending on the fiber and operating wavelength. To get around this large variation
in order of magnitudes, instead of a mere length scaling, we perform a nondimen-
sionalization of the Maxwell system (see Section 2) akin to the process of going from
Helmholtz to a Schrödinger problem. Then, instead of β2, we compute a nondimen-
sional Z2, of unit order of magnitude, in the complex plane. Applying this approach
to varied fibers, we find that an adaptive algorithm tailored to reduce the error in Z2

also appears to get the confinement loss accurately and capture the above-mentioned
fine-scale ripples. Whether a mathematically rigorous algorithm tailored specifically
to reduce the error in loss can be found, and if so, whether it will do better, is an
issue for further research.

The basis for DWR-based adaptive algorithms is developed in terms of optimal
control in the review [1]. Roughly speaking, their idea is that the error in a quantity
of interest can be estimated by an element-wise residual (which treats local error
contributions), weighted by the solution of a dual problem (which takes global error
transport into account). DWR algorithms specific for eigenvalues have been outlined
for elliptic problems in [12, 26]. We choose the DWR error estimation technique
because our eigenproblem is nonselfadjoint and because our eigensolver readily gives
the dual solution (left eigenvector) in addition to the solution (the eigenvalue and the
right eigenvector). Not incurring extra costs for solving the dual problem in this case
makes the DWR technique an efficient choice. To apply the DWR methodology to
our Maxwell eigenvalue application, we bring in an additional technique, namely the
use of a regular decomposition. The resulting theory is summarized in a single self-
contained theorem and proof in Section 3 giving the error estimator expression, after
which we describe our adaptive algorithm. Later sections clearly reveal the efficacy of
the algorithm for computing leaky modes of complex fibers. In particular, Section 4 is
devoted to verifying the correctness of the methodology using a Bragg fiber for which
mode solutions in exact closed form are available.

Modes are not available in analytic closed form for the three other fibers we con-
sider. Their geometries are displayed in Figures 1b, 1c and 1d. Antiresonant fibers
(ARF) such as those displayed in Figures 1b and 1c hold great promise due to their
potential for low loss propagation in their large hollow cores (filled with air which
has negligible optical nonlinearities). Negative-curvature hollow-core ARF, like that
in Figure 1b, but with eight thin capillaries were studied experimentally in [15]. The
Nested Anti-Resonant Nodeless Fiber (NANF), whose microstructure design is illus-
trated in Figure 1c, has capillaries each containing a smaller capillary ring within
it, was studied in [23], where it was projected to have improved (lower) losses com-
pared to the previous ARF designs, like that in Figure 1b. Photonic bandgap (PBG)
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(d) Geometry of the PBG fiber.

Figure 1: Transverse geometries of the microstructured fibers (not to scale) studied in
this work. White regions indicate air and shades of blue indicate dielectric materials
with higher refractive indices.

fibers like that in Figure 1d form another category of popular microstructure fiber
designs [14, 22, 24, 7, 19] gaining utility, particularly where all-solid fibers are pre-
ferred. The geometry of the PBG fiber used here contains a single layer of hexagonally
arranged high-index inclusions, a design shown to have the same transmission minima
as more complex multi-layer devices [19]. Note that it is not the goal of this paper to
discuss the relative merits of various microstructures. Rather, our purpose in consid-
ering the diverse designs in Figure 1 is to demonstrate the general purpose utility of
the proposed algorithm. As we shall see, the modes of all these fibers have fine-scale
features that the algorithm is able to successfully resolve.
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The remainder of this paper is organized as follows. Section 2 describes the
mathematical formulation of the eigenproblem starting from Maxwell equations. All
details of the PML and the finite element discretization are included there. The
DWR error estimator, its theoretical basis, and the adaptivity algorithm appears in
Section 3. The methodology is verified in Section 4 using a model Bragg fiber and its
semi-analytically computable propagation constants. Finally, we conclude in Section 5
by applying the algorithm to the above-mentioned three practically important fiber
microstructures.

2. The eigenproblem for leaky Maxwell modes. In this section, we quickly
outline the steps to derive a weak formulation for outgoing leaky hybrid modes of
an optical fiber using a perfectly matched layer. The resulting system, labeled (2.12)
below, is the eigenproblem we shall solve in the remaining sections. We explain
how the variable coefficients in (2.12) are derived since they are important for the
implementation of the error estimators discussed later.

The governing equation for light propagation in an optical fiber is the time-
harmonic Maxwell system for the electric field, Ê, and the magnetic field, Ĥ, where
all time variations are of the form e−ıωt for some frequency ω > 0,

−ıωµĤ +∇× Ê = 0,(2.1a)

ıωεÊ +∇× Ĥ = 0,(2.1b)

for all (x0, x1, x2) ∈ R3, where +x2 is the field’s propagation direction, ε represents
the electric permittivity and µ denotes the magnetic permeability, and ∇ × · is the
three-dimensional curl operator. We assume that µ > 0 is isotropic and constant,
an assumption that holds well for most optical materials. However, ε may have
anisotropies of the following form ε = diag(ετ , ετ , ε2) =

[︁
ετδ 0
0 ε2

]︁
where ετ and ε2 are

positive scalar functions and δ denotes the 2× 2 identity matrix. The assumption of
isotropy in x0x1 plane is made only for simplicity and can be easily relaxed for the
considerations in this paper.

We are interested in Maxwell solutions that propagate along the longitudinal
direction x2, which represents the direction of translational symmetry of our optical
fiber. Thus, we seek solutions of the form

(2.2) Ê(x0, x1, x2) = E(x0, x1) e
ıβx2 , Ĥ(x0, x1, x2) = H(x0, x1) e

ıβx2 ,

for some propagation constant β and vector fields E,H to be determined. By using
unit vectors e0, e1, e2 ∈ R3 in the coordinate directions, the transverse part of a vector
field F = F (x0, x1, x2) is its projection into the span of e0 and e1, denoted by Fτ ,
so that F = Fτ + F2e2 where F2 is the longitudinal component of F . Let R denote
the 90 degree rotation operator that maps any transverse field Fτ = F0e0 + F1e1 to
RFτ = F1e0 − F0e1. Define the divergence and the scalar-valued curl for transverse
fields by divFτ = ∂0F0 + ∂1F1 and curl(Fτ ) = div(RFτ ). The rotated gradient of a
scalar field ϕ is defined by rotϕ = R grad(ϕ). Next, we substitute (2.2) into (2.1),
decompose E andH into transverse and longitudinal components, and use the identity
∇×

(︁
u eıβx2

)︁
=
(︁
eıβx2 curluτ

)︁
e2 + eıβx2 (rotu2 − ıβRuτ ). Then, eliminating H2 and

Hτ and simplifying (see e.g., [31, Appendix A.1] for more details), the Maxwell system
reduces to a system coupling the transverse electric field Eτ and a scaled longitudinal
component of the field φ = ıβE2, which reads as follows:

rot curlEτ − ω2ετµEτ + gradφ = −β2Eτ ,(2.3a)

ε2µφ+ div(ετµEτ ) = 0,(2.3b)
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This is a mixed eigensystem for the eigenvalue −β2 where the second equation may
be viewed as a constraint.

The physical dimensions of the fiber’s transverse cross-section are in micrometers,
while practical propagation constants are usually of the order of 106, so a nondimen-
sionalization is useful. Let ε0 and µ0 be the electric permittivity and magnetic perme-
ability of the vacuum, respectively. Let k2 = ω2ε0µ0. Define the transverse and lon-
gitudinal refractive indices by n2τ = ετµ0/ε0µ and n22 = ε2µ0/ε0µ. Now, using a char-
acteristic length scale L for the fiber cross-section, we rescale (x0, x1) ↦→ (x0/L, x1/L)
and consider all the unknown functions in the rescaled coordinates. Outside some
finite radius (of the same order as L) in the transverse plane we assume that the
refractive index n(x0, x1) is isotropic and equal to a constant n0. Using an index well
defined by V (x0, x1) = L2k2(n20−nτ (x0, x1)2) in the rescaled nondimensional coordi-
nates, the system (2.3) leads us [31, Appendix A.2] to the following non-dimensional
equations:

rot curlEτ + V Eτ + gradφ = Z2Eτ , in R2,(2.4a)

n22φ+ div(n2τEτ ) = 0, in R2,(2.4b)

where Z2 = L2(k2n20 − β2) is a nondimensional eigenvalue.
The system (2.4) must be supplemented with boundary conditions. We shall

use the outgoing condition at infinity, described below. Before discussing it however,
consider the case where all fields have decayed to some negligible magnitude (as in a
guided mode) at the boundary of a large enough disk Ω in the x0x1-plane, sufficiently
far from the compact support of the index well V . Multiplying the first equation
of (2.4) by a vector test function F and the second by a scalar test function ψ,
integrating by parts, and using Eτ = 0 and φ = 0 on ∂Ω, we obtain the following

weak formulation. Find Eτ ∈ H̊(curl,Ω) and φ ∈ H̊
1
(Ω), satisfying∫︂

Ω

(curlEτ )(curlF ) +

∫︂
Ω

V Eτ · F +

∫︂
Ω

(gradφ) · F = Z2

∫︂
Ω

Eτ · F,(2.5a) ∫︂
Ω

n22φψ −
∫︂
Ω

n2τEτ · gradψ = 0,(2.5b)

for all F ∈ H̊(curl,Ω) and all ψ ∈ H̊
1
(Ω). Here H̊(curl,Ω) denotes the space of square-

integrable vector fields whose curl is also square integrable and whose tangential

component along ∂Ω vanishes and H̊
1
(Ω) denotes square-integrable scalar functions

which vanish on ∂Ω all of whose first-order derivatives are also square integrable on
Ω. Prior works featuring similar weak formulations include [16, 17, 31, 32].

Leaky modes satisfy (2.4) and also satisfy the condition at infinity that the mode
must be outgoing. To explain this, first note that the fiber’s translational symmetry in
x2-direction and the absence of inhomogeneities in r2 ≡ x20 + x21 > R2 for some finite
cylindrical radius R, implies that we can use separation of variables to obtain a series
expansion of solution components in terms of solutions of the Bessel equation in r and
sines and cosines in the angular variable θ. From among all solutions to the Bessel
equation, when Z is a positive real number, the outgoing requirement selects Hankel

functions of the first kind, H
(1)
ℓ . Hence the radial variation of all terms in the solution

representation are of the form H
(1)
ℓ (Zr) as r →∞ (see e.g., [5] or [10, eq. (23)]). For

complex values of Z, the outgoing condition requires that the solution is expressible
in terms of the analytic continuations into C, from the positive real axis, of the same
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Hankel functions H
(1)
ℓ (Zr). A practically convenient method to impose this condition

is through a perfectly matched layer (PML) [2] which transforms coordinates so that
the solution of (2.4), while unaltered in a bounded region where V is inhomogeneous,
becomes exponentially decaying outside. The exponential decay allows us to truncate
the infinite domain R2 in (2.4) to a bounded computational domain Ω as in (2.5). To
view PML as a complex coordinate transformation [20, 5], we let x̃ := Φ(x) where
Φ(x) = x η(r)/r for some complex-valued function η(r) to be specified later. Here
x = [x0, x1]

T, x̃ = [x̃0, x̃1]
T, and r =

√︁
x20 + x21. Put x⊥ = [x1,−x0]T. Consider the

2 × 2 Jacobian matrix whose entries are Jij := ∂x̃i/∂xj . Simple computations give
that with ζ(r) = η(r)/r, we have

J =
ζ ′

r
xxT + ζδ, J−1 =

1

η′
δ +

ζ ′

ηη′
x⊥x

T
⊥, det(J) = ζη′.(2.6)

We transform scalar-valued functions ψ and vector-valued functions Ψ in the following
distinct ways:

(2.7) ψ̃ = ψ ◦ Φ−1, Ψ̃ = J−TΨ ◦ Φ−1.

By placing a tilde over a differential operator, we indicate that the derivative is being
taken with respect to x̃ rather than x. Calculations using the chain rule shows that
the matrix DΨ whose (i, j)th entry equals ∂jΨi satisfies ∂̃jΨ̃i = [J−T DΨ J−1]ij +∑︁

l Ψl ∂
2xl/∂x̃j∂x̃i. Relating its skew symmetric part to the curl and applying (2.6),

we obtain

(2.8a) curl˜ Ψ̃ =
1

(η′)2

(︃
1 +

ζ ′r2

η

)︃
(curlΨ) ◦ Φ−1

Similarly, the chain rule applied to ψ̃ = ψ ◦ Φ−1 gives

(2.8b) grad˜ ψ̃ = J−T(gradψ) ◦ Φ−1.

In the complexified domain Ω̃ = Φ(Ω), we solve the analogue of system (2.5) obtained
by replacing curl by curl˜ , grad by grad˜ , and Ω by Ω̃, namely∫︂

Ω̃

(curl˜ Ẽτ )(curl˜ F̃ ) +

∫︂
Ω̃

V Ẽτ · F̃ +

∫︂
Ω̃

(grad φ̃) · F̃ ) = Z2

∫︂
Ω̃

Ẽτ · F̃ ,(2.9a) ∫︂
Ω̃

n22φ̃ψ̃ −
∫︂
Ω̃

n2τ Ẽτ · grad ψ̃ = 0.(2.9b)

where Ẽτ , F̃ , φ̃ and ψ̃ are obtained from Eτ , F, φ and ψ using (2.7).
Since it is more convenient to compute on a domain with real coordinates, we

now transform the equations of (2.9) back to Ω using the identities in (2.6) and (2.8),
e.g., ∫︂

Ω̃

(curl˜ Ẽτ )(curl˜ F̃ ) =

∫︂
Ω̃

κ curlEτ curlF,

with

(2.10) κ =
ζ

(η′)3

(︃
1 +

ζ ′r2

η

)︃2

.

Also defining

(2.11) γ = ζη′J−TJ−1,
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and performing similar transformations for other terms in (2.9), we are led to a weak

formulation with PML. Namely, we find Eτ ∈ H̊(curl,Ω) and φ ∈ H̊
1
(Ω), satisfying

a(Eτ , F ) + c(φ, F ) = Z2 m(Eτ , F ), for all F ∈ H̊(curl,Ω),(2.12a)

b(Eτ , ψ) + d(φ,ψ) = 0, for all ψ ∈ H̊
1
(Ω),(2.12b)

where

a(Eτ , F ) = (κ curlEτ , curlF )Ω + (V γEτ , F )Ω,(2.13a)

b(Eτ , ψ) =
(︁
n2τγEτ , gradψ

)︁
Ω
, c(ϕ, F ) = (γ gradϕ, F )Ω ,(2.13b)

d(ϕ, ψ) = −
(︁
n22ζη

′ϕ, ψ
)︁
Ω
, m(Eτ , F ) = (γEτ , F )Ω .(2.13c)

Here (·, ·)Ω denotes the (complex) inner product of L2(Ω) or its Cartesian products and
we have used the conjugates of test functions in (2.9). The system (2.12) completes
the description of the weak formulation for computing leaky modes, except for a
prescription of η(r).

There are multiple ways to choose η(r), as can be seen from the literature [5, 10,
13, 21]. We use a two-dimensional analogue of an expression in [13]. To describe it,
we fix Ω to be a disk of radius r1, assume that support of V is contained in a disk of
radius r0 < r1, and that a cylindrical PML is set in the annular region r0 < r < r1.
Let 0 < α be the PML strength parameter. We set

(2.14a) η(r) = 1 + ıϕ(r),

where

(2.14b) ϕ(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if r < r0,

α

∫︂ r

r0

(s− r0)2(s− r1)2 ds∫︂ r1

r0

(s− r0)2(s− r1)2 ds
, if r0 < r < r1.

This together with ζ(r) = η(r)/r defines all quantities that appear in (2.12).
We conclude this section by describing the finite element discretization of (2.12)

that we shall employ. First, mesh Ω by a geometrically conforming finite element
mesh of triangles, and denote the mesh by Ωh. On a triangle K, let Pp(K) denote
the space of polynomials in two variables of degree at most p. The degree p and
the maximal element diameter h = maxK∈Ωh

diam(K) determine the richness of the
discretization. The Lagrange finite element space on Ωh, for any p ≥ 0 is defined
by Vh = {ψ : ψ|K ∈ Pp+1(K) for all K ∈ Ωh, ψ is continuous}. The Nédélec finite
element space [20] is the set of all vector fields F on Ω whose tangential components are
continuous across element interfaces and whose restrictions to each element K ∈ Ωh is
a polynomial of the form F |K ∈ Pp(K)2+

[︁
x1

−x0

]︁
Pp(K). We use curved triangles next

to curved material interfaces, in which case, as usual, the polynomial space within
such an element is replaced by the pullback of the above-indicated polynomial spaces
from a reference triangle. The Galerkin discretization using these spaces give the
discrete eigenproblem that solves for Eτ,h ∈ Nh and φh ∈ Vh such that

a(Eτ,h, F ) + c(φh, F ) = Z2
h m(Eτ,h, F ), for all F ∈ Nh,(2.15a)

b(Eτ,h, ψ) + d(φh, ψ) = 0, for all ψ ∈ Vh.(2.15b)

All results of computations described in later sections are obtained by solving (2.15).
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3. The error estimator for eigenvalues. In this section, we describe the a
posteriori error estimator for the previously described eigenproblem. It is obtained by
applying the DWR technique [1, 12, 26]. Although only eigenproblems with second-
order elliptic operators were considered in these references, the generality of their
technique is well recognized. Even though our eigenproblem involves a non-elliptic
operator, the same approach applies, as we shall now see.

LetH = H̊(curl,Ω)×H̊
1
(Ω) andHh = Nh×Vh. Putting λ = Z2, u = (Eτ , φ) ∈ H,

and v = (F,ψ) ∈ H, we restate the eigenproblem (2.12) as

A(u,w) = λB(u,w), ∥u∥H = 1,(3.1)

for all w ∈ H with

A(u, v) = a(Eτ , F ) + c(φ, F ) + b(Eτ , ψ) + d(φ,ψ), B(u, v) = m(Eτ , F ),

with a, b, c, d,m as in (2.13). Viewing u as a right eigenfunction, we also assume that
there is a corresponding left eigenfunction 0 ̸= ũ = (Ẽτ , φ̃) ∈ H satisfying

A(ṽ, ũ) = λB(ṽ, ũ), for all ṽ ∈ H,(3.2a)

B(u, ũ) = 1.(3.2b)

Next, consider the Galerkin discretizations of these eigenproblems, considered previ-
ously in (2.15). Using the same type of normalizations as in (3.1)–(3.2), we assume
there is a discrete right eigenfunction uh = (Eτ,h, φh) ∈ Hh and a discrete left eigen-

function ũh = (Ẽτ,h, φ̃h) ∈ Hh satisfying

A(uh, w) = λhB(uh, w), ∥uh∥H = 1,(3.3)

for all w ∈ Hh and

A(ṽ, ũh) = λhB(ṽ, ũh), for all ṽ ∈ Hh,(3.4a)

B(uh, ũh) = 1.(3.4b)

where λh = Z2
h.

Next, to describe the error estimators, using the coefficients κ and γ in (2.10) and
(2.11), we first set element-wise residuals. Let ∥ · ∥D denote the L2(D)-norm for a
subset D such as T ∈ Ωh or its boundary ∂T . Let hT denote the diameter of T . On an
interior mesh edge, let ν denote a unit normal of arbitrarily fixed orientation. Jumps
of multivalued functions at the element interfaces are denoted by J·K; so, for example,
J(n2τγEτ,h) · νK denotes the jump of the normal (ν) component of n2τγEτ,h across an
interior edge. Using this notation, define (unweighted) element-wise residuals by

ρ2T,1 = h2T
⃦⃦
rot(κ curlEτ,h) + V γEτ,h + γ gradφh − Z2

hγEτ,h

⃦⃦2
T

(3.5a)

+
hT
2

⃦⃦
Jκ curlEτ,hK

⃦⃦2
∂T\∂Ω,

ρ2T,2 = h2T
⃦⃦
div(γ gradφh + V γEτ,h − Z2

hγEτ,h)
⃦⃦2
T

(3.5b)

+
hT
2

⃦⃦q
(γ gradφh + V γEτ,h − Z2

hγEτ,h) · ν
y⃦⃦2

∂T\∂Ω ,

ρ2T,3 = h2T
⃦⃦
div(n2τγEτ,h) + n22ζη

′φh

⃦⃦2
T
+
hT
2

⃦⃦
J(n2τγEτ,h) · νK

⃦⃦2
∂T\∂Ω ,(3.5c)
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and define weights arising from the dual eigenfunction components by

ω̃T,1 = ∥ curl Ẽτ∥T , ω̃T,2 = ∥Ẽτ∥T , ω̃T,3 = ∥ grad φ̃∥T .(3.5d)

Similarly, using complex conjugates of the coefficients, we define analogous element-
wise residuals for the dual problem,

ρ̃2T,1 = h2T

⃦⃦⃦
rot(κ̄ curl Ẽτ,h) + n2τ γ̄ grad φ̃h + V γ̄Ẽτ,h − Z̄

2
hγ̄Ẽτ,h

⃦⃦⃦2
T

(3.5e)

+
hT
2

⃦⃦⃦r
κ̄ curl Ẽτ,h

z ⃦⃦⃦2
∂T\∂Ω

,

ρ̃2T,2 = h2T

⃦⃦⃦
div(n2τ γ̄ grad φ̃h + V γ̄Ẽτ,h − Z̄

2
hγ̄Ẽτ,h)

⃦⃦⃦2
T

(3.5f)

+
hT
2

⃦⃦⃦r
(n2τ γ̄ grad φ̃h + V γ̄Ẽτ,h − Z̄

2
hγ̄Ẽτ,h) · ν

z ⃦⃦⃦2
∂T\∂Ω

,

ρ̃2T,3 = h2T

⃦⃦⃦
div(γ̄Ẽτ,h) + n22ζ̄ η̄

′φ̃h

⃦⃦⃦2
T
+
hT
2

⃦⃦⃦r
(γ̄Ẽτ,h) · ν

z ⃦⃦⃦2
∂T\∂Ω

,(3.5g)

and weights generated by the right eigenfunction:

ωT,1 = ∥ curlEτ∥T , ωT,2 = ∥Eτ∥T , ωT,3 = ∥ gradφ∥T .(3.5h)

Using these, we define a local element-wise error indicator by

(3.5i) ηT =

3∑︂
i=1

ρT,i ω̃T,i + ρ̃T,i ωT,i,

for each T ∈ Ωh. A practical version of this idealized error indicator will be given
later: see (3.13).

The adaptive algorithm we use is motivated by the next result (Theorem 3.1 be-
low), which gives a global reliability estimate for the error indicator ηT . We prove it
using the DWR approach laid out in [1, 12, 26], but bring in an additional ingredient
to decompose H(curl) approximation errors into locally controllable gradients and a
regular remainder using the results of [27]. As usual, we make a “saturation assump-
tion,” which here takes the form that the discretizations considered are fine enough
so that

(3.6)

(︃
max
x∈Ω
∥γ(x)∥2

)︃
∥Eτ − Eτ,h∥Ω ∥Ẽτ − Ẽτ,h∥Ω < 1

holds. The assumption is likely to hold on reasonable meshes since the product of
errors on the left is expected to go to zero faster than the field error as h approaches
zero. Hereon, we use A ≲ B to indicate that there exists a meshsize (h) independent
constant C > 0 (possibly dependent on shape regularity of the mesh) such that the
inequality A ≤ CB holds.

Theorem 3.1. Suppose the vectors u = (Eτ , φ), uh = (Eτ,h, φh), ũ = (Ẽτ , φ̃),

ũh = (Ẽτ,h, φ̃h), solve (3.1), (3.2), (3.3) and (3.4), respectively, with accompanying
exact and discrete eigenvalues λ and λh. Suppose also that (3.6) holds. Then the
error in eigenvalue can be bounded by the error indicators defined in (3.5) by

(3.7) |λ− λh| ≲
∑︂

T∈Ωh

ηT .
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Proof. Let

ρ(ṽ) = A(uh, ṽ)− λhB(uh, ṽ), ρ̃(v) = A(v, ũh)− λhB(v, ũh)

for any v, ṽ ∈ H. Also let σ = B(u − uh, ũ − ũh)/2. The argument is based [12] on
the identity

(3.8) (λ− λh)(1− σ) =
1

2
ρ(ũ− ṽh) +

1

2
ρ̃(u− vh)

which holds for any ṽh, vh ∈ Hh. Its proof is elementary:

ρ(ũ− ṽh) + ρ̃(u− vh) = A(uh, ũ)− λhB(uh, ũ)

+A(u, ũh)− λhB(u, ũh), by (3.3) & (3.4),

= (λ− λh)
[︁
B(uh, ũ) +B(u, ũh)

]︁
, by (3.1) & (3.2),

= (λ− λh)
[︁
B(uh − u, ũ− ũh) + 2

]︁
, by (3.2b) & (3.4b),

from which (3.8) follows for any vh, ṽh ∈ Hh.
We proceed setting vh = (ΠhEτ , Ihφh), where Ih is the Scott-Zhang interpolant

[29] and Πh is the quasi-interpolant defined in [27]. The results of [27] prove that

there is an e ∈ H̊
1
(Ω) and z ∈ [H̊

1
(Ω)]2 such that

Eτ −ΠhEτ = z + grad e,(3.9a)

h−1
T ∥e∥T + ∥ grad e∥T ≲ ∥Eτ∥ΩT

,(3.9b)

h−1
T ∥z∥T + ∥ grad z∥T ≲ ∥ curlEτ∥ΩT

.(3.9c)

where ΩT is the union of all elements connected to T . Using this decomposition and
integrating by parts,

ρ̃(u− vh) = A(u− vh, ũh)− λhB(u− vh, ũh)

= A((z + grad e, φ− Ihφ), (Ẽτ,h, φ̃h))− Z2
h

(︂
γ(z + grad e), Ẽτ,h

)︂
Ω

=
(︂
κ curl z, curl Ẽτ,h

)︂
Ω

+
(︂
V γ(z + grad e) + γ grad(φ− Ihφ)− Z2

hγ(z + grad e), Ẽτ,h

)︂
Ω

+
(︁
n2τγ(z + grad e), grad φ̃h

)︁
Ω
−
(︁
n22ζη

′(φ− Ihφ), φ̃h

)︁
Ω

=
∑︂

T∈Ωh

[︂ (︂
z · t, κ̄ curl Ẽτ,h

)︂
∂T

(3.10)

+
(︂
z, rot κ̄ curl Ẽτ,h + n2τ γ̄ grad φ̃h + V γ̄Ẽτ,h − Z̄

2
hγ̄Ẽτ,h

)︂
T

+
(︂
e, (n2τ γ̄ grad φ̃h + V γ̄Ẽτ,h − Z̄

2
hγ̄Ẽτ,h) · ν

)︂
∂T

−
(︂
e,div(n2τ γ̄ grad φ̃h + V γ̄Ẽτ,h − Z̄

2
hγ̄Ẽτ,h)

)︂
T

+ (φ− Ihφ, (γ̄Ẽτ,h) · ν)∂T\∂Ω

− (φ− Ihφ,div(γ̄Ẽτ,h) + n22ζ̄ η̄
′φ̃h)T

]︂
,

where t and ν are, respectively, the unit counterclockwise tangent and the unit
outward normal vectors on element boundaries. To bound the element boundary
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terms in the sum above, we use the well-known local trace estimate h−1
T ∥w∥2∂T ≲

h−2
T ∥w∥2T + ∥ gradw∥2T which holds for any w ∈ H1(T ) on any element T of a shape-

regular mesh. Using it, the first term in the sum (3.10) can be bounded by⃓⃓⃓ ∑︂
T∈Ωh

(z · t, κ̄ curl Ẽτ,h)∂T

⃓⃓⃓
≲
∑︂

T∈Ωh

(︂
h
−1/2
T ∥z∥∂T

)︂ (︃
h
1/2
T

⃦⃦⃦
Jκ̄ curl Ẽτ,hK

⃦⃦⃦
∂T\∂Ω

)︃
≲
∑︂

T∈Ωh

(h−1
T ∥z∥+ ∥ grad z∥T ) ρ̃T,1

≲
∑︂

T∈Ωh

∥ curlEτ∥ΩT
ρ̃T,1,

where we have used (3.9c). The second term is also bounded using (3.9c):(︁
z, rot κ̄ curl Ẽτ,h + n2τ γ̄ grad φ̃h + V γ̄Ẽτ,h − Z̄

2
hγ̄Ẽτ,h

)︁
T

≲ ∥ curlEτ∥ΩT
ρ̃T,1.

Similarly, applying (3.9b), we find⃓⃓⃓ ∑︂
T∈Ωh

(︂
e, (n2τ γ̄ grad φ̃h + V γ̄Ẽτ,h − Z̄

2
hγ̄Ẽτ,h) · ν

)︂
∂T

⃓⃓⃓
≲
∑︂

T∈Ωh

(︂
h
−1/2
T ∥e∥∂T

)︂(︂
h
1/2
T

⃦⃦⃦r
(n2τ γ̄ grad φ̃h + V γ̄Ẽτ,h − Z̄

2
hγ̄Ẽτ,h) · ν

z⃦⃦⃦
∂T

)︂
≲
∑︂

T∈Ωh

(︁
h−1
T ∥e∥T + ∥ grad e∥

)︁
ρ̃T,2 ≲

∑︂
T∈Ωh

∥Eτ∥ΩT
ρ̃T,2

and(︁
e, div(n2τ γ̄ grad φ̃h + V γ̄Ẽτ,h − Z̄

2
hγ̄Ẽτ,h)

)︁
T
≤ h−1

T ∥e∥T ρ̃T,2 ≲ ∥Eτ∥ΩT
ρ̃T,2.

For the last two terms in (3.10), we use the well-known property of Ih,

h−1
T ∥φ− Ihφ∥T + ∥ grad(φ− Ihφ)∥T ≲ ∥ gradφ∥ΩT

in place of (3.9) and apply Cauchy-Schwarz inequality in a similar fashion as above.
Gathering bounds on all terms, we arrive at

(3.11) ρ̃(u− vh) ≲
∑︂

T∈Ωh

ωT,1 ρ̃T,1 + ωT,2 ρ̃T,2 + ωT,3 ρ̃T,3.

Next, consider the other residual, ρ(ũ − ṽh). Setting ṽh = (ΠhẼτ , Ihφ̃h) and
applying the same type of arguments, we prove that

(3.12) ρ(u− ṽh) ≲
∑︂

T∈Ωh

ω̃T,1 ρT,1 + ω̃T,2 ρT,2 + ω̃T,3 ρT,3.

Finally, note that the definitions of σ and B imply

2σ = B(u− uh, ũ− ũh) = m(Eτ − Eτ,h, Ẽτ − Ẽτ,h)

= (γ(Eτ − Eτ,h), Ẽτ − Ẽτ,h)Ω < 1,

where the last inequality is due to (3.6). Thus 1 − σ > 1/2. Using this, together
with (3.12) and (3.11) within the identity (3.8), the stated estimate follows.
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We conclude this section by describing the adaptive algorithm we implemented.
First, to make the error indicator ηT practical, following the heuristics of [12, Re-
mark 10], we take the next step of replacing the unknown weights ω̃T,i and ωT,i by a
computable analogue that is likely to be close in value, namely

ω̃
(h)
T,1 = ∥ curl Ẽτ,h∥T , ω̃

(h)
T,2 = ∥Ẽτ,h∥T , ω̃

(h)
T,3 = ∥ grad φ̃h∥T ,

ω
(h)
T,1 = ∥ curlEτ,h∥T , ω

(h)
T,2 = ∥Eτ,h∥T , ω

(h)
T,3 = ∥ gradφh∥T .

Replacing the weights in (3.5i) by these, we obtain the practical element-wise error
indicator we use:

(3.13) η
(h)
T (λh, uh, ũh) =

3∑︂
i=1

ρT,i ω̃
(h)
T,i + ρ̃T,i ω

(h)
T,i .

The next practicality involves aggregating estimators when multiple eigenvalues λ
(ℓ,k)
h

are found clustered, together with their left and right eigenvectors ũ
(ℓ,k)
h , u

(ℓ,k)
h , k =

1, . . . ,Kℓ, in the ℓ-th adaptive iteration. Then, we simply compute the element-wise

maximum of the error indicators for each eigenvalue. Namely, we compute η
(ℓ,k)
T =

η
(h)
T (λ

(ℓ,k)
h , u

(ℓ,k)
h , ũ

(ℓ,k)
h ) using (3.13) and set

(3.14) η
(ℓ)
T = max

k=1,...,Kℓ

η
(ℓ,k)
T .

An element T ′ ∈ Ω
(ℓ)
h is marked for refinement if

(3.15) η
(ℓ)
T ′ > θ max

T∈Ωh

η
(ℓ)
T ,

where θ is an input refinement threshold parameter. This is used in Algorithm 3.1,
which summarizes the adaptive strategy we implemented.

We conclude this section by specifying the parameters we used in Algorithm 3.1
and ensuing computations. We use NGSolve [28] for Nédélec and Lagrange finite
elements and for assembly of the eigensystem. It supports curved triangles, with a
specifiable order of polynomial curving, as well as high-order Nédélec and Lagrange
elements. Algorithm 3.1 can use any sparse eigensolver. In our computations, we use
the FEAST contour integral eigensolver [25, 9] (whose specific application to leaky
modes is also detailed in [10, Section A.4]), which takes as input a search region
enclosed by a simple closed contour (denoted by D in the algorithm). We use circular

contours of small enough radius centered at λ̂
(n)

h = 1
Kn

∑︁Kn

k=1 λ
(n,k)
h , i.e., these centers

track changes within each adaptive iteration and D may therefore vary with iteration
number ℓ. How aggressively the refinements are made is determined by the parameter
θ. For our computations, we used θ = 0.75, a value determined by trial and error to
give us a good balance between localization of the refinements and a steady increase
in the number of degrees of freedom (d.o.f.s). So as to represent all eigenmodes of the
eigenvalue cluster on the same mesh, the algorithm uses a marking strategy based on
the maximum of the error indicators generated by each eigenmode. Other marking
strategies are possible, as in [33, 1, 12]. As a stopping criterion, we set the maximum
number of degrees of freedom to Nmax = 2× 106 in our numerical experiments.
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Algorithm 3.1 Adaptive algorithm for leaky modes

Input: Initial mesh Ω
(0)
h , refinement threshold θ, an eigenvalue search region D ⊆ C,

and the maximum permitted number of degrees of freedom Nmax.

Result: Final adaptively refined mesh Ω
(ℓ)
h , and a cluster of eigenvalues Λ

(ℓ)
h con-

tained in D obtained using Ω
(ℓ)
h .

1 for ℓ← 0, 1, 2, . . . do

2 SOLVE: Assemble the system in (3.3) using Ω
(ℓ)
h and solve it using a sparse eigen-

solver to obtain a cluster of eigenvalues λ
(ℓ,k)
h = (Z

(ℓ,k)
h )2 contained in D, and

the corresponding right and left eigenvectors u
(ℓ,k)
h and ũ

(ℓ,k)
h for k = 1, . . . ,Kℓ.

3 ESTIMATE: Compute error indicators η
(ℓ)
T using (3.14) for each element T ∈ Ω

(ℓ)
h .

4 MARK elements for refinement based on (3.15) and input θ.

5 REFINE marked elements in Ω
(ℓ)
h (as well as surrounding elements as needed to

obtain mesh conformity) to generate the next mesh Ω
(ℓ+1)
h .

6 if number of degrees of freedom on Ω
(ℓ+1)
h > Nmax then

7 break

8 return Ω
(ℓ)
h and Λ

(ℓ)
h

4. Verification by Bragg fiber. It is well known [34, 18] that an air waveguide
surrounded by a higher index cladding can have modes that propagate energy and
are primarily confined in the air core region. This design is a type of hollow-core
Bragg fiber such that its transverse cross-section consists of a glass ring in infinite
air (see Figure 1a). Such fibers were more recently re-examined in [3, 31] where
the dielectric ring was viewed as an “anti-resonant” layer. In particular, the results
of [31] demonstrated that certain fine-scale features in the higher index region must
be resolved to obtain confinement losses with acceptable accuracy. There, these fine
features were also definitively shown to be not an artifact of numerical approximations,
nor of the PML, since they were captured both by semi-analytic methods and by
numerical computations.

These prior studies make the Bragg configuration an ideal example for verifying
our adaptive strategy. Because we can semi-analytically compute the exact eigenvalue
λ = Z2 for this geometry, we are able to study the history of actual eigenvalue errors
as the adaptive mesh refinement proceeds. Moreover, starting with an unbiased mesh
that disregards the above-mentioned prior knowledge of the fine-scale features in the
modes, we investigate if the (deliberately blinded) adaptivity process is able to sense
these features automatically and guide refinement to capture them.

In our numerical experiments for this fiber, we use the following settings for
parameters (recalling that the parameters were defined in Section 3). The length scale
in nondimensionalization is set to L = 1.5 × 10−5 m. The operating wavelength is
determined by setting k = 2π

1.7 ×106 m−1. The refractive index is a piecewise-constant
function whose values are nair = 1.00027717 in the air regions and nglass = 1.43881648
in the glass ring. The following non-dimensionalized radii are used: the air core
has radius rcore = 2.7183; the glass ring starts at rcore and has an outer radius
router = 3.385, with a thickness of tring = 0.66666667; the outer air region starts at
router and extends to r0 = 4.385, with a thickness of tair = 1.0; and the PML starts
at r0 and extends to r1 = 8.05166666, with a thickness of tPML = 3.66666667. The
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(a) Initial mesh for the Bragg fiber,
zoomed in near the glass ring.

(b) Final mesh for the Bragg fiber af-
ter the adaptive algorithm.

(c) Intensity of the full electric field
(right eigenmode) at the final mesh.

(d) Magnitude of the longitudinal
component (φh) of the eigenmode.

Figure 2: Results from the adaptive algorithm applied to a Bragg fiber.

PML strength (recall (2.14)) is set to α = 2.0. We set polynomial degree of p = 6 to
define the discretization (2.15).

The resulting mode at the conclusion of an adaptive iteration is displayed in Fig-
ure 2. Clearly, in the initial mesh, visible in Figure 2a, element sizes are more or
less the same within the glass ring and in the air regions (with h ≈ 0.1 in nondi-
mensional units). The computational subdomains are visible there, demarcated by
thicker lines, showing the air core, the glass ring, the outer air enclosure, and an
outermost circle indicating the beginning of the PML. The final mesh produced by
the adaptive algorithm, given in Figure 2b, shows strong local refinement within the
glass ring. The total electric field intensity at the final iterate (Figure 2c) reveals a
mode highly localized in the air core as expected. In this figure, the fine-scale features
are too small in amplitude to be visible. However, examining the magnitude of the
smaller longitudinal electric field component in Figure 2d, fine-scale ripples in the
glass ring are visible. These were pointed out in [31] from results of semi-analytical
computations. We see that the algorithm guided the adaptive refinement process to
capture these fine-scale features automatically. Here and throughout, we use a blue-
to-red colormap for mode intensity plots, where blue indicates zero and red indicates
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the maximal value. Color scale is omitted from such plots since the modes are only
defined up to a scalar multiple.

Next, we turn to examine the accuracy of the computed eigenvalue. The results
are in Figure 3. The exact nondimensional eigenvalue we aim to approximate, ob-
tained from semi-analytical computations, is Z2 = 0.80953881 + 0.00170153i, and
the exact eigenvalue cluster is the singleton containing it, Λ = {Z2}. The discrete
eigenvalue cluster Λh is computed by providing a circular contour to FEAST cen-
tered around the exact eigenvalue. When the eigensolver converged, Λh generally had
two elements, matching the multiplicity of the exact eigenvalue. Let the Hausdorff
distance between two sets Υ1 and Υ2 be denoted by

d(Υ1,Υ2) = max( sup
γ1∈Υ1

dist(γ1,Υ2), sup
γ2∈Υ2

dist(γ2,Υ1)).

We report the convergence of the discrete eigenvalues in Λh to Λ using the Hausdorff
distance in Figure 3.

105 106
10−10

10−8

10−6

10−4

10−2

Number of degrees of freedom at the ℓ-th iteration

d
(Λ
,Λ

h
)

Figure 3: Convergence history of the cluster of discrete eigenvalues to the exact
eigenvalue for the Bragg fiber, during the adaptive mesh refinement.

The confinement loss (CL) of a fiber, in decibels per meter (dB/m), is calculated
from the propagation constant β by

(4.1) CL = Im(β)× 20

ln(10)
.

In the ℓth adaptive iteration, prior to computing the confinement loss for a cluster of

eigenvalues Zh ∈ Λ(ℓ)
h that converge to the same value, we average the nondimensional

Zh-values in the cluster to obtain their mean value Ẑh, then set β̂
(ℓ)

h = (k2n20 −
Ẑ

2

h/L
2)1/2, and compute CLℓ by replacing β with β̂

(ℓ)

h in (4.1). The difference between
this value and the exact confinement loss value calculated from the exact β is reported
in Figure 4. Excellent agreement is found as adaptive iterations progress.

Finally, we report on how the error estimator compares to the actual eigenvalue
error (which can be computed for this example since an exact solution is available).
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Figure 4: Convergence history of the confinement loss (see (4.1)) for the Bragg fiber,
during the adaptive mesh refinement.

Consider the ratio of the the global error of the computed eigenvalues to the global
error estimator, i.e., at the ℓth iteration, let

(4.2) Efficiency(ℓ) = max
λh∈Λ

(ℓ)
h

|λh − λ|

/︄(︄ ∑︂
T∈Ω

(ℓ)
h

(η
(ℓ)
T )2

)︄1/2

,

where λ = Z2 is the above-mentioned known exact eigenvalue. These values, for each
mesh in the history of adaptive refinements, are plotted in Figure 5. As can be seen
from Figure 5, these values oscillates greatly in a preasymptotic regime, after which
they stabilize somewhat, hovering well below one. On all meshes except one, these
values are below one, indicating that the eigenvalue error is bounded by the computed
error estimator, i.e., the estimator is quite reliable. However, we also observe that the
efficiency values are not very close to the perfect value of one. Such efficiencies are
comparable to previous reports [12] that lead us to not anticipate perfect efficiencies
for the DWR estimator, even for textbook nonselfadjoint eigenproblems simpler than
ours.

5. Three microstructured fibers. In this section, we report the results ob-
tained using our adaptive algorithm on three different microstructured fiber designs.

5.1. A hollow-core anti-resonant fiber. First, we consider the ARF micro-
structure in Figure 1b, motivated by studies in [15, 23] of anti-resonant nodeless tube-
lattice fiber. This fiber has a hollow-core surrounded by glass capillaries (modeled as)
embedded into a glass cladding.

The parameters used for the simulation are as follows. Length scale is L =
1.5×10−5 m; operating wavelength is determined by k = 2π

1.8×106 m−1; the refractive
index is nair = 1.00027717 in the air core, and nglass = 1.44087350 in the glass
ring. The following non-dimensionalized radii and thicknesses are used: the core of
the fiber is a circle of radius rcore = 1.0; the capillary is defined between an inner
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Figure 5: Plot of ratios of eigenvalue error to the estimator (see (4.2)) on each mesh
during the adaptive process applied to the Bragg fiber.

radius rcap, i = 2.71833333 and an outer radius rcap, o = 3.385, with a thickness of
tcap = 0.66666667; the cladding has an inner radius rclad, i = 3.385 and an outer radius
rclad, o = 4.05166667, the thickness of the glass jacket (cladding) is tclad = 0.66666667;
the embedding of the capillary into the cladding is given by e = 0.05952380, which
represents the fraction of the capillary thickness that is submerged in the cladding;
the distance between the capillaries is d = 0.13999999; the outer layer of air starts
at rclad, o and ends at r0 = 4.05166667, and has a thickness of tair = 0.66666667; the
PML region extends from r0 to r1 = 7.385, with a thickness of tPML = 3.33333333.
The PML strength (implemented through relation (2.14)) is α = 2.0. The algorithm
was run with a search region to capture the expected core-localized fundamental mode
of this fiber.

The results are portrayed in the images of Figure 6. The initial mesh (Figure 6a)
is relatively coarse, with small elements used only to conform to the geometry of the
thin glass capillaries and their melding into the cladding. We make the elements in
the core region smaller (with 0.2 ≲ h ≲ 0.5), to capture the expected core-localized
fundamental mode of this fiber and verify the saturation assumption. The final mesh
produced by the adaptivity iteration (Figure 6b) is characterized by unexpectedly
strong local refinement in the outer glass cladding where there are no tiny geomet-
rical features to be resolved. This is explained by Figure 6d where we see fine-scale
ripples in the high-index cladding for the longitudinal electric field component. The
total intensity (Figure 6c) is characterized by a localized profile in the air core. How-
ever, because the mode intensity in the core region is orders of magnitude larger than
its fine-scale features in the cladding region, one may not realize such cladding ripples
exist and are important for accurately resolving the mode loss. The cladding oscilla-
tions of the mode intensity are visible when plotting the smaller longitudinal vector
component of the mode. The importance of capturing these fine scale features was
first pointed out in [31], where an expert “informed mesh” was manually created with
enough elements to capture the fine-scale oscillations. Here, we see that the automatic



18 J. GOPALAKRISHNAN, J. GROSEK, G. PINOCHET-SOTO, AND P. VANDENBERGE

(a) Initial mesh for the ARF geome-
try.

(b) Final mesh for the ARF after the
adaptive algorithm

(c) Intensity of the full electric field
(right eigenmode) at the final mesh.

(d) Magnitude of the longitudinal
component (φh) of the eigenmode.
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(f) History of computed loss values.

Figure 6: Results from the adaptive algorithm applied to ARF.
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adaptive process also points to the necessity of refinements in the same region.
The apparent convergence history during the adaptive process is displayed in

Figure 6e. Since we do not have exact eigenvalues for this case, we cannot calculate
the eigenvalue errors in each iteration. Instead, we compare the Hausdorff distance
between the final output Λfinal

h (at the last iteration) with the discrete eigenvalue

cluster Λ
(ℓ)
h (with two elements converging to the same number) found at the ℓth

adaptive iteration. The curve exhibits an overall decreasing trend, even if not a
monotonic decrease. The CL values at each iteration are plotted in Figure 6f. We
observe convergence of the CL values when the curve flattens out in the last few
iterations.

5.2. A nested anti-resonant nodeless fiber. Next, we consider the NANF
microstructure in Figure 1c, motivated by the studies in [23, 4]. Its main difference
with the ARF is that the cladding has a nested structure of capillaries. Since this
structure is close to the previously considered ARF, we anticipate that fine-scale mode
features of a similar nature to arise here.

We employ the following parameters for the simulation. The length scale is L =
1.5 × 10−5 m; the operating wavelength is determined by k = 2π

1.8 × 106 m−1; the
refractive index is nair = 1.00027717 in the air regions, and nglass = 1.44087350 in
the glass ring. We utilize the following non-dimensionalized radii and thicknesses: the
core of the fiber is a circle of radius rcore = 1.0; the outer capillary is determined by an
outer radius rcap, o = 0.832, and a thickness of tcap, o = 0.028; the inner capillary is
defined by an inner radius rcap, i = 0.4, and a thickness of tcap, i = 0.028; the cladding
has an inner radius rclad = 1.33333333, an outer radius rbuffer = 2.0, and a thickness
tclad = 0.66666667; the glass ring has an inner radius rinner = 2.692, an outer radius
router = 4.35866667, and a thickness tclad = 1.66666667; and the PML region starts
at router and ends on rPML = 7.02533333. We consider a PML strength (see (2.14))
of value α = 2.0.

The results in Figure 7 confirm that fine-scale modal features exist for this fiber
as well. The initial mesh (Figure 7a) is relatively coarse, with small elements used
only to conform to the geometry of the thin glass capillaries and their melding into the
cladding (as in the ARF case). We make the elements in the core region smaller (with
0.2 ≲ h ≲ 0.5), to capture the expected core-localized fundamental mode of this fiber
and verify the saturation assumption. Again, the adaptive meshing algorithm found
(in Figure 7b) that significant refinements were needed in the outer glass cladding;
however, it also determined that some refinements were warranted in the hollow-core
near larger capillaries that bound the core. The captured fine-scale modal features
are visible in Figure 7d. The convergence of the eigenvalues and CL values during the
adaptive process are illustrated in Figures 7e and 7f.

5.3. A photonic bandgap fiber. Finally, we consider the PBG microstructure
design in Figure 1d, previously studied in [24, 7, 19]. The lattice arrangement of the
dielectric rods in the fiber can be modified to change the guiding properties of the
fiber. We base our model parameters on the descriptions in [19].

The scale of the PBG fiber is L = 2.88753×10−6 m. The wavelength we consider
is k = 2π

8.25 × 107m−1. The refractive index of the cladding and the outer region
is ncladding = 1.45, and the refractive index of the tubes is ntube = 1.8. We have
used a lattice with six dielectric rods, each with a (dimensionless) radius of rtube =
0.57142857, encircling a fiber core of radius rcore = 1.0. The inner radius of the PML
region is router = 3.80952380, and the outer radius of the PML region is rPML =
5.80952380.
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(a) Initial mesh for the NANF fiber. (b) Final mesh for the NANF fiber
after the adaptive algorithm.

(c) Intensity of the full electric field
(right eigenmode) at the final mesh.

(d) Magnitude of the longitudinal
component (φh) of the eigenmode.
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Figure 7: Results from the adaptive algorithm applied to NANF.
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(a) Initial mesh for the PBG fiber,
zoomed in near the core

(b) Final mesh for the PBG fiber af-
ter the adaptive algorithm.

(c) Intensity of the full electric field
(right eigenmode) at the final mesh.

(d) Magnitude of the longitudinal
component (φh) of the eigenmode.
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Figure 8: Results from the adaptive algorithm applied to the PBG fiber.
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The results are in Figure 8. The initial mesh (Figure 8a) is relatively coarse,
although we employed smaller elements in the core (with h ≈ 0.25). For this fiber,
as seen from Figure 8b, the adaptive process targets refinement within the dielectric
rods that surround the solid dielectric core. We see finer scale ripples within these
rods being resolved in Figure 8d. Again, these are better seen in the longitudinal
component, and are hardly visible in the total intensity plot (in Figure 8c). The
convergence of the eigenvalues during the adaptive process depicted in Figure 8e
shows a monotonic descent, unlike what was found for the anti-resonant fibers (and

like the prior cases, the discrete cluster Λ
(ℓ)
h here generally had two elements). The

convergence of CL values is seen in Figure 8f.

To summarize the observations in this section, we have seen three examples of
modern microstructured optical fibers, where our adaptive algorithm captured certain
fine-scale modal features within the microstructures. We have also seen that without
sufficient refinement in certain (perhaps unexpected) areas of the fiber geometry, the
computed mode losses could be highly inaccurate.

Disclaimers. This article has been approved for public release; distribution un-
limited. Public Affairs release approval #AFRL-2024-1561. The views expressed in
this article are those of the authors and do not necessarily reflect the official policy or
position of the Department of the Air Force, the Department of Defense, or the U.S.
government.
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