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Abstract. Finite element methods for symmetric linear hyperbolic systems using
unstructured advancing fronts (satisfying a causality condition) are considered in this
work. Convergence results and error bounds are obtained for mapped tent pitching
schemes made with standard discontinuous Galerkin discretizations for spatial approx-
imation on mapped tents. Techniques to study semidiscretization on mapped tents,
design fully discrete schemes, prove local error bounds, prove stability on spacetime
fronts, and bound error propagated through unstructured layers are developed.

1. Introduction

Tent-based numerical methods for hyperbolic equations stratify a spacetime simula-
tion region in an unstructured manner, by tent-shaped subregions, and advance solutions
across them progressively in time. The partitioning into tents provides a rational design
for local time stepping, maintaining high order accuracy in both space and time, and
without any ad hoc projection or extrapolation steps, an advantage that has been and
continues to be effectively leveraged by many researchers [1, 2, 10, 17, 18, 20, 22]. Never-
theless, a drawback of tents is that they are not tensor products of a spatial domain with
a time interval, necessitating development of new tent (spacetime) discretizations cou-
pling too many spatiotemporal unknowns. In [13], we overcame this drawback by using
a mapping technique that transforms spacetime tents to tensor product spacetime cylin-
ders. This opened avenues to use standard techniques like the discontinuous Galerkin
(DG) discretizations for spatial discretization, together with efficient matrix-free time
stepping schemes, on the mapped tents. Such methods, referred to as Mapped Tent
Pitching (MTP) schemes, have been applied to solve a variety of linear and nonlinear
hyperbolic systems [12, 13, 14].

This is the first paper to provide convergence theorems for MTP schemes. Although
the scope of the analysis here is limited to linear hyperbolic systems, we identify what we
consider to be the basic ingredients for error analysis of MTP schemes, such as a norm
in which stability on spacetime fronts can be obtained. We use techniques to bound
the propagation of error through layers of tents similar to those in [10, 17]. However, a
number of new tools are needed to overcome difficulties arising from a time-dependent
mass matrix generated due to the mapping. As we already noted in [12], the use of
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classical explicit Runge-Kutta time stepping on these mapped systems leads to loss of
higher orders of convergence due to the complications created by the map. We outlined
an algorithmic solution in [12], namely the Structure-Aware Taylor (SAT) time stepping
scheme, that accounts for the specific structure of the time-dependent mass matrix. Here
we shall provide a priori error bounds for these as well as a few other schemes.

Our analysis is divided into the next three sections. First, we borrow a spatial DG
discretization framework from [3, 9] which permits the treatment of many important
examples of symmetric hyperbolic systems and many boundary condition choices, all
at once. The application of this framework to the mapped equation (the pull back of
the hyperbolic system from the physical tent to the spacetime cylinder), is detailed in
Section 2. We then combine it with a semidiscrete analysis in Section 3. While the
analysis in that section ignores errors due to time discretization that are undoubtedly
present in practice, it immediately clarifies in what norms one may expect stability
on spacetime advancing fronts, and what error bounds might be provable after time
discretization. The main result of this section is that under the conditions spelled out
later, we may expect the error in the numerical solution at the final time to be Ophp`1{2q

where h represents a spatial mesh size parameter and p denotes the spatial polynomial
degree (used in the spatial DG discretization). In this form, the result is comparable
to [17, Theorem 5.1] that provides the same rate for their spacetime DG method using
spacetime polynomials of degree p on tents.

In Section 4, we discuss several fully discrete schemes that combine the spatial DG
discretization on a mapped tent with SAT or other time stepping. We find that proving
stability of the fully discrete schemes requires some trickery. Ever since the classical
work of [16], we know that stability regions and “naive spectral stability analysis based
on scalar eigenvalues arguments may be misleading.” Many researchers have since pur-
sued energy-type arguments to prove stability of time stepping schemes with spatial
DG discretizations [3, 5, 21, 23]. However, we are not able to directly apply existing
techniques due to the nonstandard nature of the system we obtain after mapping the
hyperbolic equation. Therefore, we start afresh, beginning with the most basic scheme
and proceeding to more complicated cases. Namely, in §4.2 we prove unconditional
strong stability for a lowest order tent-implicit scheme. Then, we proceed to analyze a
lowest order “iterated” explicit scheme in §4.3, constructed as an iterative solver for the
implicit scheme, for which we prove a nonstandard conditional stability. Then, in §4.4,
we proceed to an s-stage SAT scheme and show that its local error in a tent is Ophsq,
which is comparable to the sth power of the time step since the amount of local time
advance in tents is tied to its spatial mesh size. We are able to prove, in one case, sta-
bility under a traditional Courant-Friedrichs-Levy (CFL) condition, by which we mean
that the amount of local time advance within a tent is limited by a constant multiple
of the local spatial mesh size. In another case, we prove stability under a “3/2 CFL”
condition. In some non-tent-based DG methods, others have encountered a similar (4/3
CFL) limitation in stability analyses [3]. We offer the above-mentioned cases not as the
last word on stability, but rather to spur further research into this interesting topic.

In the remainder of this section, we establish notation and the lingua franca of tents
that we use throughout. Consider a cylindrical domain Ωˆ p0, T q in the physical space-
time, where the spatial domain Ω is an open bounded subset of RN . We assume that
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Ω is subdivided by a simplicial mesh Ωh. The subscript h denotes the maximal element
diameter of the spatial mesh Ωh. Spacetime tents are built atop this spatial mesh, using
the algorithms in [13] or [8]. We start by viewing the spatial mesh Ωh at time t “ 0 as
the initial advancing front. When one mesh vertex v is moved forward in time, while
keeping all other vertices fixed, the advancing front is updated to the piecewise planar
surface formed by connecting the raised v to its neighboring vertices. The new front
differs from the old by a tent-shaped region, which we denote by T v. Its projection onto
Ω gives the vertex patch Ωv of all spatial simplices connected to the vertex v. We shall
refer to this process as pitching the tent T v. For concurrency, one pitches multiple tents
simultaneously at vertices whose vertex patches do not have a mesh element in their
pairwise intersections, as in Figure 1b. The canopies of these spacetime tents can be
represented as the graph of φ1pxq, a continuous function that is piecewise linear with
respect to the mesh Ωh (whose value is zero in locations where tents are not yet erected).
These canopies together form the next advancing front: C1 “ tpx, φ1pxqq : x P Ωu. Note
that the time coordinate of a point in C1 is never less than that of the corresponding
point in the first front C0 “ Ωˆ t0u. This process is repeated by pitching tents atop C1,
and later atop the subsequent advancing fronts that result from each step (as illustrated
in Figures 1c–1f).

Reiterating, the advancing front at step i is the graph of a lowest-order Lagrange finite
element function φipxq:

(1.1) Ci “ tpx, φipxqq : x P Ωu.

We shall refer to the region between two successive advancing fronts as a layer, i.e.,

(1.2) Li “ tpx, tq P Ω ˆ p0, T q : φi´1pxq ď t ď φipxqu

denotes the ith layer for i “ 1, 2, . . . ,m. The layer Li (see Figure 1) is made above
Ci´1 by pitching tents atop vertex patches associated with a subset of mesh vertices of
Ωh, which form the pitch locations at that stage. Let Vi denote the collection of such
vertices identifying the pitch locations on Ci´1. Then Li “

Ť

vPVi
T v. The spacetime

will generally contain multiple tents pitched at the same vertex v at different time
coordinates. Although referring to a tent by its spatial pitch location alone, as in T v

above, is generally ambiguous, it will not confuse us since we will usually be occupied
with analyzing one tent at a time.

A tent can be expressed as

(1.3) T v
“ tpx, tq : x P Ωv, φv

botpxq ď t ď φv
toppxqu

where φv
bot and φ

v
top are continuous functions on Ω

v that are piecewise linear with respect
to the mesh elements forming the vertex patch Ωv. The function δvpxq “ φv

toppxq´φv
botpxq

on Ωv will feature often in the sequel. It arises as a weight in transformed integrals and
is degenerate at the points where tent top meets tent bottom.

One reason for working with tents is the ease by which causality can be imposed,
simply by adjusting the height of the tent pole, the line segment connecting pv, φv

botpvqq

to pv, φv
toppvqq. By the definition of hyperbolicity, the maximal wave speed c is finite.

When each spacetime tent encloses the domain of dependence of all its points, causality
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(a) Spatial mesh Ωh. (b) The region in blue is the
layer L1. Tent canopies form
part of the advancing front C1.

(c) Green tents form layer L2.
Top canopies (blue and green)
are part of the front C2.

(d) L3 and C3. (e) L4 and C4. (f) Layers filling Ω ˆ p0, tslabq.

(g) An initial pulse. (h) Solution at t “ tslab. (i) Solution at t “ 3tslab.

Figure 1. Tents, layers, advancing fronts, and solution snapshots from an acoustic wave simu-
lation using the MTP scheme of §4.4: Figures 1b–1e show successive layers of tents, viewed at
an angle to show where small and large features meet (and time t is in the vertical direction).
Figure 1f shows how tents asynchronously enable both large and small time advances within a
spacetime slab Ω ˆ p0, tslabq. Plots of a time evolving wave solution at t “ 0, tslab, and 3tslab,
computed using the tents in Figure 1f, are shown in Figures 1g, 1h, and 1i, respectively.

holds. In other words, if

}pgradx φiqpxq}2 ă
1

c
, x P Ω,

on all advancing fronts, then causality holds. In this paper, in place of the strict in-
equality, we assume we are given a strict upper bound ĉ for the maximal wave speed c
and that our mesh of spacetime tents is constructed so that

(1.4) }pgradx φiqpxq}2 ď
1

ĉ
ă

1

c
x P Ω.

We will refer to (1.4) as the causality condition. Algorithms for constructing tent meshes
satisfying (1.4) can be found in [8, 13]. They terminate filling the spacetime Ω ˆ p0, T q

with tents so that the first and the last advancing fronts, C0 and Cm, are flat, i.e.,
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φ0pxq ” 0 and φmpxq ” T . In practice, we often select (as in Figure 1) a tslab ă T such
that T “ nslabstslab, run the tent meshing algorithm to fill the subregion Ω ˆ p0, tslabq,
and then translate the same mesh to reuse it nslabs ´ 1 times to cover the full spacetime
domain Ωˆp0, T q without further meshing overhead. However, for the ensuing analysis,
we ignore this extra subdivision into smaller spacetime slabs (so tslab “ T henceforth).
With this background in mind, we proceed to show how to map tents and construct an
MTP scheme after fixing a model problem.

2. A model problem for analysis

In this section, we describe a model symmetric linear hyperbolic system and its MTP
discretization that we shall be occupied with. Although MTP schemes can be applied
much more generally (as shown in [13, 14]), we restrict to this model for transparently
presenting the essential new ideas needed for a convergence analysis.

2.1. A symmetric linear hyperbolic system. Let L be a positive integer (and let N ,
as before, denote the spatial dimension). Suppose that Lpjq : Ω Ñ RLˆL, for j “ 1, . . . , N
and G : Ω Ñ RLˆL are symmetric bounded matrix-valued functions and suppose G is
uniformly positive definite in Ω̄. Our model problem is the following linear hyperbolic
system of L equations, in L unknowns, denoted by upx, tq, or in terms of scalar compo-
nents, by ukpx, tq:

(2.1) Bt gpuq ` divx fpuq “ 0,

with

rgpuqsl “

L
ÿ

k“1

Glkuk, rfpuqslj “

L
ÿ

k“1

Lpjq

lk uk.

We have restricted ourselves to time-independent coefficients, and shall do so also for
boundary conditions, which are expressed using a matrix field B : BΩ Ñ RLˆL. Bound-
ary conditions are considered in the form studied by Friedrichs [11], namely,

(2.2) pD ´ Bqu “ 0 on BΩ

where

(2.3) D “

N
ÿ

j“1

njLpjq.

Note that D, in general, depends on the point x P BΩ as well as on npxq, the spatial
unit outward normal at x, and when we wish to emphasize these dependencies, we shall
denote it by Dpnq, Dpxq, or Dpxqpnq. Note that later in the sequel n (or npxq) will also be
used to generically denote the outward unit normal on boundaries of other domains (such
as mesh elements). Of course, the hyperbolic system (2.1) must also be supplemented
with an initial condition,

(2.4) upx, 0q “ u0pxq x P Ω

at time t “ 0 for some given initial data u0.
Friedrichs [11] identified conditions on the operator B for obtaining well-posed bound-

ary value problems. We shall borrow the same conditions and impose them pointwise
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on BΩ ˆ p0, T q. In particular, at each x P BΩ and t P p0, T q, we assume kerpD ´ Bq `

kerpD`Bq “ RL and B`Bt ě 0. (The latter is to be interpreted as pBpxq`Bpxqtqy ¨y “

2Bpxqy ¨ y ě 0 for all vectors y P RL at any x P BΩ.) To simplify the analysis, we shall
also assume that

(2.5)
N
ÿ

j“1

BjLpjq
“ 0

in the sense of distributions (so jumps in Lpjqpxq are allowed so long as (2.5) holds) and

(2.6) G and Lpjq are constant on each mesh element K P Ωh.

Across a mesh facet F of normal nF , it is easy to see that (2.5) implies the continuity
of DpnF q. As long as we obtain this normal continuity (which is needed in our analysis),
assumption (2.5) can be relaxed to other forms (such as what is suggested in [9, equation
(A.4)]), at the expense of a few additional technicalities. Assumption (2.6) allows us
to zero out some projection error terms instead of tracking such small terms in error
estimates.

2.2. Mapping tents. Consider a tent expressed as in (1.3). We map to a tent T v from a

cylindrical tensor product domain T̂
v

“ Ωv ˆp0, 1q using the map Φvpx, t̂q “ px, φvpx, t̂qq

where

φv
px, t̂q “ p1 ´ t̂qφv

botpxq ` t̂φv
toppxq “ φv

botpxq ` t̂ δvpxq

(see [13, Fig. 2] for an illustration of this map). We will drop the superscript v when

it is obvious from context. Clearly, ΦpT̂
v
q “ T v and the interior of T̂

v
is mapped one-

to-one onto the interior of T v (but the map is not one-to-one from the boundary of T̂
v

to the boundary of T v). The coordinate t̂ in T̂
v
will be referred to as the pseudotime

coordinate. Note that the time coordinate t in the physical spacetime twists space and
pseudotime together since it is given by t “ φpx, t̂q.

The Jacobian matrix of the map Φ is easily computed:

(2.7) gradxt̂ Φ “

„

I 0
pgradx φqT δ

ȷ

Using it in a Piola transformation, it can be shown [13, Theorem 2] that the mapped
hyperbolic solution û “ u ˝ Φ satisfies

(2.8) Bt̂ rgpûq ´ fpûq gradx φs ` divx
“

δfpûq
‰

“ 0, in T̂
v
,

whenever u solves (2.1). MTP schemes proceed by solving (2.8) by various discretization
strategies (particularly those that leverage the tensor product nature of space and pseu-

dotime in T̂
v
) and then pulling back the computed solution to the physical spacetime.

We now proceed to discuss a discretization strategy that uses a DG spatial discretization
on Ωv. We will combine it with pseudotime discretizations later (in Section 4).
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2.3. Spatial discretization on mapped tents. The mapped equation (2.8) can be
approximated by any standard scheme that allows for a time dependent mass matrix.
Our focus is on discontinuous Galerkin (DG) discretizations. Since there are numerous
flavors of DG schemes and numerical fluxes, for efficiently covering various choices, we use
the framework of [9] (see also [3]), a simplified version of which, adapted to our purposes,
is described next. Their framework is motivated by the previously mentioned early
work of Friedrichs [11], and other previous authors have also been similarly motivated
while considering boundary conditions, notably [10] and [17] in the context of tents and
spacetime methods.

We assume that Ωh is a shape regular conforming simplicial mesh of domain Ω. We
use a À b to indicate that there is a constant C ą 0 such that a ď Cb and that the value
of C may be chosen independently of any spatial mesh chosen from the shape regular
family. The value of the generic constant C in “À” may differ at different occurrences
and is allowed to depend on the wave speed, material coefficients, spatial polynomial
degree, etc. Let PppKq denote the space of polynomials of degree at most p restricted
to the domain K and let Vh “ tv : v|K P PppKqL for any mesh element K P Ωhu. Let
Ωv

h denote the collection of elements in the vertex patch Ωv of a mesh vertex v. Let V v
h

denote the restriction of the spatial DG space on Ωv and let ψjpxq denote a basis for
V v
h . The semidiscrete approximation of û is of the form

ûhpx, t̂q “
ÿ

j

Ujpt̂qψjpxq.

We consider a DG semidiscretization of (2.8) of the form displayed next in (2.9). In
the spatial integrals there and throughout, we do not explicitly indicate the measure
(volume or boundary measure) as it will be understood from context. For each fixed
0 ă t̂ ď 1, the function ûhp¨, t̂q satisfies

(2.9)

ż

Ωv

Bt̂

“

gpûhq ´ fpûhq gradx φ
‰

¨ v “
ÿ

KPΩv
h

„
ż

K

δfpûhq : gradx v ´

ż

BK

δF̂
n

ûh
¨ v

ȷ

,

for all v P V v
h , where the numerical flux F̂

n

ûh
on an element boundary BK is defined

using the values of ûh from the element K as well as from the neighboring element Ko,
as follows. For any w P V v

h , at a point x P BK X BKo, letting wo “ w|Ko , define

twupxq “
1

2
pw ` woq, vwwpxq “ w ´ wo.

Then, F̂
n

w is assumed to take the form

(2.10) F̂
n

w “

#

Dtwu ` Svww on BKzBΩ,
1
2
pD ` Bqw on BK X BΩ.

Here, D is defined by (2.3), with the vector n now denoting the outward unit nor-
mal on BK, S : Fi Ñ RLˆL denotes a stabilization matrix on interior facets of Fi “
Ť

tBKzBΩ : K P Ωv
hu, and B : BΩ Ñ RLˆL, is used to model the exact boundary

condition B with any needed extra stabilization on boundary facets. Note that S is
single-valued on Fi (while D is multivalued and depends on the sign of the normal on
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an element boundary). Let } ¨ }2 denote the Euclidean norm (of a vector, or the induced
norm for a matrix) and let |y|S “ pSy ¨ yq1{2 and |y|B “ pBy ¨ yq1{2. We assume that

ker pDpxq ´ Bpxqq Ď ker pDpxq ´ Bpxqq x P BΩ,(2.11a)

Bpxq ` Bpxq
t

ě 0, }Bpxq}2 À 1, x P BΩ,(2.11b)

pDpxq ` Bpxqq y ¨ z À }y}2 |z|B, x P BΩ, y, z P RL,(2.11c)

Spxq ` Spxq
t

ě 0, }Spxq}2 À 1, x P Fi,(2.11d)

Spxqy ¨ z À |y|S |z|S, x P Fi, y, z P RL.(2.11e)

Dpxqy ¨ z À }y}2 |z|S, x P Fi, y, z P RL.(2.11f)

These form a subset of the “design conditions for DG methods” in [9] that we shall need
for our analysis in the next section.

2.4. Examples. The following examples show a variety of equations, boundary condi-
tions, and their well-known discretizations that conform to the framework introduced
above. We will work out the first example in some detail and describe the rest tele-
graphically since similar examples can be found in the literature [3, 9, 10, 17].

Example 2.1 (Maxwell equations with impedance boundary conditions). Suppose we
are given electric permittivity εpxq and magnetic permeability µpxq as positive functions
on Ω and let Z ą 0. The Maxwell system for the electric field Epx, tq and magnetic field
Hpx, tq, with impedance boundary conditions, consists of

ε BtE ´ curlH “ 0, µ BtH ` curlE “ 0, in Ω ˆ p0, T q,(2.12a)

n ˆ E ´ Zn ˆ pH ˆ nq “ 0, on BΩ ˆ p0, T q.(2.12b)

To fit this into the prior setting, we put N “ 3, L “ 6, and

u “

„

E
H

ȷ

, Lpjq
“

„

0 rϵjs
rϵjst 0

ȷ

, G “

„

εI 0
0 µI

ȷ

, B “

„

0 N
N ´2ZN tN

ȷ

,

where ϵj is the 3 ˆ 3 matrix whose pl,mqth entry equals the value of the Levi-Civita
alternator ϵjlm and N “

ř3
j“1 njϵ

j P R3ˆ3. Noting that N t “ ´N , NE “ E ˆ n, and

N tNH “ n ˆ pH ˆ nq, it is easy to see that

(2.13) D “

„

0 N
N t 0

ȷ

, pD ´ Bq

„

E
H

ȷ

“ 2

„

0
n ˆ E ´ Zn ˆ pH ˆ nq

ȷ

,

so that (2.2) indeed imposes the impedance boundary condition (2.12b).
Next, for the DG discretization, set

B “
1

1 ` Z

„

2NN t p1 ´ ZqN
p1 ´ ZqN 2ZNN t

ȷ

, S “

„

N tN 0
0 N tN

ȷ

.

Since }nˆ pE ˆ nq}22 “ }NE}22, setting b “ nˆE ´Znˆ pH ˆ nq, it is easy to see that

(2.14) pD ´ Bq

„

E
H

ȷ

“
2

1 ` Z

„

n ˆ b
b

ȷ

,

ˇ

ˇ

ˇ

ˇ

„

E
H

ȷ
ˇ

ˇ

ˇ

ˇ

2

B

“
2

1 ` Z

`

}n ˆ E}
2
2 ` Z}n ˆ H}

2
2

˘

,

and the latter shows (2.11b) since Z ą 0. The first identity of (2.14), together with (2.13)

implies (2.11a). Similar computations establish (2.11c). Finally, noting that |r E
H s|

2
S “
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}nˆE}22 ` }nˆH}22, the remaining properties (2.11d) and (2.11f), are easily established.
Note that if the above S is scaled by 1/2, then the conditions of (2.11) continue to hold
and we get the “classic upwind” flux [15, p. 434] for Maxwell equations.

Example 2.2 (Maxwell equations with perfect electric boundary conditions). Recon-
sider Example 2.1 with Z “ 0. This yields a Dirichlet boundary condition modeling
the electrical isolation by a perfect electric conductor. Substituting Z “ 0 in previous
choices of B, B, and S, one can show that all conditions of (2.11) continue to hold even

though the | ¨ |B seminorm is now weaker: |r E
H s|

2
B “ 2}n ˆ E}22 from (2.14).

Example 2.3 (Advection). The advection problem with inflow boundary conditions,

Bt u ` divxpbuq “ 0 in Ω ˆ p0, T q, u “ 0 on BinΩ ˆ p0, T q,

where b : Ω Ñ RN , is some given vector field, fits the above setting with L “ 1 (keeping
the spatial dimension N arbitrary), Lpjq “ bj P R1ˆ1, G “ 1 and D “ b ¨ n. Examples of
b that satisfy (2.5) and (2.6) are offered by divergence-free functions in the lowest order
Raviart-Thomas finite element space. The inflow boundary condition is recovered by
setting B “ |b ¨ n|. The choices

B “ |b ¨ n|, S “
1

2
|b ¨ n|,

are easily seen to verify (2.11) and yield the classical upwind DG discretization.

Example 2.4 (Wave equation with Dirichlet boundary conditions). Rewriting

(2.15) Bttϕ ´ ∆ϕ “ 0, in Ω ˆ p0, T q, ϕ “ 0 on BΩ ˆ p0, T q,

as a first order hyperbolic system for L “ N ` 1 variables using the flux q “ ´ gradx ϕ
and µ “ Bt ϕ, we match the prior framework. Put u “ r

q
µ s, G to identity, and Lpjq “

eje
t
N`1 ` eN`1e

t
j (using the standard unit basis vectors ej of RN`1). The Dirichlet

boundary conditions on ϕ can be imposed by requiring that µ “ 0 on BΩˆ p0, T q, which
is what (2.2) yields with

B “

N
ÿ

j“1

njpeN`1e
t
j ´ eje

t
N`1q ` 2eN`1e

t
N`1 “

„

0 ´n
nt 2

ȷ

.

All conditions of (2.11) are satisfied by setting

B “ B, S “

„

nnt 0
0 1

ȷ

.

These choices yield the DG discretization with upwind-like fluxes for the wave equation.

Example 2.5 (Wave equation with Robin boundary conditions). We reconsider Exam-
ple 2.4 after replacing the boundary condition in (2.15) by Bϕ{Bn ` ρBtϕ “ 0 for some
ρ ą 0, or equivalently, in terms of the variables q, µ introduced there,

(2.16) n ¨ q ´ ρµ “ 0, on BΩ ˆ p0, T q.

Keeping the same S and changing

B “

„

0 n
´nt 2ρ

ȷ

, B “

„

ρ´1nnt 0
0 ρ

ȷ

,
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all conditions of (2.11) are satisfied.

Example 2.6 (Wave equation with Neumann boundary conditions). This is the bound-
ary condition obtained when ρ “ 0 in (2.16). The boundary condition as well as the
conditions of (2.11) are verified with

B “

„

0 n
´nt 0

ȷ

, B “

„

nnt n
´nt 0

ȷ

,

keeping S unchanged.

3. Analysis of semidiscretization

In this section, we prove stability of the DG semidiscretization (2.9) on the advancing
fronts. When combined with standard finite element approximation estimates, this leads
to the main result of this section, namely the error estimate of Theorem 3.12 below.

3.1. Preparatory observations. LetH1pΩv
hq denote the broken Sobolev space isomor-

phic to ΠKPΩv
h
H1pKq. Since our variables have L unknown components, we will need L

copies of this space. To ease notation, we abbreviate Hv
h “ H1pΩv

hqL, Hv “ H1pΩvqL,
and Lv “ L2pΩvqL. Since the traces of a w P Hv

h on element boundaries are square
integrable, the following definition of the bilinear form a : Hv

h ˆ Hv
h Ñ R, with the

numerical fluxes F̂
n

w from (2.10), makes sense:

apw, vq “
ÿ

KPΩv
h

„
ż

K

δfpwq : gradx v ´

ż

BK

δF̂
n

w ¨ v

ȷ

.

Let pw, vqD denote the inner product in L2pDq, or its Cartesian products, for any domain

D, and let }w}D “ pw,wq
1{2
D . Using this notation, we may alternately write ap¨, ¨q as

(3.1) apw, vq “
ÿ

KPΩv
h

«

N
ÿ

j“1

pδLpjqw, BjvqK ´ pδF̂
n

w, vqBK

ff

.

When the domain is the often used vertex patch Ωv, we use the abbreviated notation
pw, vqv “ pw, vqΩv “

ş

Ωv w ¨ v. Using it, we define M0 : L
v Ñ Lv, and M1 : L

v Ñ Lv by

pM0w, vqv “ pGw, vqv ´

N
ÿ

j“1

ppBjφbotqLpjqw, vqv,(3.2)

pM1w, vqv “

N
ÿ

j“1

ppBjδqLpjqw, vqv(3.3)

for all w, v P Lv. Let Mpτq “ M0 ´ τM1. (We will often abbreviate Mpτq to simply
M .) Using these definitions, we may now rewrite (2.9) succinctly as pBt̂pMpt̂qûhq, vqv “

apûh, vq. Let }v}v “ pv, vq
1{2
v , and for any operator O on Lv, let

(3.4) }O}v “ sup
v,wPLv

pOv, wqv

}v}v}w}v
.
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Lemma 3.1. The causality condition implies that Mpτq is a selfadjoint positive definite
operator on Lv for any 0 ď τ ď 1 and that there is a mesh-independent constant CL,c
(depending on Lpjq and c) such that

(3.5)
´

1 ´
c

ĉ

¯

pGw,wqv ď pMw,wqv ď CL,cpGw,wqv

holds for all w P Lv. Moreover,

max
`

}M0}v, }M
´1
0 }v, }M1}v, }M}v, }M

´1
}v

˘

À 1.

Proof. Let φ “ τφtop ` p1 ´ τqφbot. Since

(3.6) pMpτqv, wqv “ pGv, wqv ´

N
ÿ

j“1

ppBjφqLpjqv, wqv

and Bjφ is constant on each element, the selfadjointness is immediate from the symme-
try of Lpjq and G. It remains to prove the stated positive definiteness. In accordance
with (2.3), let Dpνq “

řN
j“1 νjLpjq. Recall [6, p. 53] that hyperbolicity implies the exis-

tence of real eigenvalues λi and accompanying eigenvectors ei (forming a complete set)
satisfying Dpνqei “ λiGei for any unit vector ν P RN . Since Dpνq and G are symmetric,
it is easy to see that the eigenvectors ei must be orthogonal in the xx, yyG “ Gx ¨ y inner
product. Expanding any vector v P RL in the eigenbasis ei as follows,

v “

L
ÿ

j“1

viei with vi “ xv, eiyG,

and recalling that the maximal wave speed c is the maximum of all such |λi|,

Dpνqv ¨ v “

L
ÿ

i“1

viλiGei ¨ v “

L
ÿ

i“1

λi |vi|
2

ď c
L

ÿ

i“1

|vi|
2

“ c xv, vyG.

Using this inequality with ν “ pgradx φq{} gradx φ}2, we have

Gv ¨ v ´

N
ÿ

j“1

pBjφqLpjqv ¨ v “ Gv ¨ v ´ } gradx φ}2 Dpνqv ¨ v

ě p1 ´ } gradx φ}2 cq Gv ¨ v.(3.7)

Since φ is a convex combination of φbot and φtop, both of which satisfy the causality
condition (1.4), we have } gradx φ}2 ď 1{ĉ. Applying this, after using (3.7) in (3.6), the
proof of the lower bound of (3.5) is finished. The upper bound is a consequence of the
boundedness of the Lpjq and G. Finally, the stated operator norm bounds on Mpτq,
M0 “ Mp0q, and their inverses follow immediately from (3.5). The estimate for the
operator norm of M1 also follows easily since |Bjδ| À 1. □

Let Fv denote the set of facets (i.e., pN ´ 1q-subsimplices) of the simplicial mesh
Ωv

h of the vertex patch Ωv. This set is partitioned into the collection of facets on the
boundary BΩv of the vertex patch, denoted by Fv

b , and the remainder, denoted by Fv
i ,

the set of interior facets of Ωv
h. We assume that each facet F of the entire spatial mesh

Ωh is endowed with a unit normal nF whose orientation is arbitrarily fixed, unless if F
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is contained in the global boundary BΩ, in which case it points outward. Then, for any
x P F , set vuwF pxq “ limεÑ0 upx ` εnF q ´ upx ´ εnF q. Note that vuwF agrees with the
previously defined jump vuw on element boundaries, except possibly for a sign. Let

dpw, vq “ ´ rapw, vq ` apv, wq ` pM1w, vqvs

for w, v P Hv
h. The first identity of the next lemma shows that dpw,wq ě 0 due to (2.11b)

and (2.11d).

Lemma 3.2. For all v, w P Hv
h,

dpw,wq “
ÿ

FPFv
i

2
`

δ SvwwF , vwwF
˘

F
`

ÿ

FPFv
b

pδ Bw,wqF ,(3.8)

´apv, wq “
ÿ

KPΩv
h

pdivxpδfpvqq, wqK(3.9)

`
ÿ

FPFv
i

“

pδDpnF q
vvwF , twuqF ` pδSvvwF , vwwF qF

‰

´
ÿ

FPFv
b

1

2
pδpD ´ Bqv, wqF .

Proof. Integrating by parts on an element K P Ωv
h,

N
ÿ

j“1

pδLpjqw, BjwqK “ pδDw,wqBK ´

N
ÿ

j“1

pBjpδLpjqwq, wqK .

Applying the product rule to expand the derivative in the last term, using (2.5), and
the symmetry of Lpjq, we obtain

(3.10) 2
N
ÿ

j“1

pδLpjqw, BjwqK “ ´

N
ÿ

j“1

pw, pBjδqLpjqwqK ` pδw,DwqBK .

Using this in the first term of the definition of apw,wq, we have

dpw,wq “ ´2 apw,wq ´

N
ÿ

j“1

pBjδ Lpjqw,wqv by (3.3),

“
ÿ

KPΩv
h

“

´ pδ w,DwqBK ` 2pδ w, F̂
n

wqBK

‰

by (3.1) and (3.10),

“
ÿ

KPΩv
h

“

´ pδ w,DwqBKXBΩ ` pδ w, pD ` BqwqBKXBΩ

‰

`
ÿ

KPΩv
h

“

´ pδ w,DwqBKzBΩ ` pδ w, 2Dtwu ` 2SvwwqBKzBΩ

‰

,

where we used the definition of the numerical flux in (2.10), splitting the right hand side
sum into two to accomodate the two cases in (2.10). The first sum, when rewritten using
boundary facets, immediately yields the last term of (3.8) since δ “ 0 on BΩvzBΩ. The
second sum can be rearranged to a sum over interior facets F P Fv

i , where vDpnF qwF “ 0



CONVERGENCE ANALYSIS ON TENTS 13

due to (2.5), which allows for further simplifications, eventually yielding the other term
on the right hand side of (3.8).

The proof of (3.9) involves a similar integration by parts starting from (3.1) and a
similar rearrangement of sums over element boundaries to sums over facets. □

We use Csp0, τ,Xq, for some Banach space X, to denote the X-valued function w :
r0, τ s Ñ X that is s times continuously differentiable. For any v, w P C1p0, 1, Hv

hq, define

bτ pv, wq “

ż τ

0

`

Bt̂rMpt̂qvpt̂qs, wpt̂q
˘

v
dt̂ ´

ż τ

0

apvpt̂q, wpt̂qq dt̂.

Note that the temporal snapshots wpt̂q and vpt̂q used above, being in Hv
h, are admissible

as arguments of the form a. For any z P Lv, define }z}Mpτq “ pMpτqz, zq
1{2
v . This is a

norm due to Lemma 3.1.

Lemma 3.3. For all w P C1p0, 1, Hv
hq,

2 bτ pw,wq “ }wpτq}
2
Mpτq ´ }wp0q}

2
Mp0q `

ż τ

0

dpwpt̂q, wpt̂qq dt̂.

Proof. The proof relies on a simple but key identity, which is best expressed writing M
for Mpt̂q “ M0 ´ t̂M1, as follows:

d

dt̂

ż

Ωv

Mw ¨ w “

ż

Ωv

2
B

Bt̂
pMwq ¨ w ´

ż

Ωv

dM

dt̂
w ¨ w.

It implies 2
`

Bt̂rMpt̂qws, w
˘

v
“ Bt̂pMpt̂qw,wqv ´ pM1w,wqv. Using this in the definition

of bτ , we obtain

2bτ pw,wq “

ż τ

0

„

d

dt̂

`

Mpt̂qwpt̂q, wpt̂q
˘

v
´

`

M1wpt̂q, wpt̂q
˘

v
´ 2 apwpt̂q, wpt̂qq

ȷ

dt̂

“ pMpτqw,wqv ´ pMp0qw,wqv ´

ż τ

0

“

2 apwpt̂q, wpt̂qq ` pM1wpt̂q, wpt̂qq
‰

dt̂

so the result follows from the definition of dp¨, ¨q. □

3.2. Stability on spacetime surfaces. We will first establish a bound on the exact
solution on spacetime tents (Proposition 3.4), which will then serve as motivation for
our approach to proving stability (Lemma 3.6). Let BtopT

v, BbotT
v and BbdrT

v denote
the top, bottom, and boundary parts, respectively, of the boundary of a tent T v, i.e.,

BtopT
v

“ tpx, tq P BT v : t “ φtoppxqu, BbotT
v

“ tpx, tq P BT v : t “ φbotpxqu

BbdrT
v

“ tpx, tq P BT v : px, tq is neither in BtopT
v nor in BbotT

v
u.

Note that BbdrT
v is empty whenever BΩv does not intersect BΩ. The next result shows

that the solution on BtopT
v can be bounded, in a tent-specific norm, by that on BbotT

v.
Specifically, defining

(3.11) }w}
2
Bb̄T v “

ż

Ωv

“

gpwpx, φ b̄pxqqq ´ fpwpx, φ b̄pxqqq gradx φ b̄

‰

¨ wpx, φ b̄pxqq,

for b̄ P ttop, botu, it follows from the next result that }u}BtopT v ď }u}BbotT v (because
}u}BtopT v and }u}BbotT v coincide with }û}Mp1q and }û}Mp0q, respectively).
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Proposition 3.4. On a spacetime tent T v satisfying causality, suppose a solution u of

Bt gpuq ` divx fpuq “ 0 in T v,(3.12a)

pD ´ Bqu “ 0 on BbdrT
v,(3.12b)

is smooth enough for û “ u ˝ Φ to be in C1p0, 1, Hvq. Then û “ u ˝ Φ at pseudotime τ,
for any 0 ď τ ď 1, satisfies

}ûpτq}Mpτq ď }ûp0q}Mp0q.

Proof. Since û satisfies the mapped equation Bt̂pgpûq ´ fpûq gradx φq ` divx
“

δfpûq
‰

“ 0,

we have pBt̂rMpt̂qûs, vqv ` pdivxpδfpûqq, vqv “ 0 for all v P Hv. Now, observe that

´apûpt̂q, vq “
`

divx
“

δfpûpt̂qq
‰

, v
˘

v

by Lemma 3.2: indeed, the jumps in (3.9) of the lemma vanish when applied to ûpt̂q
since ûpt̂q P Hv, and moreover, the last term of (3.9) also vanishes due to (3.12b) and
(2.11a). Thus,

pBt̂rMpt̂qûs, vqv ´ apûpt̂q, vq “ 0

for all v P Hv and each 0 ď t̂ ď 1. Integrating over t̂ from 0 to τ , we obtain

(3.13) bτ pû, wq “ 0,

for all w P C1p0, 1, Hvq. Choosing w “ û and applying Lemma 3.3, we have

}ûpτq}
2
Mpτq ´ }ûp0q}

2
Mp0q `

ż τ

0

dpûpt̂q, ûpt̂qq dt̂ “ 0.

Finally, we apply (3.8) of Lemma 3.2. Noting that vûpt̂qwF “ 0 on all interior facets F
and recalling the positivity assumption (2.11b) on B, we complete the proof. □

Definition 3.5 (Semidiscrete flow: Rsem
h pτq). For any 0 ď τ ď 1, define Rsem

h pτq : V v
h Ñ

V v
h as follows. Given a v0h P V v

h , let vh P C1p0, 1, V v
h q solve

`

Bt̂

“

gpvhq ´ fpvhq gradx φ
‰

, w
˘

v
“ apvhpt̂q, wq, 0 ă t̂ ď 1,(3.14)

vhp0q “ v0h, t̂ “ 0,

for all w P V v
h . Set R

sem
h pτqv0h to vhpτq. (In particular Rsem

h p0qv0h “ vhp0q “ v0h.)

Lemma 3.6 (Stability of semidiscretization). For any 0 ď τ ď 1, and any v P V v
h ,

}Rsem
h pτqv}Mpτq ď }v}Mp0q.

Proof. The argument is similar to the proof of Proposition 3.4. Let vhpτq “ Rsem
h pτqv.

We need to bound vhpτq by vhp0q “ v. Replacing w in (3.14) by a time-dependent test
function ṽ P C1p0, 1, V v

h q and integrating over t̂ from 0 to τ , we have
ż τ

0

„

pBt̂rMpt̂qvhs, ṽqv ´ apvhpt̂q, ṽpt̂qq

ȷ

dt̂ “ 0,

or equivalently, bτ pvh, ṽq “ 0, for all ṽ P C1p0, 1, V v
h q. Now, choosing ṽ “ vh and applying

Lemma 3.3, we find that

}vhpτq}
2
Mpτq “ }vhp0q}

2
Mp0q ´

ż τ

0

dpvhpt̂q, vhpt̂qq dt̂.
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Since dpvhpt̂q, vhpt̂qq ě 0 by (3.8) of Lemma 3.2, the proof is complete. □

3.3. Local error in a tent. To estimate the error in the semidiscrete solution, we
use, like previous authors [5], the spatial L2 projection into the DG space V v

h . Let
Ph : Lv Ñ V v

h be defined by pPhv, wqv “ pv, wqv for all v P Lv and w P V v
h . Define

|v|d “ dpv, vq
1{2, v P Hv

h.

This is a seminorm by (3.8) of Lemma 3.2 and our assumptions (2.11b) and (2.11d). Let
hK “ diamK for any spatial element K. The next lemma also uses the broken Sobolev
space HspΩv

hq “ ΠKPΩv
h
HspKq, and

hv “ max
KPΩv

h

hK , |w|
2
HspΩv

hqL “
ÿ

KPΩv
h

|w|
2
HspKqL .

Lemma 3.7. If w P H lpΩv
hqL for some 1 ď l ď p ` 1, then for any vh P V v

h ,

apw ´ Phw, vhq À hlv |w|HlpΩv
hqL |vh|d.

Proof. Let e “ w ´ Phw. Then the first term on the right hand side of

ape, vhq “
ÿ

KPΩv
h

N
ÿ

j“1

pδLpjqe, BjvhqK ´
ÿ

KPΩv
h

pδF̂
n

e , vhqBK

must vanish, because δBjvh|K is a polynomial of degree at most p and Lpjq is constant
due to assumption (2.6). Hence

ape, vhq “ ´
ÿ

KPΩv
h

pδpDteu ` Svewq, vhqBKzBΩ `
1

2
pδpD ` Bqe, vhqBKXBΩ

“
ÿ

FPFv
i

pδDpnF q
teu, vvhwF qF ´ pδSvewF , vvhwF qF ´

ÿ

FPFv
b

1

2
pδpD ` Bqe, vhqF

À
ÿ

FPFv
i

ż

F

δ}e}2
ˇ

ˇvvhw
ˇ

ˇ

S
`

ÿ

FPFv
b

ż

F

δ}e}2 |vh|B

due to assumptions (2.11e), (2.11f), and (2.11c). On any facet F adjacent to an ele-

ment K, by shape regularity and the well-known properties of L2 projectors, h
1{2
v }e}F À

hlv|w|HlpKqL . Since δ À hv, the result now follows after applying Cauchy-Schwarz inequal-
ity and (3.8) of Lemma 3.2. □

The next lemma provides control of the local error at any pseudotime τ in terms of the
initial error. To measure the regularity of functions w on a tent T v, we find it convenient
to use (semi)norms computed using the pull back w ˝ Φ on T̂

v
, defined by

(3.15) |w|v,l “ sup
0ďτď1

|pw ˝ Φqpτq|HlpΩv
hqL , }w}v,l “ sup

0ďτď1
}pw ˝ Φqpτq}HlpΩv

hqL .

Clearly, these are bounded when ŵ “ w ˝ Φ is in C0p0, 1, H lpΩv
hqLq.
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Lemma 3.8 (Local error bound). Let u be the exact solution of (3.12) on a causal tent
T v, û “ u ˝ Φ P C1p0, 1, Hv X Hp`1pΩv

hqLq, and let ûhpτq “ Rsem
h pτqû0h for any û0h P V v

h .
Then

}ûpτq ´ ûhpτq}Mpτq À }ûp0q ´ û0h}Mp0q ` hp`1
v |u|v,p`1.

Proof. Integrating (3.14) of Definition 3.5, we see that the semidiscrete solution ûh sat-
isfies bτ pûh, whq “ 0 for all wh P C1p0, 1, V v

h q.We have also shown that the exact solution
û satisfies a similar identity, namely (3.13). Subtracting these identities, we have

(3.16) bτ pû ´ ûh, whq “ 0 for all wh P C1
p0, 1, V v

h q.

Let ehpx, tq in C1p0, 1, V v
h q denote the function whose time slices are defined by ehpτq “

ûhpτq ´ Phûpτq for each 0 ď τ ď 1. Equation (3.16) implies that bτ peh, ehq “ bτ pû ´

Phû, ehq “ bτ pe, ehq, where we have set e “ û´Phû. Therefore, together with Lemma 3.3,
we obtain

1

2

ˆ

}ehpτq}
2
Mpτq ´ }ehp0q}

2
Mp0q `

ż τ

0

ˇ

ˇehpt̂q
ˇ

ˇ

2

d
dt̂

̇

“ bτ peh, ehq “ bτ pe, ehq

“

ż τ

0

“

pBt̂rMpt̂qes, ehqv ´ apept̂q, ehpt̂qq
‰

dt̂

“ pMpτqepτq, ehpτqqv ´ pM0ep0q, ehp0qqv ´

ż τ

0

”

pMpt̂qe, Bt̂ ehqv ` apept̂q, ehpt̂qq

ı

dt̂.

Since Bt̂ eh is of degree at most p on each element and pMpt̂qe, Bt̂ ehqv “ pGe, Bt̂ ehqv ´
řN

j“1ppBjφqLpjqe, Bt̂ ehqv “ 0 by (2.6) and the orthogonality property of the projection
error. Applying Lemma 3.7 to the last term,

}ehpτq}
2
Mpτq ´ }ehp0q}

2
Mp0q `

ż τ

0

ˇ

ˇehpt̂q
ˇ

ˇ

2

d
dt̂ À

pMpτqepτq, ehpτqqv ´ pMp0qep0q, ehp0qqv ` hp`1
v

ż τ

0

|ûpt̂q|Hp`1pΩv
hqL |ehpt̂q|d dt̂.

By Cauchy-Schwarz inequality in the inner product (see Lemma 3.1) generated byMpτq,

pMpτqepτq, ehpτqqv À hp`1
v |ûpτq|Hp`1pΩv

hqL}ehpτq}Mpτq,

which holds also when τ “ 0. Further applications of Cauchy-Schwarz and Young’s
inequalities yield

}ehpτq}
2
Mpτq `

ż τ

0

ˇ

ˇehpt̂q
ˇ

ˇ

2

d
dt̂

À }ehp0q}
2
Mp0q

` hv
2pp`1q

ˆ

|ûp0q|
2
Hp`1pΩv

hqL ` |ûpτq|
2
Hp`1pΩv

hqL `

ż τ

0

ˇ

ˇûpt̂q
ˇ

ˇ

2

Hp`1pΩv
hqL

dt̂

̇

À }ehp0q}
2
Mp0q ` hv

2pp`1q
|u|

2
v,p`1.

Finally, using the well known error bounds for the L2 projection and the triangle in-
equality, we obtain the result of the lemma. □
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Figure 2. Schematic of a tent propagator (left) and two layer propagators (right).

3.4. Global error bound. Recall the advancing front Ci defined by (1.1) and the layer
Li defined by (1.2). We will use the following “T2G” procedure several times in the
sequel.

Definition 3.9 (Tent propagators to global propagators: T2G). Suppose we are given a
collection of operators R, one for each tent. The element of R corresponding to a tent
T v is an operator RT v

: Lv Ñ Lv, which we refer to as the given tent propagator on T v, or
more precisely, on its preimage T̂

v
. We think of RT v

as transforming functions given at
the bottom of T̂

v
to functions at the top of T̂

v
by some specific discrete process or by the

exact solution operator. To produce global propagation operators from the collection
R, we start by mapping functions on Ci´1 to functions on Ci, or equivalently per the
advancing front definition (1.1), by mapping functions of px, φi´1pxqq to functions of
px, φipxqq. The layer propagator of the layer Li generated by R, denoted by Gi,i´1 :
L2pCi´1q

L Ñ L2pCiq
L, is defined by first considering points on the front Ci which have

not advanced in time, where Gi,i´1w simply coincides with w, and then considering the
remaining points px, φipxqq on Ci which are separated from px, φi´1pxqq on Ci´1 by a
tent, say T v, where we use the tent propagator of T v (see Figure 2). The next formula
states this precisely. For any w P L2pCi´1qL,

pGi,i´1wqpx, φipxqq “

#

wpx, φi´1pxqq at x P Ω where φipxq “ φi´1pxq,

pRT v

ŵvqpxq if x P Ωv for some v P Vi,

where ŵvpxq “ wpx, φi´1pxqq|Ωv . Finally, for a pair i, j with i ą j ě 0, the global
propagator generated by R is the operator Gi,j : L2pCjq

L Ñ L2pCiq
L, defined by

Gi,j
“ Gi,i´1

˝ Gi´1,i´2
˝ ¨ ¨ ¨ ˝ Gj`1,j.

Let T2G denote this process of producing global propagators from a collection of tent
propagators, i.e., we define T2Gpi, j,Rq to be the Gi,j above.

For the semidiscretization, the tent propagator on T v is the operator Rsem
h p1q ˝ Ph :

Lv Ñ V v
h Ă Lv, set using the operator Rsem

h pτq of Definition 3.5, evaluated at pseudotime
τ “ 1 (corresponding to the tent top). Collecting these semidiscrete tent propagators
into Rh we use Definition 3.9 to set the corresponding semidiscrete global propagators
Ri,j

h “ T2Gpi, j,Rhq. The exact propagator Ri,j is defined similarly, replacing Rsem
h by

the exact propagator of the hyperbolic system on tents (without projecting tent bottom
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data), so that if upx, tq is the global exact solution of the hyperbolic system on Ωˆr0, T s,
then

(3.17) Ri,j
pu|Cj

q “ u|Ci
.

The semidiscrete error propagation operators across layers can now be defined by

Ei,j
h “ Ri,j

´ Ri,j
h .

Letting Cm denote the final front and C0 the first, we are interested in bounding the
error at the final front, which is simply Em,0

h u0. Setting R0,0 and Rm,m
h to the trivial

identity operators, we have the following lemma.

Lemma 3.10. Em,0
h “

m
ÿ

j“1

Rm,j
h Ej,j´1

h Rj´1,0.

Proof. Adding and subtracting Rm,m´1
h ˝ Rm´1,0,

Em,0
h “ Rm,0

´ Rm,0
h “ Rm,m´1

˝ Rm´1,0
´ Rm,m´1

h ˝ Rm´1,0
h

“ pRm,m´1
´ Rm,m´1

h q ˝ Rm´1,0
` Rm,m´1

h ˝ pRm´1,0
´ Rm´1,0

h q,

i.e.,

Em,0
h “ Em,m´1

h Rm´1,0
` Rm,m´1

h Em´1,0
h .

The last term admits a recursive application of the same identity. Doing so m´1 times,
the lemma is proved. □

Our global error analysis proceeds in a norm on advancing fronts defined by

}w}
2
Ci

“

ż

Ω

“

gpwpx, φipxqqq ´ fpwpx, φipxqqq pgradx φiqpxq
‰

¨ wpx, φipxqq.

Let }w}Ci,v be defined by the same equality after replacing the integral over Ω by integral
over Ωv. Since the first and last fronts, C0 and Cm, respectively, are flat

(3.18) }w}
2
C0

“ pGwp0q, wp0qqΩ and }w}
2
Cm

“ pGwpT q, wpT qqΩ,

where, as before, T is the final time.

Lemma 3.11. For all w P L2pCjq
L and i ą j, we have

}Ri,j
h w}Ci

ď }w}Cj
.

Proof. First consider the case j “ i ´ 1 and a v P Vi. Applying Lemma 3.6 on tent T v

in Li, we obtain that r̂h “ pRi,i´1
h wq ˝ Φ and ŵ “ w ˝ Φ satisfies

(3.19) }r̂h}
2
Mp1q ď }Phŵ}

2
Mp0q.

By (2.6),

}Phŵ}
2
Mp0q “ pGPhŵ, Phŵqv ´

N
ÿ

j“1

pBjφbotLpjqPhŵ, Phŵqv

“ pMp0qPhŵ, ŵqv ď }Phŵ}Mp0q}ŵ}Mp0q,
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so (3.19) implies that }r̂h}2Mp1q
ď }ŵ}2Mp0q

, which is the same as }Ri,i´1
h w}2Ci,v

ď }w}2Ci´1,v
.

Summing over v P Vi, we prove that

(3.20) }Ri,i´1
h w}Ci

ď }w}Ci´1
.

Repeatedly applying this inequality on any further layers in between i´ 1 and j proves
the lemma. □

In the subsequent statements of error estimates like in the next theorem, we will
tacitly assume that the exact solution is smooth enough for the seminorms on the right
hand side to be finite.

Theorem 3.12 (Error estimate for the semidiscretization). Suppose Ωˆp0, T q is meshed
by m layers of tents satisfying the causality condition (1.4). At the final time T , the
difference between the exact solution upT q and the semidiscrete MTP solution uhpT q P Vh
satisfies

}upT q ´ uhpT q}Ω À

ˆ m
ÿ

j“1

hj

̇1{2ˆ m
ÿ

j“1

ÿ

vPVj

h2p`1
v |u|

2
v,p`1

̇1{2

,

where hj “ maxvPVj
hv.

Proof. Let uj “ u|Cj
. Then, per (3.17), Rj´1,0u0 “ uj´1. Therefore,

}upT q ´ uhpT q}Ω À }u ´ uh}Cm “ }Em,0
h u0}Cm by (3.18)

ď

m
ÿ

j“1

}Rm,j
h Ej,j´1

h uj´1}Cm by Lemma 3.10

ď

m
ÿ

j“1

}Ej,j´1
h uj´1}Cj

by Lemma 3.11.(3.21)

Since the spatial projection of the support of Ej,j´1
h uj can be subdivided into the union

of non-overlapping vertex patches Ωv for all pitch vertices v P Vj,

}Ej,j´1
h uj´1}

2
Cj

“
ÿ

vPVj

}Ej,j´1
h uj´1}

2
Cj ,v

.

On a tent T v with v P Vj, note that E
j,j´1
h uj´1|BtopT v “ puj´Rj,j´1

h uj´1q|BtopT v “ u|BtopT v´

RT v

h pu|BbotT v ˝Φ´1q. Putting û “ u|T v ˝Φ and ûh “ RT v

h ûp0q “ Rsem
h p1q ˝Phûp0q, applying

Lemma 3.8 with τ “ 1 and û0h “ Phûp0q yields

}Ej,j´1
h uj´1}Cj ,v “ }ûp1q ´ ûhp1q}Mp1q

À }ûp0q ´ Phûp0q}Mp0q ` hp`1
v |u|v,p`1 À hp`1

v |u|v,p`1.

Using this in (3.21),

}upT q ´ uhpT q}Ω À

m
ÿ

j“1

ˆ

ÿ

vPVj

h2p`2
v |u|

2
v,p`1

̇1{2

À

m
ÿ

j“1

h
1{2
j

ˆ

ÿ

vPVj

h2p`1
v |u|

2
v,p`1

̇1{2

,

so the proof is finished by applying the Cauchy-Schwarz inequality. □
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Remark 3.13. Note that hj may be interpreted as the “layer height” of Lj due to the
causality condition. Suppose

(3.22)
m
ÿ

i“1

hi À T.

Theorem 3.12 then yields Ophp`1{2q-rate of convergence with h “ maxv hv. Of course,
(3.22) can be violated by choosing very sparse layers (e.g., with one tent per layer), but
this is not useful to get the best estimate from Theorem 3.12, nor is it useful in practice:
indeed, a large number of non-interacting tents (such as the tents of the same color in
Figures 1b–1e) in each layer allows for better parallelism.

Remark 3.14. Suppose that instead of the operators Ri,i´1
h satisfying (3.20), we are given

operators R̃
i,i´1

h : L2pCi´1q
L Ñ L2pCiq

L admitting the weaker stability bound

(3.23) }R̃
i,i´1

h w}Ci
ď p1 ` Cstahi´1q}w}Ci´1

with some mesh and layer independent constant Csta ą 0 for all w P L2pCi´1q
L. For any

i ą j, consider R̃h
i,j

“ R̃h
i,i´1

˝ R̃h
i´1,i´2

˝ ¨ ¨ ¨ ˝ R̃h
j`1,j

. Note that for any i ą j, using
the arithmetic-geometric mean inequality and the inequality p1 ` αqm ď eαm,

p1 ` Cstahjqp1 ` Cstahj`1q ¨ ¨ ¨ p1 ` Cstahiq ď

m
ź

i“1

p1 ` Cstahiq

ď

«

1

m

m
ÿ

i“1

p1 ` Cstahiq

ffm

ď

«

1 `
Csta

m

m
ÿ

i“1

hi

ffm

ď exp
´

Csta

m
ÿ

i“1

hi

¯

.

Therefore, whenever (3.22) holds, iterative application of (3.23) gives the following layer-
uniform bound for any i ą j:

}R̃
i,j

h w}Ci
ď eCstaT }w}Cj

.

Using this in place of Lemma 3.11, the proof of Theorem 3.12 can be extended, replacing

Ri,j
h by R̃

i,j

h , Ei,j by Ẽ
i,j

“ Ri,j ´ R̃
i,j

h , and “ď” in (3.21) by “À” subsuming the T -
dependent constant into the error estimates.

4. Analysis of fully discrete schemes

In this section we use time stepping schemes to arrive at practical fully discrete schemes
from the semidiscretization studied in the previous section. Before studying these fully
discrete schemes on a mapped tent, it is useful to quickly make a few observations on
the time derivatives and Taylor expansion of the exact solution.

4.1. Preparatory observations. The bilinear form ap¨, ¨q defines an operator A from
Hv

h to its dual space pHv
hq1 in the usual way: pAwqpvq “ apw, vq for w, v P Hv

h. Recall
the previously defined L2 projector Ph : Lv Ñ V v

h . Since V v
h Ă Hv

h, the projector Ph

extends naturally from Lv to pHv
hq1, so, e.g., PhA : Hv

h Ñ V v
h satisfies pPhAw, vhqv “

pAwqpvhq “ apw, vhq for all w P Hv
h and vh P V v

h . While describing fully discrete schemes,
Ah : V v

h Ñ V v
h , defined by pAhw, vqv “ apw, vq, for all w, v P V v

h will be useful. One may

also consider Ã : Hv Ñ Lv defined by pÃw, vqv “ pdivx
“

δfpwq
‰

, vqv, for all w P Hv and
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v P Lv. It is easy to see from (3.9) of Lemma 3.2 that A coincides with Ã on functions
w P Hv with pD ´Bqw “ 0 on BΩ. In particular, on such functions w, we may view Aw
as a function in Lv. The pull back û of the exact hyperbolic solution u from a tent T v

to the cylinder T̂
v
is one such function. Therefore the following equation holds in Lv:

(4.1) Bt̂pMûq “ Aû, 0 ď t̂ ď 1.

We will proceed assuming that the exact solution û is regular enough to admit the
Taylor expansion

(4.2) ûpτq “

s
ÿ

k“0

τ k

k!
ûpkq

p0q ` ρs`1pτq,

for some s ě 1. Here, ûpkq
pt̂q denotes the kth order time derivative dkû{dt̂

k
(which is a

function in Hv when the solution is smooth—see Lemma 4.1 below), and the remainder
term ρs`1pτq can be expressed as the Hv-valued Riemann integral

(4.3) ρs`1pτq “
τ s`1

s!

ż 1

0

p1 ´ t̂qsûps`1q
pt̂τq dt̂.

It is well known that the expansion (4.2) holds for τ in an interval containing 0 whenever
û is s ` 1 times continuously differentiable (as an Hv-valued function) in that interval.
When applied to a spacetime hyperbolic solution u in the physical domain, the smallness
of the higher order terms in (4.2) (written there in terms of the mapped function û), is
evident from the following lemma, since δpxq À hv.

Lemma 4.1. The function û “ u ˝ Φ satisfies

ûpkq
“ pB

k
t u ˝ Φq δk.

Consequently, at each pseudotime t̂, within each spatial element K P Ωv
h, as a function

of the spatial variable x, ûpkq
pt̂q is as smooth as pBk

t uqpx, φpx, t̂qq. Moreover, ûpkq
pt̂q is in

Hv if Bk
t u is continuously differentiable in T v.

Proof. Let e denote the spacetime unit vector in the time direction i.e., all its components
are zero except for the last (time) component which is 1. Then, at some fixed spacetime

point P̂ in T̂
v
, we may write ûpkq

pP̂ q “ DkûpP̂ qpe, e, . . . , eq, where Dkû is the multilinear
form representing the kth order Fréchet derivative of û, and e is repeated k times in its
argument list. Then, letting P “ ΦpP̂ q denote the mapped point in T v, by standard
arguments [4] for affine maps,

ûpkq
pP̂ q “ Dk

pu ˝ ΦqpP̂ qpe, e, . . . , eq

“ DkupP qprgradxt̂ Φse, rgradxt̂ Φse, . . . , rgradxt̂ Φseq

“ DkupP qpδe, δe, . . . , δeq,

where we have used (2.7) in the last step. Since the last term above equals the product
of δk and the derivative Bku{Btk at P , the proof is complete. □
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In view of Lemma 4.1, when the exact solution is smooth in the physical spacetime,
we expect it to have the following (semi)norms finite, in addition to the ones in (3.15):

(4.4)

|w|v,l,m “ sup
0ďτď1

m
ÿ

k“0

ˇ

ˇ

ˇ
ŵpkq

pτq

ˇ

ˇ

ˇ

HlpΩv
hqL

,

}w}8,v “ sup
0ďτď1

}ŵpτq}v, }w}s,8,v “

s
ÿ

ℓ“0

}B
ℓ
tw}8,v.

When m “ 0, the first seminorm coincides with the seminorm in (3.15). The next result
bounds the Taylor remainder term in terms of the mapped time derivative Bs

tu ˝ Φ.

Lemma 4.2. The Taylor remainder term satisfies }ρs}v À τ shsv}Bs
tu}8,v.

Proof. Starting from (4.3), by Fubini’s theorem and Cauchy-Schwarz inequality,

τ´2s
}ρs}

2
v À

ż 1

0

p1 ´ t̂q2s}ûpsq
pt̂τq}

2
v dt̂ ď

ˆ

sup
0ďτď1

}ûpsq
pτq}

2
v

̇
ż 1

0

p1 ´ t̂q2s dt̂

À sup
0ďτď1

}δspB
s
tu ˝ Φqpτq}

2
v,

due to Lemma 4.1. Since δ À hv, the result follows. □

Lemma 4.3. For any k ě 1, whenever the exact time derivative ûpk´1q
p0q exists in Hv,

we have ûpkq
p0q “ M´1

0 pA ` kM1q ûpk´1q
p0q.

Proof. Differentiating both sides of (4.1) k ´ 1 times, pMûqpkqpt̂q “ Aûpk´1q
pt̂q. Simpli-

fying the left hand side by Leibniz rule and the linearity of Mpt̂q, we have

Mpt̂qûpkq
pt̂q ´ kM1û

pk´1q
pt̂q “ Aûpk´1q

pt̂q.

Evaluating at t̂ “ 0 and rearranging, the proof is complete. □

Note that V v
h is an invariant subspace of the previously defined operators M0 and

M1, due to (2.6). It will be understood from context whether we consider M0,M1 as
operators on Lv or as operators on V v

h . For operators on V
v
h , we define a discrete operator

norm, analogous to (3.4), for operators Oh on V v
h , by

}Oh}v,h :“ sup
vh,whPV v

h

pOhvh, whqv

}vh}v}wh}v

for all vh, wh P V v
h .

Lemma 4.4. We have }Ah}v,h À 1, }M1}v,h À 1, }M}v,h À 1, }M´1}v,h À 1.

Proof. To prove the first inequality, consider the terms that make up apvh, whq “ pAhvh, whqv

for any vh, wh P V v
h . On any K P Ωv

h, since Lpjq is uniformly bounded and δ À hK ,

pδLpjqvh, BjwhqK À }vh}KhK}Bjwh}K À }vh}K}wh}K

where we have applied an inverse inequality in the last step. Next, consider an element
boundary term in pAhvh, whq, restricted to say a facet F Ă BK, shared with the boundary
of another element Ko in Ωv

h:

pδDtvhu, wh|BKqF À
`

hK}vh}
2
BK ` hKo}vh}

2
BKo

˘1{2
´

h
1{2
K }wh}BK

¯

À }vh}Ωv}wh}K ,
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where we have again used δ À hK and local scaling arguments. Continuing to use similar
arguments on all the remaining terms that make up pAhvh, whqv, we obtain }Ah}v,h À 1.
Finally, Lemma 3.1 shows that }M1}v,h, }Mpτq}v,h, and }Mpτq´1}v,h also admit mesh-
independent bounds. □

The projector Ph enjoys the commutativity properties

(4.5) M1Ph “ PhM1, M0Ph “ PhM0,

because of (2.6). Although a similar commutativity identity cannot be expected of Ah,
we have the following lemma.

Lemma 4.5. For any w P H lpΩv
hqL, 1 ď l ď p ` 1, the function ηh “ pAhPh ´ PhAqw

satisfies }ηh}v À hlv |w|HlpΩv
hqL .

Proof. Since }ηh}2v “ pAhPhw, ηhqv ´ pPhAw, ηhqv “ apPhw, ηhqv ´ apw, ηhqv,

}ηh}
2
v “ apPhw ´ w, ηhq À hlv|w|HlpΩv

hqL |ηh|d

by Lemma 3.7. By Lemma 4.4, |ηh|2d “ ´pp2Ah ` M1qηh, ηhqv À }ηh}2v, so the inequality
of the lemma follows. □

4.2. Lowest order tent-implicit scheme. While the overall MTP strategy is a tent-
by-tent time-marching strategy akin to explicit methods, within a mapped tent, one
may choose between explicit or implicit schemes. By a “tent-implicit” scheme, we mean
a method that solves the semidiscretization (2.9) on a mapped tent using implicit time
stepping. Although this requires matrix inversion, the size of the matrix is only as large
as the number of spatial degrees of freedom in one tent (much smaller than the size of
the global matrix that needs to be inverted in standard implicit schemes for method
of lines discretizations). Numerical results using tent-implicit schemes of various orders
were reported first in [13, §5.4]. In this subsection, we provide a convergence analysis of
the lowest-order case.

To derive the lowest order tent-implicit method, we begin by rewriting (2.9) in a form
analogous to (4.1), i.e.,

Bt̂pMûhq “ Ahûh, 0 ď t̂ ď 1.

Then, putting yh “ Mûh, we have Bt̂ yh “ AhM
´1yh. The implicit Euler method applied

to this defines an approximation yh1pτq to yhpτq given by yh1pτq´yhp0q “ τAhM
´1yh1pτq.

Since ûh “ M´1yh, an approximation to ûhpτq is furnished by M´1yh1pτq, which after
simplification becomes M´1pI ´ τAhM

´1q´1M0ûp0q. This motivates the following defi-
nition of the discrete propagator.

Definition 4.6 (Lowest order tent-implicit flow: Rimp
h1 pτq). Define Rimp

h1 pτq : V v
h Ñ V v

h

by

Rimp
h1 pτq “ Mpτq

´1
pI ´ τAhMpτq

´1
q

´1M0.

The two inverses required for this definition are both well defined: first, M is invertible
by Lemma 3.1; second, I ´ τAhM

´1 is invertible because

pI ´ τAhM
´1

qM “ M ´ τAh “ pM0 ´
τ

2
M1q ´

τ

2
p2Ah ` M1q,
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together with Lemmas 3.2 and 3.1 imply that for any 0 ‰ v P V v
h ,

ppI ´ τAhM
´1

qMv, vqv ě }v}
2
Mpτ{2q ` |v|

2
d ą 0.

We proceed to prove convergence of the scheme, beginning with the next stability
result that closely resembles the inequality of Lemma 3.6.

Lemma 4.7 (Unconditional strong stability). For any v P V v
h and any 0 ď τ ď 1,

}Rimp
h1 pτqv}

2
Mpτq ď }v}

2
M0
.

Proof. Let vτ “ Rimp
h1 pτqv. Then pM ´ τAhqvτ “ M0v. Taking the inner product with vτ

on both sides,

}vτ}
2
M “ pM0v, vτ qv ` τpAhvτ , vτ qv

ď
1

2
}v}

2
M0

`
1

2
}vτ}

2
M0

` τpAhvτ , vτ qv

“
1

2
}v}

2
M0

`
1

2
}vτ}

2
M `

τ

2
pp2Ah ` M1qvτ , vτ qv.

Now, since pp2Ah ` M1qvτ , vτ qv “ ´|vτ |2d (see Lemma 3.2), the proof is complete. □

When using any (spatial) polynomial degree p ě 0, we obtain the following bound
for the lowest order method (showing that the rate is limited by the time discretization
error), which uses the (semi)norms defined in (3.15) and (4.4).

Lemma 4.8 (Local error bound). Let û denote the exact solution on T̂
v
and let ûimp

h1 pτq “

Rimp
h1 pτqû0h for some û0h P V v

h . Then,

}ûpτq ´ ûimp
h1 pτq}Mpτq À }ûp0q ´ û0h}Mp0q ` hv

`

}u}2,8,v ` |u|v,1
˘

.

Proof. Let Xh “ M´1
0 pAh ` M1q and X “ M´1

0 pA ` M1q. By (4.5),

(4.6) PhX ´ XhPh “ M´1
0 pPhA ´ AhPhq.

An alternate expression for the discrete propagator will also be useful: Rimp
h1 “ M´1pI ´

τAhM
´1q´1M0 “ pM ´ τAhq´1M0 “ pM0 ´ τpAh ` M1qq´1M0, i.e.,

(4.7) Rimp
h1 pτq “ pI ´ τXhq

´1.

With these preparations, we derive an “error equation” for εh “ ûimp
h1 pτq ´ Phûpτq.

Note that εh is a function in V v
h for each τ . Writing

εh “ Rimp
h1

“

û0h ´ Phûp0q
‰

` ϕh,

with ϕh “ Rimp
h1 Phûp0q ´ Phûpτq, we analyze ϕh further as follows.

ϕh “ pI ´ τXhq
´1Phûp0q ´ Phûpτq by (4.7),

“
“

pI ´ τXhq
´1

´ I
‰

Phûp0q ´ τPhû
p1q

p0q ´ Phρ2 by (4.2),

“ τpI ´ τXhq
´1XhPhûp0q ´ τPhû

p1q
p0q ´ Phρ2

“ τpI ´ τXhq
´1

“

PhX ´ M´1
0 pPhA ´ AhPhq

‰

ûp0q

´ τPhû
p1q

p0q ´ Phρ2 by (4.6),
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“ τ 2XhpI ´ τXhq
´1Phû

p1q
p0q ´ τpI ´ τXhq

´1M´1
0 ηh ´ Phρ2

with ηh “ pPhA ´ AhPhqûp0q. We have used Lemma 4.3 in the last step.
To bound ϕh, first note that by Lemma 4.4, }Xh}v,h À 1. Also, by (4.7) and Lemma 4.7,

}Rimp
h1 pτq}v,h “ }pI ´ τXhq´1}v,h À 1, so }ϕh}v À τ 2}ûp1q

p0q}v ` τ}ηh}v ` }ρ2}v. Now,
applying Lemmas 4.1, 4.5 and 4.2,

}ϕh}v À τ 2hv}Btu}8,v ` τhv|u|v,1 ` τ 2h2v}B
2
t u}8,v.

Together with the stability result of Lemma 4.7, this proves

}εh}M À }û0h ´ Phûp0q}M0 ` hv
`

}Btu}8,v ` }B
2
t u}8,v ` |u|v,1

˘

.

Using the triangle inequality, }ûpτq ´ ûimp
h1 pτq}M ď }ûpτq ´ Phûpτq}M ` }εh}M , and the

standard estimate for L2 projection, }ûpτq ´ Phûpτq}v À hv|u|v,1, the proof can now be
completed. □

The previous two lemmas lead to a global convergence theorem, as we shall now see.
The implicit scheme’s tent propagator on T v is the operator Rimp

h1 p1q ˝ Ph : Lv Ñ V v
h ,

set using Rimp
h1 pτq evaluated at pseudotime τ “ 1 corresponding to the tent top. Letting

Rimp
h denote the collection of such tent propagators over all tents, we use Definition 3.9

to set the global propagator Ri,j
h,imp “ T2Gpi, j,Rimp

h q, and consider the discrete solution

uimp
h1 “ Rm,0

h,impu
0 at the final time T .

Theorem 4.9 (Error estimate for the lowest order tent-implicit scheme). Under the
same conditions as Theorem 3.12, for any spatial degree p ě 0, the fully discrete solution
uimp
h1 satisfies

}upT q ´ uimp
h1 }Ω À

ˆ m
ÿ

j“1

hj

̇1{2„ m
ÿ

j“1

ÿ

vPVj

hv
`

}u}2,8,v ` |u|v,1
˘2

ȷ1{2

.

Proof. First, due to Lemma 4.7, we observe that in complete analogy with
Lemma 3.11, one can prove that for i ą j,

}Ri,j
h,impw}Ci

ď }w}Cj
.

Defining Ei,j
h,imp “ Ri,j ´ Ri,j

h,imp, in analogy with Lemma 3.10, we can show that

Em,0
h,imp “

m
ÿ

j“1

Rm,j
h,impE

j,j´1
h,impR

j´1,0.

Hence the theorem can be proved along the same lines as the proof of Theorem 3.12,
using Lemma 4.8 in place of Lemma 3.8. □

As before, under the further assumption that (3.22) holds, Theorem 4.9 gives an
Oph1{2q rate of convergence for the solution at the final time.
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4.3. Lowest order explicit scheme. A perhaps nonstandard route to derive an ex-
plicit scheme is to view it as an iterative method for solving the equations of an im-
plicit scheme. Pursuing this approach using the tent-implicit scheme of §4.2, we write
v8 “ Rimp

h1 pτqv0, or equivalently, using the operator Xh “ M´1
0 pAh ` M1q in (4.7),

pI ´ τXhqv8 “ v0.

Hence the Richardson iteration for solving this linear system for v8 takes the form

(4.8) vℓ`1 “ vℓ ` pv0 ´ pI ´ τXhqvℓq , ℓ “ 0, 1, . . . .

Definition 4.10 (Lowest order explicit discrete flows: Rexp
h1 pτq and Rexp

h1qpτq). Let v0 P

V v
h . The result v1 after one iteration of (4.8) defines the operator Rexp

h1 pτq : V v
h Ñ V v

h :

Rexp
h1 pτqv0 “ v1 “ pI ` τXhqv0.

The result vq obtained after performing q ě 1 iterations defines Rexp
h1qpτq : V v

h Ñ V v
h by

Rexp
h1qpτqv0 “ vq “ v0 ` τXhvq´1.

Note that no matrix inversions are required for conducting these q iterations, except for
one local mass matrix inversion (M´1

0 ) per tent.

Unlike the tent-implicit scheme, we are now able to obtain stability for the explicit
scheme only under further conditions. From Lemma 4.4, we know that }Xh}M0 À 1.
Hence the condition (4.9) in the next result can be met by performing sufficiently many
iterations.

Lemma 4.11 (Conditional stability). If q is large enough to admit

(4.9) }Xh}M0 À h1{pq`1q
v ,

then there is a cq ą 0 independent of hv such that for all v0 P V v
h ,

}Rexp
h1qpτqv0}Mpτq ď p1 ` cqhvq}v0}M0 .

Proof. Recursively expanding vq “ v0 ` τXhvq´1, we obtain

vq “

q
ÿ

j“0

pτXhq
jv0.

Rewriting this, using (4.7), as

(4.10) vq “ pI ´ τXhq
´1

“

I ´ pτXhq
q`1

‰

v0 “ Rimp
h1

“

1 ´ pτXhq
q`1

‰

v0,

we apply Lemma 4.7. Hence

}vq}M ď
›

›v0 ´ pτXhq
q`1v0

›

›

M0
ď }v0}M0 ` }Xh}

q`1
M0

}v0}M0

and the result follows using (4.9). □

Lemma 4.12 (Local error bound). Let û denote the exact solution on T̂
v
, let ûexph1qpτq “

Rexp
h1qpτqû0h for some û0h P V v

h , and suppose (4.9) holds. Then,

}ûpτq ´ ûexph1qpτq}Mpτq À }ûp0q ´ û0h}Mp0q ` hv
`

}u}2,8,v ` }u}v,1
˘

.
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Proof. Let eh “ ûimp
h1 pτq ´ ûexph1qpτq. Since ûpτq ´ ûexph1qpτq ´ eh “ ûpτq ´ ûimp

h1 pτq can be
bounded by Lemma 4.8, it suffices to bound eh. By (4.10),

eh “ pI ´ τXhq
´1û0h ´ pI ´ τXhq

´1
“

I ´ pτXhq
q`1

sû0h

“ pI ´ τXhq
´1

pτXhq
q`1û0h.

Thus, by Lemma 4.7 and (4.9), }eh}M À hv}û
0
h}M0 . We may further write û0h as the sum

of û0h ´ ûp0q and ûp0q and apply triangle inequality to obtain the right hand side of the
stated bound. □

Letting Rexp
h1q denote the collection of explicit tent propagator operators Rexp

h1qp1q ˝Ph :

Lv Ñ V v
h on all tents, we use Definition 3.9 to set the global propagators T2Gpi, j,Rexp

h1qq,

and consider the discrete solution uexph1q “ T2Gpm, 0,Rexp
h1qqu

0 at the final time T .

Theorem 4.13 (Error estimate for iterated lowest order explicit scheme). Suppose (4.9),
(3.22), and the conditions of Theorem 3.12 hold. Then for any spatial degree p ě 0, the
fully discrete explicit solution uexph1q satisfies

}upT q ´ uexph1q}
2
Ω À

m
ÿ

j“1

ÿ

vPVj

hv
`

}u}2,8,v ` }u}v,1
˘2
.

Proof. The proof proceeds along the lines of the proof of Theorem 3.12, replacing the
applications of Lemmas 3.6 and 3.8, respectively, by those of Lemmas 4.11 and 4.12
instead. The main difference is that we must now invoke the argument of Remark 3.14
due to the weaker stability estimate of Lemma 4.11. □

The Oph1{2q rate of convergence given by Theorem 4.13 is the same as the rate given by
Theorem 4.9 for the lowest order tent-implicit scheme. Increasing the iteration number q
can improve stability but does not generally improve the order of convergence.

4.4. Arbitrary order SAT schemes. Letting X
p0q

h denote the identity operator on
V v
h , recursively define further operators on V v

h by

(4.11) X
pkq

h “ M´1
0 pAh ` kM1qX

pk´1q

h , k ě 1.

Similarly, let Xp0q “ 1 and Xpkq “ M´1
0 pA ` kM1qX

pk´1q for k ě 1. By Lemma 4.3,

the time derivative of the exact solution satisfies ûpkq
p0q “ Xpkqûp0q. Hence the expan-

sion (4.2) may be written as

(4.12) ûpτq “

s
ÿ

k“0

τ k

k!
Xpkqûp0q ` ρs`1pτq,

This motivates us to define the SAT flow by replacing Xpkq with the discrete operator

X
pkq

h as follows. (A gentler derivation can be found in [12] and it can be seen easily that
the discrete flow defined there coincides with the one in the next definition.)

Definition 4.14 (Discrete s-stage SAT flow: Rsat
hs pτq for s ě 1). Define Rsat

hs pτq : V v
h Ñ

V v
h by

Rsat
hs pτqv “

s´1
ÿ

k“0

τ k

k!
X

pkq

h v `
τ s

s!
Mpτq

´1M0X
psq

h v, v P V v
h .
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Lemma 4.15. Let u be the exact solution of (3.12) on a causal tent T v and û “ u ˝Φ P

Cs`1p0, 1, Hv X Hp`1pΩv
hqLq. Then for any s ě 1,

}Rsat
hs pτqû0h ´ Phûpτq}Mpτq À }û0h ´ Phûp0q}Mp0q ` τ shsv}u}s`1,8,v

` τhp`1
v |u|v,p`1,s´1.

Proof. Let ûhspτq “ Rsat
hs pτqû0h and let εk “ pX

pkq

h Ph ´PhX
pkqqûp0q. Then projecting and

subtracting (4.12) from the expansion defining Rsat
hs pτqû0h, we obtain

ûhspτq ´ Phûpτq “

s´1
ÿ

k“0

τ k

k!

“

X
pkq

h pû0h ´ Phûp0qq ` εk
‰

`
τ s

s!
M´1M0

“

X
psq

h pû0h ´ Phûp0qq
‰

`
τ s

s!

“

pM´1M0 ´ IqPhû
psq

p0q ` M´1M0εs
‰

´ Phρs`1.

Letting µs “ pM´1M0 ´ IqPhû
psq

p0q, and noting that ε0 “ 0,

(4.13) ûhspτq´Phûpτq “ Rsat
hs pτq

“

û0h´Phûp0q
‰

`

s
ÿ

k“1

τ k

k!
εk`

τ s

s!

“

µs`M´1M0εs
‰

´Phρs`1.

To estimate the terms on the right hand side, we first use Lemma 4.4 to conclude that
}Rsat

hs pτqrû0h ´ Phûp0qs}M À }û0h ´ Phûp0q}M0 . By Lemma 4.1, }µs}v À hsv}Bs
tu}8,v. To

bound εk, note that

(4.14) εk “ M´1
0 pAh ` kM1qεk´1 ` ηk´1

where ηj “ M´1
0 pAhPh ´ PhAqûpjq

p0q. By Lemma 4.5, }ηj}v À hp`1
v |u|v,p`1,j. Hence

recursively bounding }εk}v by }εk´1}v using (4.14), and noting that ε0 “ 0, we have
}εk}M À hp`1

v |u|v,p`1,k´1. The final term in (4.13) can be treated using Lemma 4.2, which
yields }Phρs`1pτq}v À τ s`1hs`1

v }B
s`1
t u}8,v. When these estimates are used to bound the

terms in the right hand side of (4.13) (and noting that τ is a common factor in all terms
except the first), we obtain the stated inequality. □

In order to improve the stability of these explicit SAT schemes, we shall now divide
each tent into r subtents and apply the SAT scheme in each subtent.

Definition 4.16 (Subtents). Subdivide a tent T v into r subtents as follows. For ℓ “

1, . . . , r, define the ℓth subtent by

T v
rℓs “ tpx, tq : x P Ωv, φrℓs

pxq ď t ď φrℓ`1s
pxqu,

where t̂
rℓs

“ pℓ ´ 1q{r, φrℓs “ φpx, t̂
rℓs

q. Let δrℓs “ φrℓ`1s ´ φrℓs. Using δrℓs in place of δ

in (3.1) and (3.3), we define arℓspw, vq and M
rℓs
1 , respectively, and let A

rℓs
h : V v

h Ñ V v
h

be defined by pA
rℓs
h w, vqv “ arℓspw, vq for w, v P V v

h . Finally let M
rℓs
0 be defined by (3.2)

after replacing φbot there by φrℓs and let M rℓspτq “ M
rℓs
0 ´ τM

rℓs
1 . It is easy to see that

δrℓs “ δ{r and

(4.15) A
rℓs
h “

1

r
Ah, M

rℓs
1 “

1

r
M1, M rℓs

p0q “ Mpt̂
rℓs

q, M rℓs
p1q “ Mpt̂

rℓ`1s
q.
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Definition 4.17 (Discrete s-stage SAT propagator using r subtents: Rsat
rhs). Define

X
pkq

h,rℓs by replacing Ah,M1, and M0, by A
rℓs
h ,M

rℓs
1 , and M

rℓs
0 , respectively, in (4.11). De-

fine Rsat
rℓs,hspτq on a subtent T v

rℓs by replacing M0, X
pkq

h and M by M
rℓs
0 , X

pkq

h,rℓs and M rℓs,

respectively, in Definition 4.14. Applying on the r subtents successively, we define
Rsat

rhs “ Rsat
rrs,hsp1q ˝ Rsat

rr´1s,hsp1q ¨ ¨ ¨ ˝ Rsat
r1s,hsp1q.

Note that the constant in “À” will not be allowed to depend on r (so that we may
admit examples with hv-dependent r), as emphasized in the next lemma.

Lemma 4.18 (Local error in a tent). Let u be the exact solution of (3.12) on a causal
tent T v, û “ u ˝Φ P Cs`1p0, 1, Hv XHp`1pΩv

hqLq, and let ûrhs “ Rsat
rhsû

0
h. Then there is a

mesh-independent constant cs,p that is also independent of r such that

cs,p}ûrhs ´ ûp1q}Mp1q ď }û0h ´ Phûp0q}Mp0q ` hsv}u}s`1,8,v ` hp`1
v |u|v,p`1,s´1.

Proof. Denoting the discrete solutions by û1,hs “ Rsat
r1s,hsû

0
h and ûℓ,hs “ Rsat

rℓs,hsûℓ´1,hs for

1 ď ℓ ď r, we compare them with the subtent exact solutions, denoted by ûℓ “ ûpt̂
rℓ`1s

q.
In the pseudotime coordinate of the un-split tent T v, the value τ “ 1{r corresponds to
the top of the first subtent, where the exact solution is û1 “ ûp1{rq. Thus Lemma 4.15
with τ “ 1{r gives

}û1,hs ´ Phû1}Mp1{rq À }û0h ´ Phûp0q}Mp0q `
1

r

`

hsv}u}s`1,8,v ` hp`1
v |u|v,p`1,s´1

˘

.

Similarly, on the ℓth subtent, for ℓ “ 1, 2, . . . , r,

}ûℓ,hs ´ Phûℓ}Mpt̂
rℓ`1s

q
À }ûℓ´1,hs ´ Phûℓ´1}Mpt̂

rℓs
q

`
1

r

`

hsv}u}s`1,8,v ` hp`1
v |u|v,p`1,s´1

˘

.

Applying this estimate for ℓ “ r, r ´ 1, . . . , 1, successively in that order, where at each
step the first term on the right hand side is bounded using the next estimate,

}ûrhs ´ Phûp1q}Mp1q À }û0h ´ Phûp0q}Mp0q `
`

hsv}u}s`1,8,v ` hp`1
v |u|v,p`1,s´1

˘

r
ÿ

ℓ“1

1

r

which completes the proof. □

Letting Rsat
rhs denote the collection of explicit tent propagators Rsat

rhs ˝Ph : Lv Ñ V v
h on

all tents, we use Definition 3.9 to set the global propagators T2Gpi, j,Rsat
rhsq, and consider

the discrete solution usatrhs “ T2Gpm, 0,Rsat
rhsqu

0 at the final time T .

Theorem 4.19 (Error estimate for the SAT scheme). Assume that there is a mesh-
independent Csta ě 0 such that

(4.16) }Rsat
rhsv}Mp1q ď p1 ` Cstahvq}v}Mp0q

for all v P V v
h on all tents T v. Suppose also that (3.22) and the conditions of Theo-

rem 3.12 hold. Then the fully discrete explicit s-stage SAT solution usatrhs, obtained using
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spatial polynomial degree p, satisfies

}upT q ´ usatrhs}
2
Ω À

m
ÿ

j“1

ÿ

vPVj

h2s´1
v }u}

2
s`1,8,v ` h2p`1

v }u}
2
v,p`1,s´1.

Proof. The proof proceeds along the lines of the extension of the proof of Theorem 3.12
mentioned in Remark 3.14, replacing the application of Lemma 3.6 by (4.16), and re-
placing the application of Lemma 3.8 by Lemma 4.18. □

Theorem 4.19 bounds the error by terms that converge to zero at the same rate,
provided the number of stages in the SAT scheme is tied to the spatial degree by s “

p ` 1. Then, the convergence rate given by Theorem 4.19 is Ophp`1{2q, the same rate
we obtained for the semidiscretization (in Theorem 3.12). In §4.4.1 we show, through a
numerical example, that this rate is generally un-improvable.

One can solve a local eigenproblem on a tent to computationally check if the stability
assumption (4.16) is satisfied. Since this eigenvalue computation is described in detail
in [14, §6.1], we shall not comment further on this computational avenue for stability
verification. In §4.4.2 and §4.4.3, we describe two cases where stability can be proved
staying within the framework of the general symmetric linear hyperbolic systems we
have been considering.

4.4.1. Numerical observations on the convergence rate. It is natural to wonder if the
convergence rate of Ophp`1{2q, given by Theorem 4.19 (and Theorem 3.12), is improvable.
Our numerical experience from computations with various hyperbolic systems suggests
that one is likely to observe a higher convergence rate of Ophp`1q on generic examples
and meshes. Yet, as we show now, there is at least one family of tent meshes in the
N “ 2 case where Ophp`1{2q rate of convergence is observed. Such tent meshes are
created by selecting the spatial mesh Ωh from the mesh families described in [19], where
it is shown that the standard Ophp`1{2q error estimate for the DG method for stationary
advection equation cannot be improved. Building causal tents atop such a mesh, we
show that our Ophp`1{2q estimate for the time-dependent advection problem also cannot
be improved.

The structured spatial meshes we borrow from [19] consist of horizontal layers of right
triangles grouped in vertical bands. As the mesh is refined, the number of vertical
bands is controlled by a parameter σ P r0, 1s. We used the MTP discretization with
polynomial orders p varying from 0 to 3, together with SAT time stepping with r “

maxt1, 2pu and s “ p ` 1 to solve the advection problem of Example 2.3 (modified to
take a nonhomogeneous inflow boundary condition). The domain Ω is set to the unit
square, the advective vector field b is set to the constant vector b “ r0, 1st, so that
BinΩ “ tpx1, x2q : 0 ď x2 ď 1u, and the inflow boundary condition is set by u “ xp`1

1

on BinΩ. The initial condition is u0px1, x2q ” xp`1
1 . At t “ T “ 1, the MTP solution

approximated the exact solution upx1, x2, tq “ xp`1
1 at all spatial points px1, x2q P Ω.

We obtained different convergence rates for different choices of σ, but in all cases, the
rates are bounded between Ophp`1{2q and Ophp`1q. We obtained the minimal conver-
gence rate (largest errors) when σ “ 3{4 and σ “ 1{2 for p ě 1 and p “ 0, respectively.
The errors and rates observed for these values of σ are plotted in Figure 3, which clearly
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Figure 3. Convergence rates observed when solving the advection problem

show Ophp`1{2q rate of convergence. We note that our rate-minimizing σ-value of 3{4
is the same value of σ used in [19] for the p “ 1 case (the only case where numerical
results are given there).

4.4.2. Stability verification in the p “ 0, s “ 1 case. This case is motivated by the many
studies of the p “ 0 case in the DG literature (see e.g. [3, 7, 21]), often called the finite
volume case, and is illustrative of why special cases are worth pursuing. We focus on
the operator of the SAT scheme, obtained by setting s “ 1 in Definition 4.14, which can
be simplified to

Rsat
h1 pτq “ I ` τMpτq

´1
pAh ` M1q,

and the corresponding operator Rsat
rh1 obtained using r subtents, per Defintion 4.17. Note

that Rsat
h1 pτq differs slightly from the q “ 1 case of Definition 4.10, namely, Rexp

h1 pτq “

I ` τM´1
0 pAh ` M1q. While Rexp

h1q only requires one local mass matrix inversion for q

iterations within a tent, the application of Rsat
rh1 requires one local inversion per subtent.

However, Rsat
rh1 admits a stronger stability estimate that we shall prove after making the

following observation.

Lemma 4.20. When p “ 0, we have, for all v, w P V v
h ,

pAhw, vqv À }w}v|v|d,(4.17)

}pAh ` M1qv}v À |v|d.(4.18)

Proof. When p “ 0, the derivative terms in (3.1) vanish, so

pAhw, vqv “
ÿ

KPΩv
h

´pδF̂
n

w, vqBK

“ ´
ÿ

FPFv
b

1

2
pδpDpnq

` Bqw, vqF
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`
ÿ

FPFv
i

pδDpnF q
twu, vvwF qF ´ pδSvwwF , vvwF qF

where we have rearranged the sum to run over the mesh facets. Now, by Cauchy-Schwarz
inequality, (2.11), and Lemma 3.2, the estimate of (4.17) follows.

Of course, (4.17) can also be written as pw,At
hvqv À }w}v|v|d where At

h is the Lv-
adjoint of Ah. When this is added to the obvious inequality

p´pAh ` At
h ` M1qv, wqv ď p´p2Ah ` M1qv, vq

1{2
v p´p2Ah ` M1qw,wq

1{2
v “ |v|d|w|d,

we obtain p´pAh ` M1qv, wqv À |v|d}w}v, so

}pAh ` M1qv}v “ sup
0‰wPV v

h

ppAh ` M1qv, wqv

}w}v
À |v|d

proves (4.18). □

Let Kh denote the kernel of Ah ` At
h ` M1 : V v

h Ñ V v
h and let KK

h denote its Lv-
orthogonal complement in V v

h . Set

(4.19) κ “ sup
0ďτď1

sup
0‰vPKK

h

}Mpτq´1pAh ` M1qv}2Mpτq

|v|2d
.

Proposition 4.21 (Conditional strong stability). In the case p “ 0 and s “ 1, the
constant κ of (4.19) satisfies κ À 1. For all

(4.20) 0 ď τ ď 1{κ

and all v P V v
h , we have

(4.21) }Rsat
h1 pτqv}Mpτq ď }v}M0 .

Furthermore, if r ě κ subtents are used, then

(4.22) }Rsat
rh1v}Mpτq ď }v}M0 ,

i.e., the stability assumption (4.16) of Theorem 4.19 holds with Csta “ 0.

Proof. Since }Mpτq´1}v,h À 1 by Lemma 4.4, the estimate (4.18) of Lemma 4.20 shows
that κ À 1 whenever p “ 0.

Let vτ “ Rsat
h1 pτqv “ v ` τM´1pAh ` M1qv. Then expanding }vτ}2M ,

}vτ}
2
M “ }v}

2
M ` 2τppAh ` M1qv, vqv ` τ 2}M´1

pAh ` M1qv}
2
M

“ }v}
2
M0

` τpp2Ah ` M1qv, vqv ` τ 2}M´1
pAh ` M1qv}

2
M

ď }v}
2
M0

´ τ |v|
2
d ` τ 2κ|v|

2
d

so (4.21) follows when 1 ´ τκ ě 0.

Next, consider a subtent T v
rℓs. By (4.15), Rsat

rℓs,h1p1q “ I ` M rℓsp1q´1pA
rℓs
h ` M

rℓs
1 q “

I ` r´1Mpt̂
rℓ`1s

qpAh ` M1q, so translating (4.21) with τ “ 1{r ď 1{κ to this subtent,
we obtain }Rsat

rℓs,h1p1qv}Mptrℓ`1sq ď }v}Mptrℓsq. Successively applying these estimates over

all subtents, (4.22) is proved. □
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Note that the inverse of κ appearing in (4.20) will stay away from zero (since κ À

1) allowing for a nontrivial advance in τ . One can view (4.20) as the analogue of a
traditional “CFL condition” within a tent. Indeed, the pseudotime restriction (4.20)
may be interpreted as a restriction on time advance in the physical spacetime by a small
subtent whose tent pole height is a scalar multiple of hv. Even in the event (4.20) forbids
us to reach the tent-top pseudotime (i.e., when τ “ 1 does not satisfy (4.20)), splitting
the tent into smaller subtents does allow the analogue of (4.20) to hold throughout every
subtent.

4.4.3. Stability verification in the s “ 2 case. We will now show how to prove stability
under a stronger CFL condition in the two-stage case. Definition 4.14 with s “ 2 yields

Rsat
h2 pτq “ I ` τX

p1q

h `
τ 2

2
M´1M0X

p2q

h .

Lemma 4.22. For any v P V v
h ,

}Rsat
h2 pτqv}

2
Mpτq “ }v}

2
M0

´ τ
ˇ

ˇ

ˇ
v `

τ

2
X

p1q

h v
ˇ

ˇ

ˇ

2

d
` τ 3 Zpτ, vq,

where Zpτ, vq “ r2pM1X
p1q

h v,X
p1q

h vqv ´ |X
p1q

h v|2d ` τ}Mpτq´1M0X
p2q

h v}2M s{4.

Proof. Let w “ τX
p1q

h v ` pτ 2{2qM´1M0X
p2q

h v. Then vτ “ Rsat
h2 pτqv can be written as

vτ “ v ` w. Expanding }v ` w}2M ,

}vτ}
2
M “ }v}

2
M0

´ τpM1v, vqv ` 2pw, vqM ` }w}
2
M

“ }v}
2
M0

´ τpM1v, vqv ` 2τppM0 ´ τM1qX
p1q

h v, vqv ` τ 2pM0X
p2q

h v, vqv ` }w}
2
M

“ }v}
2
M0

` τpp2Ah ` M1qv, vqv ` τ 2pAhX
p1q

h v, vqv ` }w}
2
M .

Note that pAhX
p1q

h v, vqv “ pX
p1q

h v,At
hvqv “ pX

p1q

h v, pAt
h `Ah `M1qvqv ´}X

p1q

h v}2M0
. Since

dpy, zq “ ´ppAt
h ` Ah ` M1qy, zqv, we have

}vτ}
2
M “ }v}

2
M0

´ τ |v|
2
d ´ τ 2dpX

p1q

h v, vq ´ τ 2}X
p1q

h v}
2
M0

` }w}
2
M .

Next, letting z “ p1{2qM´1M0X
p2q

h v, expanding the last term above }w}2M “ τ 2}X
p1q

h v}2M`

τ 3pX
p1q

h v,M0X
p2q

h vqv ` τ 4}z}2M , noting that M0X
p2q

h “ pAh ` 2M1qX
p1q

h , and simplifying,

}vτ}
2
M “ }v}

2
M0

´ τ |v|
2
d ´ τ 2dpX

p1q

h v, vq ` τ 3ppAh ` M1qX
p1q

h v,X
p1q

h vqv ` τ 4}z}
2
M

“ }v}
2
M0

´ τ
ˇ

ˇv `
τ

2
X

p1q

h v
ˇ

ˇ

2

d
`
τ 3

4
pp2Ah ` 3M1qX

p1q

h v,X
p1q

h vqv ` τ 4}z}
2
M

from which the stated identity follows. □

Proposition 4.23. Let v P V v
h and r be chosen as the smallest integer not smaller than

κ
1{3
2 {h

1{2
v where κ2 is defined using Zpτ, vq of Lemma 4.22 by

κ2 “ sup
0ďτď1

sup
0‰vPV v

h

Zpτ, vq

}v}2M0

.

Then
}Rsat

h2 pτqv}Mpτq ď p1 ` h3{2
v q

1{2
}v}M0 for all τ ď 1{r,

and Rsat
rh2 satisfies the stability assumption (4.16) of Theorem 4.19.
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Proof. By Lemma 4.22 and the definition of κ2,

}Rsat
h2 pτqv}

2
Mpτq ď }v}

2
M0

` τ 3κ2}v}
2
M0

ď p1 ` h3{2
v q}v}

2
M0
,

since τ 3κ2 “ κ2{r
3 ď h

3{2
v . Applying this successively on each subtent, we obtain

}Rsat
rh2v}Mp1q ď p1 ` h3{2

v q
r{2

}v}M0 .

Next, we use the bound p1 ` h
3{2
v qr{2 ď expph

3{2
v r{2q. Since the argument of the expo-

nential is bounded, expph3{2r{2q ´ 1 À h
3{2
v r{2 À hv. Thus there is an hv-independent

constant C ą 0 such that }Rsat
rh2v}Mp1q ď p1 ` Chvq}v}M0 . □

Note that by Lemma 4.4, the constant κ2 satisfies κ2 À 1. Hence Proposition 4.23
gives stability under a so-called “3/2-CFL” condition. The latter term is an adaptation
of the terminology on CFL conditions in [3] for our tents, in view of the fact that our
τ ď 1{r condition, with r as in Proposition 4.23, implies that the amount of time advance

along a tent pole (τδ) is limited by Oph
3{2
v q.

5. Conclusion

We have developed a convergence theory for MTP schemes for a large class of linear
hyperbolic systems, covering the semidiscrete case (§3), as well as a few fully discrete
schemes (§4). The convergence rate for the semidiscretization was established to be
Ophp`1{2q in Theorem 3.12 under reasonable assumptions. When the number of stages
s “ p ` 1, the fully discrete SAT scheme also gave the same convergence rate (Theo-
rem 4.19) under the stability assumption (4.16). Through a selected numerical example,
we showed in §4.4.1 that this convergence rate cannot be improved in general. The sta-
bility of SAT scheme was verified in §4.4.2 for the p “ 0, s “ 1 case and in §4.4.3 for the
(arbitrary p) s “ 2 case. Proving the stability of SAT schemes (verifying (4.16)) for other
values of s is currently an open problem. It is however possible to computationally verify
stability within each tent by solving a small eigenvalue problem as shown in [14]. The
numerical results there suggest that an estimate of the form }Rsat

rhsv}M ď p1`Cr´sq}v}M0

might hold for general r and s. If this is provable, then for larger s, a slight modifi-
cation of the argument of Proposition 4.23 would prove stability under a less stringent
p1 ` 1{sq-CFL condition, which limits the amount of time advance by a scalar multiple

of h
1`1{s
v . Also, if our analysis in §4.4.2 is any indication, it might be a worthwhile

future pursuit to seek further special cases where stability holds under even weaker CFL
conditions within a tent. The simplest cases of the fully discrete analyses we presented
are those of the lowest order tent-implicit scheme in §4.2 and the lowest order iterated
explicit scheme in §4.3. The latter was obtained from a nontraditional viewpoint of
explicit schemes as iterative solvers for implicit schemes.
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