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Abstract. Using a generalization of complexes, called 2-complexes, this paper defines and
analyzes new Sobolev spaces of matrix fields and their interrelationships within a commuting
diagram. These spaces have very weak second-order derivatives. An example is the space
of matrix fields of square-integrable components whose row-wise divergence followed by yet
another divergence operation yield a function in a standard negative-order Sobolev space.
Similar spaces where the double divergence is replaced by a curl composed with divergence,
or a double curl operator (the incompatibility operator), are also studied. Stable decomposi-
tions of such spaces in terms of more regular component functions (which are continuous in
natural norms) are established. Appropriately ordering such Sobolev spaces with and with-
out boundary conditions (in a weak sense), we discover duality relationships between them.
Motivation to study such Sobolev spaces, from a finite element perspective and implications
for weak well-posed variational formulations are pointed out.
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1. Introduction

Substantial improvements in numerical techniques for solving partial differential equations
(PDEs) to address current scientific challenges have come from connections to and preser-
vation of the differential and algebraic structures inherent in the PDEs. Ample examples
are offered by the history of finite element techniques. The earliest finite elements [17], La-
grange elements, consisted of scalar-valued functions. Developments in vector-valued finite
elements followed, starting with elements [39] of continuous normal (n) components. These
“n-continuous” elements were supplemented with “t-continuous” vector-valued Nédélec el-
ements with continuous tangential (t) components [32]. Further families of vector-valued
elements were unearthed continuing this line of work. Although these elements were devel-
oped separately, today we understand them together as fitting into a cochain subcomplex
of a de Rham complex of Sobolev spaces, thanks to intensive research into finite element
exterior calculus (FEEC) [4, 6, 25]. It is now clear how to generalize from scalar and vector
fields to tensor fields, as long as the tensors have the algebraic structure of k-forms in the de
Rham complex, i.e., higher order alternating tensor-valued finite elements in any dimension
naturally fit into FEEC.

This paper, while building on these developments, is motivated by other types of tensors.
Problems in continuum mechanics, differential geometry and general relativity call for a study
of tensors with other types of symmetries. Indeed, even restricting to second-order tensors,
the need for study is evident from the increasing current interest in matrix-valued finite
element functions. The earliest of these are the “nn-continuous” symmetric matrix fields
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(i.e., symmetric matrix-valued functions σ with continuous (σn) · n) of the HHJ (Hellan-
Herrmann-Johnson) elements [15], now enjoying a revival [7,37,38,40] in the TDNNS method
and elsewhere. A seemingly disjoint (but potentially connected) recent development is the
“nt-continuous” trace-free matrix finite element developed [19–21] for viscous fluid stresses in
the context of the MCS (Mass-Conserving Stress-yielding) method. To add to this picture,
Regge elements [14, 22, 23, 29] with “tt-continuous” symmetric matrix-valued elements are
finding more and more uses. How does one connect these disparate developments of nn, nt,
and tt-continuous matrix finite elements? The prior synthesis (mentioned in the previous
paragraph) involved spaces of the de Rham complex, all connected by fundamental first-
order differential operators (grad, curl, and divergence, in three dimensions). In contrast,
what seems to be natural for the matrix finite elements are other second-order differential
operators.

The goal of this work is to take a step toward understanding what Sobolev spaces and their
arrangements might reveal a unified structure where such second-order differential operators
and matrix fields arise naturally. Although motivated by finite elements, this work does
not contain finite elements. The scope is limited to a study of infinite-dimensional Sobolev
spaces of matrix fields, their interrelationships, and connections to standard Sobolev spaces.
We focus on spaces of scalar, vector, and matrix valued functions on three-dimensional (3D)
domains Ω. Study of higher order tensor fields on higher dimensional domains is certainly
interesting, but requires more algebraic machinery (such as group representations and Young
tableaux) to work with tensor symmetries.

In 3D however, the relevant symmetries can be captured by the familiar symmetrization
and deviatoric operations,

sym τ =
1

2
(τ + τ⊤), dev τ = τ − 1

3
tr(τ)i, τ ∈ M, (1)

where M = R3×3 denotes the vector space of 3× 3 real (R) matrices, tr(τ) denotes the trace
of a matrix τ ∈ M, and i denotes the 3 × 3 identity matrix. Here and throughout, τ⊤, also
written as ⊤ τ , denotes the (pointwise) transpose of a matrix field τ . The operations in (1)
generate subspaces of symmetric matrices and trace-free matrices which we denote by

S = symM, T = devM.

Let V = R3. We are interested in structures connecting Sobolev spaces of functions with
values in R, V, S and T of the following form:

R V V R

V S T V

V T S V

R V V R

(2)

Such diagrams where R, V, S and T are replaced by appropriate Sobolev spaces of functions
taking values in them, are studied here. The first such diagram is introduced below in (25),
which contain first-order derivative operators as well as key algebraic operations ⊤, sym,
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and dev. Certain combinations of these operations result in basic second-order derivative
operators marked in diagram (37).

The tensors along the four edges of (2) follow the R-V-V-R pattern of the well-known 3D
de Rham complex

C∞ C∞ ⊗ V C∞ ⊗ V C∞grad curl div (3)

of infinitely smooth (C∞) scalar and vector fields on Ω. Recall that a “complex” is a sequence
of linear spaces Xi and linear maps Ai : Xi → Xi+1, traditionally expressed by

· · · Xk−2 Xk−1 Xk Xk+1 Xk+2 · · · ,Ak−2 Ak−1 Ak Ak+1
(4)

satisfying Ai+1 ◦ Ai = 0 for all i. In [33], “ℓ-complexes” arose, which are sequences (4) with
the property Ai+ℓ ◦ · · · ◦Ai+1 ◦Ai = 0 for all i and some fixed integer ℓ (so, e.g., a 1-complex
is a complex in the usual sense). As we shall see, diagrams of the form (2) that we study
here have a 2-complex structure (which explains the title of this paper). Definition 1.1 below
formalizes the 2-complex notion in the context of such diagrams.

Other examples of complexes, beyond the de Rham complex (3), include the well-known
elasticity complex [2, 5, 8, 28,35], also named after Calabi or Kröner,

C∞ ⊗ V C∞ ⊗ S C∞ ⊗ S C∞ ⊗ V,
symgrad curl⊤ curl div (5)

the hessian complex [2, 26]

C∞ C∞ ⊗ S C∞ ⊗ T C∞ ⊗ V,
grad grad curl div (6)

and the div div complex [2, 34]

C∞ ⊗ V C∞ ⊗ T C∞ ⊗ S C∞.
dev grad sym curl div div (7)

These complexes can be systematically derived from the de Rham complex (3) using the
Bernstein-Gelfand-Gelfand (BGG) construction, originally developed in algebraic and geo-
metric contexts [9, 13] and more recently adapted to certain Sobolev spaces [2, 12]. We shall
see that analogous complexes, with other “H−1 based” Sobolev spaces, defined shortly in
(23)–(24), also arise naturally from the 2-complexes and the diagrams of the type (2) that
we study here.

On the theme of weakly regular H−1 based Sobolev spaces, which is pervasive in this paper,
some motivating examples shed more light. Let

(u, v) :=

∫
Ω

uv dx (8)

for scalar fields u, v, and in addition, for vector or matrix fields u and v, we continue to use
the same notation (u, v) to denote the Lebesgue integral (when it exists) over Ω of the dot
product u · v, or the Frobenius product u : v, respectively, of u and v. All function spaces on
Ω are defined precisely in Subsection 1.1, but for expediency, we use the standard space L2

and the space H−1 with weaker topology in the quick discussion of two examples below, both
showing the role of weak regularity, and each illuminating the role of one of two algebraic
operations sym and dev.
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Example 1. The stress tensor σ in linear elasticity is a matrix field which must satisfy σ =
sym(σ) due to conservation of angular momentum. Well-posed formulations for the Hellinger-
Reissner principle in linear elasticity seek a symmetric matrix field (the stress tensor) σ : Ω →
S in some Sobolev space Σ and a vector field u : Ω → V (displacement) in some Sobolev
space V satisfying

(Aσ, τ) + (u, div τ) = 0 for all τ ∈ Σ,

(div σ, v) = (f, v) for all v ∈ V,
(9)

where A, f , and div denotes the compliance tensor, the load vector field, and row-wise
divergence of a matrix field, respectively. A “regular choice” is V = L2 ⊗ V and

Σ = {τ ∈ L2 ⊗ S : div τ ∈ L2 ⊗ V}. (10)

Construction of finite elements for this Σ is difficult and had remained an open problem for
decades, as noted in [3]. (If the symmetry condition on σ were absent, then three copies of
the n-continuous finite elements would have been sufficient.) An alternative choice of “weak
regularity” is

Σ = {τ ∈ L2 ⊗ S : div τ ∈ V ∗} (11)

where V ∗ is weaker than L2 integrals of the form (div τ, v) in (9) are relaxed to a duality
pairing (div τ)(v) in V . The TDNNS method [37,38] with nn-continuous stresses can be seen

as a discretization of such a formulation with V = H̊(curl), a space defined shortly in (15).
Theorem 5.4 shows that the condition div τ ∈ V ∗ in (11) is equivalent to div div τ ∈ H−1.
This motivates us to study Sobolev spaces with this weak regularity condition, namely the
spaces Hdd and Hdd defined in (73c) and (74b), respectively.

Example 2. Viscous stresses in Stokes flow with fluid velocity u : Ω → V can be extracted from
the symmetric part of σ = 2ν gradu, where ν is the kinematic viscosity. The incompressibility
constraint div u = 0, a well known source of challenges in numerical simulation [27], now
emerges as an algebraic constraint: σ = dev σ. The definition of σ and flow equations
suggest that we should find σ in a space Σ of trace-free matrix fields, u in some space V of
vector fields, and the pressure p in some space Q of scalar fields such that

(ν−1σ, τ) + (u, div τ) = 0 for all τ ∈ Σ,

(div σ, v) + (div v, p) = −(f, v) for all v ∈ V,

(div u, q) = 0 for all p ∈ Q.

for some given source field f . The MCS method [19–21] sets V = H̊(div) (a space defined
shortly in (15)) and Q = div V . Then, instead of a “regular choice” Σ = {τ ∈ L2⊗T : div σ ∈
L2 ⊗ V} that would make the integrals like (div σ, v) well defined, the MCS formulation
proposes a choice of “weak regularity,” namely

Σ = {τ ∈ L2 ⊗ T : div σ ∈ V ∗} (12)

for which simple nt-continuous finite elements work, after relaxing (div σ, v) to a duality
pairing (div σ)(v) in V . Theorem 5.4 shows that the condition div τ ∈ V ∗ in (12) is equivalent
to curl div τ ∈ H−1. This motivates us to study Sobolev spaces with this weak regularity
condition, namely the spaces Hcd and Hcd defined in (73b) and (74c), respectively.
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1.1. Preliminaries and spaces. Let Ω be a bounded open connected subset of the Eu-
clidean space R3 with Lipschitz boundary. Let L2 denote the space of square-integrable
R-valued functions on Ω, or equivalently the space of square-integrable R-valued functions
on R3 supported on Ω̄. Let D(Ω) denote the Schwartz space of smooth test functions on Ω
that are compactly supported in Ω. The dual of any topological space X is denoted by X∗.
The space of distributions on Ω is denoted by D(Ω)∗. The space of vector fields on Ω with
square-integrable components is denoted by L2⊗V and the notation is similarly extended to
T and S-valued fields on Ω as well as to other spaces, e.g., D(Ω)∗ ⊗ S denotes the space of
symmetric matrix-valued fields whose components are distributions on Ω.

We use the standard Sobolev spaces Hs(R3) and Hs(Ω) for any s ∈ R. (see e.g., [1, 30]).
We omit the domain Ω from the notation when no confusion can arise and simply write Hs

for Hs(Ω). For scalar functions u : Ω → R and vector functions v, q : Ω → V, let

∥u∥2H1 = ∥u∥2L2
+ ∥ gradu∥2L2

,

∥v∥2H(curl) = ∥v∥2L2
+ ∥ curl v∥2L2

, ∥q∥2H(div) = ∥q∥2L2
+ ∥ div v∥2L2

.
(13)

These are norms of well-known Hilbert spaces of functions on Ω, namely

H(grad) ≡ H1 = {u ∈ L2 : gradu ∈ L2 ⊗ V}, (14a)

H(curl) = {v ∈ L2 ⊗ V : curl v ∈ L2 ⊗ V}, (14b)

H(div) = {q ∈ L2 ⊗ V : div q ∈ L2}. (14c)

Using the standard norms in (13), the closures

H̊(grad) = D(Ω)
∥·∥H1

, H̊(curl) = D(Ω)⊗ V
∥·∥H(curl)

, H̊(div) = D(Ω)⊗ V
∥·∥H(div)

, (15)

give well-known zero-trace subspaces of the spaces in (14).
Further spaces are defined using similar closures, but using the set of D(Ω)-functions

extended by zero to all R3 and closing the set using the Hs(R3) norm. Set˜̊Hs = D(Ω)
∥·∥Hs(R3) , s ∈ R, (16)

and ∥u∥ ˜̊Hs := ∥u∥Hs(R3). This space is often just denoted by H̃s(Ω), and in our setting, is
also the same as another often-occurring space in the literature, Hs

Ω
(R3) = {u ∈ Hs(R3) :

suppu ⊂ Ω̄} (see e.g. [30, Theorem 3.29]), i.e.,˜̊Hs = {u ∈ Hs(R3) : suppu ⊂ Ω̄}. (17)

Since the ith partial derivative ∂i satisfies ∥∂iφ∥ ˜̊Hs ≤ ∥φ∥ ˜̊Hs+1 for all φ ∈ D(Ω), and since

D(Ω) is dense in ˜̊Hs by definition (16), we conclude that for any real s,

∂i : ˜̊Hs+1 → ˜̊Hs is continuous. (18)

It is well known [30, Theorem 3.30] that ˜̊Hs is also identifiable with a standard dual space˜̊Hs = (H−s)∗ (19)

for any s ∈ R. The case s = −1 is of particular interest here. The space ˜̊H−1, not to be
confused with H−1 = H̊(grad)∗, satisfies, per (19),˜̊H−1 = H(grad)∗, (20)

and furthermore, even if ˜̊H−1 is not embedded in a space of distributions on Ω, it can be
characterized using tempered distributions on R3 supported on the closure of Ω, due to (17).
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Therefore the norm of any u in ˜̊H−1 can be computed either using the H−1(R3)-norm of the
extension of u by zero to all R3, or by duality using (20). Finally, we note that it is also

well-known [30, Theorem 3.33] when s > 0, ˜̊Hs is contained in

H̊s := D(Ω)
∥·∥Hs(Ω)

and, moreover, ˜̊Hs and H̊s are equal if s > 0 and s− 1
2
is not an integer, so e.g., H̊1 = ˜̊H1.

For a general s ∈ R, we define the norms

∥v∥2˜̊Hs(curl)
= ∥v∥2˜̊Hs + ∥ curl v∥2˜̊Hs , ∥q∥2˜̊Hs(div)

= ∥q∥2˜̊Hs + ∥ div q∥2˜̊Hs .

and set ˜̊Hs(curl) = D(Ω)⊗ V
∥·∥ ˜̊Hs(curl) , ˜̊Hs(div) = D(Ω)⊗ V

∥·∥ ˜̊Hs(div) . (21)

These spaces with s = −1 feature in a central diagram introduced shortly.
Next we introduce key spaces of matrix-valued fields, which are also needed for the diagram.

Note that when the standard differential operators div and curl are applied to matrix-valued
fields, we do so row-wise. The next definitions involve second-order differential operators on
matrix-valued functions g : Ω → S, τ : Ω → T, and σ : Ω → S, such as the incompatibility
operator

inc g := curl ⊤ curl g. (22)

Let

∥g∥2˜̊Hcc
= ∥g∥2˜̊H−1 + ∥ curl g∥2˜̊H−1 + ∥ inc g∥2˜̊H−1 (23a)

∥τ∥2˜̊Hcd
= ∥τ∥2˜̊H−1 + ∥ div τ∥2˜̊H−1 + ∥ sym curl ⊤ τ∥2˜̊H−1 + ∥ curl div τ∥2˜̊H−1 (23b)

∥σ∥2˜̊Hdd
= ∥σ∥2˜̊H−1 + ∥ div σ∥2˜̊H−1 + ∥ div div σ∥2˜̊H−1 , (23c)

and ∥τ∥ ˜̊Hcd⊤
= ∥ ⊤ τ∥ ˜̊Hcd

. Let

˜̊Hcc = D(Ω)⊗ S
∥·∥ ˜̊Hcc , ˜̊Hcd = D(Ω)⊗ T

∥·∥ ˜̊Hcd , ˜̊Hdd = D(Ω)⊗ S
∥·∥ ˜̊Hdd . (24)

The space ˜̊Hcd⊤ = {τ⊤ : τ ∈ ˜̊Hcd} will also be needed. Clearly, in view of (16), the spaces˜̊Hcc, ˜̊Hcd and ˜̊Hdd are subspaces of ˜̊H−1 ⊗ S, ˜̊H−1 ⊗ T, and ˜̊H−1 ⊗ S, respectively.
Certain subspaces of ˜̊Hs, ˜̊Hs(curl) and ˜̊Hs(div), which we now define, occur often. Let P1

denote the space of linear polynomials. Using the coordinate vector x in R3, define

RT = {a+ bx : a ∈ V, b ∈ R}, ND = {a+ d× x : a, d ∈ V}.
Let

L2,R = {u ∈ L2 : (u, 1) = 0}, ˜̊Hs
R = {u ∈ ˜̊Hs : u(1) = 0},˜̊Hs

RT (curl) = {v ∈ ˜̊Hs(curl) : v(r) = 0 for all r ∈ RT },˜̊Hs
ND(div) = {q ∈ ˜̊Hs(div) : q(r) = 0 for all r ∈ ND},˜̊Hs

P1
= {w ∈ ˜̊Hs : w(p) = 0 for all p ∈ P1}.

Here and throughout, the action of a distribution w on a function p in D(R3) is denoted
by w(p). In the above subspaces of distributions, note that only the value of p|Ω on Ω is

needed to evaluate the action w(p) since w is supported on Ω̄. Note also that ˜̊Hs
RT (curl) and˜̊Hs

ND(div) are closed subspaces of ˜̊Hs(curl) and ˜̊Hs(div).
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1.2. A diagram connecting the Sobolev spaces. Using the above-defined notation, we
can now precisely introduce one of the objects of study in this paper. It is the following
diagram connecting the above-defined Sobolev spaces of scalar-, vector-, and matrix-valued
distributions on R3:

H̊(grad) H̊(curl) H̊(div) L2,R

H̊(curl) ˜̊Hcc ˜̊Hcd ˜̊H−1
RT (curl)

H̊(div) ˜̊Hcd⊤ ˜̊Hdd ˜̊H−1
ND(div)

L2,R ˜̊H−1
RT (curl) ˜̊H−1

ND(div) ˜̊H−1
P1

grad

grad

curl

def

div

1
2
⊤ dev grad 1

3
grad

def

curl

curl

⊤ curl

div

sym curl⊤ 1
2
curl

1
2
dev grad

div

sym curl

div⊤

div

div div

1
3
grad 1

2
curl div

(25)

Here def u = symgradu for vector fields u denotes the deformation operator, where gradu
is the matrix field whose (i, j)th component is ∂ui/∂xj. Note that information in the dia-
gram (25) is repeated across the diagonal, i.e., the diagram is symmetric about the diagonal.
The properties collected in the next section show that each of the indicated operators is
linear and continuous in the norms of the indicated domain and codomain, and that each
component cell in the diagram commutes. A different but similar diagram starting with
analogous spaces without boundary conditions H(grad), H(curl), and H(div), is found later
in Section 5.

In the commutative diagram (25), the “objects” (or “vertices”) are the spaces. The “mor-
phisms” (or “arrows”) are the indicated first-order differential operators. Compositions of
morphisms are referred to as “paths”. Clearly, paths in (25) always go right or down from
an object. The following definition of a “2-complex” is motivated by [33].

Definition 1.1. A path is a complex if the composition of two successive morphisms in it
vanish. We say that a path is a 2-complex if the composition of three successive morphisms
in it vanish.

We show (in the next section, in Theorem 2.4) that all paths in the diagram (25) are
2-complexes. The analogous diagram for spaces without boundary conditions also shares the
same property, as we shall see in Section 5.

Before concluding this introduction, a few remarks on comparison with the BGG approach
are in order. The BGG construction of [2, 12] produces analogues of (5), (6) and (7) with
Sobolev spaces Hq ⊗ W or H(D,W) := {σ ∈ L2 ⊗ W : Dσ ∈ L2 ⊗ W̃}, for appropriate
W, W̃ ∈ {S,T} and operators D from the above complexes. The hessian, elasticity, and
div-div complexes were also studied individually in other works [18,34,36]. It should not be
surprising that some individual results in this paper may be alternately derived using the prior
approaches, e.g., the commutativity identities (26) are extensively used in BGG works, and
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the regular decomposition for two of the “slightly more regular spaces” in Section 4, ˜̊Hcc and˜̊Hdd, can be approached using the technique of [2, Theorem 3] with minor changes. However,
such individual results do not fully address the objectives of this paper. For instance, the
spaces defined in (23) do not emerge from [2,12] as canonical spaces with a unified definition;
rather, they exhibit a cohesive pattern only through the perspective of the 2-complexes
in (25). Consequently, the analytical results for these spaces, such as regular decompositions,
differ significantly from those in [2, 12]. Moreover, the 2-complex in (25) unifies several key
spaces, including the Hessian, elasticity, and div div complexes, potentially inspiring novel
constructions across diverse applications. This unification can be reminiscent of the BGG
diagram [2, 12]. However, a critical distinction is that BGG diagrams involve full matrix
spaces requiring subsequent symmetry reduction, whereas (25) directly incorporates spaces
of tensors with the symmetrizations.

1.3. Outline. The next section (Section 2) begins by gathering a number of identities from
which the commutativity properties in the diagram (25) become evident. We prove the 2-
complex property of (25), show how the elasticity complex, the hessian complex and the
div-div complex emerges from the diagram. In Section 3, we prove that the newly introduced
H−1 based Sobolev spaces of weak regularity admit decompositions with smoother component
functions that vary continuously with the decomposed function (Theorems 3.4, 3.7, and
3.10). We construct right inverses (in Theorem 3.21) of the operators in (25) as well as of
second-order differential operators that emerge from the diagram, from which it follows that
the ranges of the differential operators considered are closed. This can be used to prove
exactness of derived complexes. Slightly smoother versions of the matrix-valued Sobolev
spaces are then considered in Section 4 and shorter regular decompositions for them are
proved. Finally, in Section 5, we mention extensions to the case of analogous spaces without
boundary conditions. The main result of that section is Theorem 5.4 which shows how the
diagrams of spaces with and without boundary conditions are in correspondence through
duality.

2. Continuity, commutativity, and 2-complex properties

In this section, we show that the diagram (25) is a commuting diagram and has the 2-
complex property.

In addition to sym, dev, tr and skw τ = τ−sym τ , we use the algebraic operation S : M → M
defined by Sτ = τ⊤ − tr(τ)i, whose inverse can be easily computed to be

S−1τ = τ⊤ − 1

2
tr(τ)i.

We often use the summation convention and the alternating symbol εijk ≡ εijk whose value
equals +1,−1, or 0 according to whether ijk is a even, odd or not a permutation of 1, 2,
3. Using Cartesian unit vectors ei ≡ ei and the summation convention, we write a vector v
as v = vie

i. Using ε, one can express an isomorphism between skew-symmetric matrices in
K = skwM and their axial vectors in V, given by mskw : V → K, mskw(viei) = −εijkvkei⊗ ej.
Let vskw : M → V be defined by vskw = mskw−1 ◦ skw . For distributional fields w, vector
fields v and matrix fields τ on three-dimensional domains, it is easy to see that the following
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identities hold:

divmskw v = − curl v, (26a)

mskw gradw = − curl(wi), (26b)

mskw curl v = 2 skw grad v, (26c)

2 skw curl τ = mskw divSτ, (26d)

S grad v = − curlmskw v, (26e)

tr curl τ = −2 div vskw τ, (26f)

We start with two simple lemmas. Lemma 2.1 contains identities involving second-order
partial differential operators and Lemma 2.2 gives density of the following smooth spaces
with moment conditions:

DR = {φ ∈ D(Ω) : (φ, 1) = 0},
DRT = {φ ∈ D(Ω)⊗ V : (φ, r) = 0 for all r ∈ RT },
DND = {φ ∈ D(Ω)⊗ V : (φ, r) = 0 for all r ∈ ND},
DP1 = {φ ∈ D(Ω) : (φ, p) = 0 for all p ∈ P1}.

(27)

For any two norms ∥ · ∥1 and ∥ · ∥2, we write

∥a∥1 ≲ ∥b∥2

to indicate that there is some constant C > 0 independent of a and b such that the inequality
∥a∥1 ≤ C∥b∥2 holds.

Lemma 2.1. The identities

div ⊤ curl τ = curl div ⊤ τ, (28)

curl ⊤ gradu = ⊤ grad curlu = ⊤ dev grad curlu, (29)

div sym curl ⊤ τ =
1

2
curl div τ, (30)

curl def u =
1

2
⊤ grad curlu =

1

2
⊤ dev grad curlu, (31)

1

2
div ⊤ dev gradu =

1

3
grad div u (32)

hold for any vector-valued distribution u and matrix-valued distribution τ .

Proof. To prove (28), we express row-wise curl using εijk, the summation convention, and
standard Cartesian unit vectors ei,

div ⊤ curl τ = ei∂j[⊤ curl τ ]ij = ei∂j[curl τ ]
ji = ei∂jε

ikl∂kτjl = eiε
ikl∂k∂j[⊤ τ ]lj

= eiε
ikl∂k[div ⊤ τ ]l = curl div ⊤ τ.

The first equality in (29) is proved similarly. For the second equality in (29), it suffices to
note that the (i, j)th component of the matrix field grad curlu equals ∂iε

jkl∂kul, so its trace,
obtained with i = j in this expression, vanishes.
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Identity (30) follows using div ◦ curl = 0 and (28):

div sym curl ⊤ τ = div
1

2

(
curl ⊤ τ + ⊤ curl ⊤ τ

)
=

1

2
div ⊤ curl ⊤ τ =

1

2
curl div ⊤ ⊤ τ.

Equation (31) follows from (29) and curl ◦ grad = 0 in an analogous fashion. The proof
of (32) using analogous techniques is also elementary. □

Lemma 2.2. The spaces in (27), namely DR, DRT , DND, and DP1, are dense in ˜̊Hs
R˜̊Hs

RT (curl), ˜̊Hs
ND(div), and ˜̊Hs

P1
, respectively, for any s ∈ R.

Proof. The proofs of all the four stated density results are similar. We only detail the second.
Fix a nontrivial scalar function b(x) ∈ D(Ω) satisfying b(x) ≥ 0. Let ρi be a basis of the
four-dimensional space RT , normalized so that

(bρi, ρj) = δij (33)

where δij denotes the Kronecker delta symbol. Let v ∈ ˜̊Hs
RT (curl). In view of (21), we can

find a sequence φn ∈ D(Ω)⊗ V such that

lim
n→∞

∥φn − v∥ ˜̊Hs(curl) = 0. (34)

Let

ψn(x) = φn(x)−
4∑

i=1

(φn, ρi) b(x) ρi(x). (35)

Then ψn is in D(Ω)⊗V and (ψn, ρj) = 0 due to (33), i.e., ψn ∈ DRT . Moreover, ψn converges

to v in ˜̊Hs(curl) as we now show: indeed, since v(ρi) = 0,

(φn, ρi) = (φn − v)(ρi) ≤ ∥φn − v∥ ˜̊Hs∥ρi∥H−s

by (19). Hence (34) implies that

lim
n→∞

(φn, ρi) = 0 (36)

for each ρi. Now it is evident from (35) that ψn converges to v in ˜̊Hs norm since φn does.
Moreover,

curl(ψn − v) = curl(φn − v)−
4∑

i=1

(φn, ρi) curl(b ρi),

where, on the right hand side, the first term converges to zero in ˜̊Hs by (34), and the

second term converges to zero by (36). Thus ψn and curlψn converges in ˜̊Hs to v and curl v,

respectively. Hence DRT is dense in ˜̊Hs
RT (curl). □

Theorem 2.3. The diagram (25) commutes and every differential operator in it maps con-
tinuously (with respect to the norms of the indicated domains and codomains).

Proof. Commutativity. The commutativity of the diagram cells in (row, column)-positions
(2, 3), (1, 2), and (1, 3) follows respectively from identities (30), (31), and (32) of Lemma 2.1.
The commutativity at positions across the diagonal also follow from these. At the remaining
positions, it is obvious.
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Next, let us prove the stated continuity properties. The continuity of the operators in the
first row and column is standard. For the remaining operators, we use (18) and the following
steps. We begin the maps in the second row of (25).

Continuity of def : H̊(curl) → ˜̊Hcc. For any u ∈ D(Ω) ⊗ V ⊂ H̊(curl), note that g =

def u ∈ D(Ω)⊗ S ⊂ ˜̊Hcc satisfies

curl g =
1

2
⊤ dev grad curlu =

1

2
⊤ grad curlu

due to (31) and (29). This implies that inc g := curl ⊤ curl g = 0. Hence, using (18),

∥ def u∥2˜̊Hcc
= ∥g∥2˜̊H−1 + ∥ curl g∥2˜̊H−1 + ∥ inc g∥2˜̊H−1

=
1

2
∥ gradu∥2˜̊H−1 +

1

4
∥ grad curlu∥2˜̊H−1 ≲ ∥u∥2H(curl),

which proves the continuity of the deformation operator by density.
Continuity of curl : ˜̊Hcc → ˜̊Hcd. It suffices to observe that τ = curl g, for any g ∈

D(Ω)⊗ S ⊂ ˜̊Hcc, satisfies τ = dev τ ∈ D(Ω)⊗ T ⊂ ˜̊Hcd and

div τ = 0, curl div τ = 0, sym curl ⊤ τ = inc g.

This shows that ∥τ∥ ˜̊Hcd
≲ ∥g∥ ˜̊Hcc

and the continuity follows by density.

Continuity of div : ˜̊Hcd → ˜̊H−1
RT (curl). Let τ ∈ D(Ω) ⊗ T ⊂ ˜̊Hcd. Then, for any r =

a+ bx ∈ RT , a ∈ V, b ∈ R, we have

(div τ, r) = −(τ, grad r) = −(τ, bi) = 0

since τ : i vanishes for τ(x) ∈ T. Next, by the definition of ˜̊Hcd norm,

∥ div τ∥2˜̊H−1 + ∥ curl div τ∥2˜̊H−1 ≤ ∥τ∥2˜̊Hcd
.

Since the left hand side equals ∥ div τ∥2˜̊H−1(curl)
, the continuity follows by density.

Continuity of dev grad : H̊(div) → ˜̊Hcd⊤. Let τ = dev grad q for some q ∈ D(Ω) ⊗ V ⊂
H̊(div). Apply (32) to get

div ⊤ τ =
2

3
grad div q,

which implies curl div ⊤ τ = 0. Also, since

sym curl τ = symcurl
1

3
(div q)i,

all terms in the norm ∥τ∥ ˜̊Hcd⊤
can be bounded by the ˜̊H−1-norms of the first order of deriva-

tives of div q and q, so using (18), ∥τ∥ ˜̊Hcd⊤
≲ ∥q∥H(div) and the continuity follows by density.

Continuity of sym curl ⊤ : ˜̊Hcd → ˜̊Hdd. This is a bounded operator since σ = symcurl ⊤ τ
for any τ ∈ D(Ω)⊗ T ⊂ ˜̊Hcd satisfies, due to (30),

div σ =
1

2
curl div τ,

which in turn implies div div σ = 0. Thus ∥σ∥ ˜̊Hdd
≲ ∥τ∥ ˜̊Hcd

.

Continuity of div : ˜̊Hdd → ˜̊H−1
ND(div). First note that for any σ ∈ D(Ω) ⊗ S ⊂ ˜̊Hdd and

r = a+ b× x ∈ ND, a, b ∈ V,

(div σ, r) = −(σ, grad r) = 0



12 JAY GOPALAKRISHNAN, KAIBO HU, AND JOACHIM SCHÖBERL

because σ : grad r = σij∂j[b × x]i = εijpσijbp vanishes due to the symmetry σij = σji. Thus

div σ is in ˜̊H−1
ND(div). Moreover, by the definition of the ˜̊Hdd-norm

∥ div σ∥2˜̊H−1 + ∥ div div σ∥2˜̊H−1 ≤ ∥σ∥2˜̊Hdd
.

The left hand side exactly equals ∥ div σ∥2˜̊H−1(div)
so the continuity follows by density.

Continuity of grad : L2,R → ˜̊H−1
RT (curl). Let u ∈ D(Ω) ∩ L2,R = DR. By Lemma 2.2 DR is

dense in L2,R. For any r = a+bx ∈ RT , a ∈ V, b ∈ R, integrating by parts using the compact
support of u,

(gradu, r) = −(u, div r) = −3(u, b) = 0

since u has zero mean value onΩ. Hence gradu is in ˜̊H−1
RT (curl), so by Lemma 2.2, gradL2,R ⊆˜̊H−1

RT (curl). The needed boundedness estimate is immediate from (18).

Continuity of curl : ˜̊H−1
RT (curl) → ˜̊H−1

ND(div). By Lemma 2.2, DRT is dense in ˜̊H−1
RT (curl).

Let v ∈ DRT . Then, given any r = a+ b× x ∈ ND with some a, b ∈ V,

(curl v, r) = (v, curl r) = 2(v, b) = 0

since v is orthogonal to RT . Hence curl v is in ˜̊H−1
ND(div). Combined with the obvious norm

bound, the continuity follows from density.
Continuity of div : ˜̊H−1

ND(div) → ˜̊H−1
P1
. Let q ∈ DND. Then, for any p ∈ P1,

(div q, p) = −(q, grad p) = 0

since grad p is in ND and q is orthogonal to ND. Therefore div q is in ˜̊H−1
P1
. In view of the

obvious norm bound, the density of DND in ˜̊H−1
ND(div) (given by Lemma 2.2) finishes the

proof. □

Theorem 2.4. All paths in the diagram (25) are 2-complexes.

Proof. Consider paths of the following form:

A

B C

If the first path above is a 2-complex, then by the commutativity properties of Theorem 2.3,
the second and third are also 2-complexes. Proving that the first path is a 2-complex, i.e.,
showing that C ◦B ◦A = 0 for all such A,B,C in (25), is (tedious but) elementary using the

identities of (26) and Lemma 2.1. For example, with A = grad : H̊(grad) → H̊(curl), B =

def : H̊(curl) → ˜̊Hcc, and C = curl : ˜̊Hcc → ˜̊Hcd, we have C ◦B ◦A = curl ◦1
2
(grad+ ⊤ grad)◦

grad = 1
2
curl ◦ ⊤ grad ◦ grad = 1

2
curl ◦ ⊤ grad ◦ grad = 1

2
⊤ grad ◦ curl ◦ grad = 0, where we

have used the identity (29) of Lemma 2.1. Similarly, it is elementary to see that B◦H ◦G = 0



2-COMPLEX WITH MATRIX SPACES 13

in paths taken from (25) of the form in the first diagram below,

G

H

B

so by commutativity, all paths of the three types shown above are also 2-complexes. These
types of paths exhaust all possibilities. □

Next, we consider the fundamental second-order differential operators inherent in (25): the
incompatibility operator defined in (22), the hessian operator hess := def ◦ grad, grad ◦ div,
curl ◦ div and div ◦ div. These appear along the diagonals of the following diagram:

H̊(grad) H̊(curl) H̊(div) L2,R

H̊(curl) ˜̊Hcc ˜̊Hcd ˜̊H−1
RT (curl)

H̊(div) ˜̊Hcd⊤ ˜̊Hdd ˜̊H−1
ND(div)

L2,R ˜̊H−1
RT (curl) ˜̊H−1

ND(div) ˜̊H−1
P1

grad

g
ra
d

hess

curl

d
ef

curl def

div

12
⊤

d
ev

g
ra
d

1
3 grad div

13
g
ra
d

def

cu
rl

curl

⊤
cu

rl

inc

div

sy
m

cu
rl⊤

1
2 curl div

1
2
curl

1
2
dev grad

d
iv

sym curl

d
iv

⊤

div

d
iv

div div

d
iv

1
3
grad 1

2
curl div

(37)

The second-order operators below the diagonal are not shown as they are mirrored by those
shown above the diagonal. Note that each indicated second-order operator is a composition
of adjacent first-order operators at the top and right, or by commutativity, the adjacent left
and bottom operators. We can now read off less regular versions of (5), (6), and (7) from
the diagram (37), as stated next.

Corollary 2.5. The following paths in (37) are complexes:

(1) The hessian complex:

H̊(grad)

˜̊Hcc ˜̊Hcd ˜̊H−1
RT (curl)

hess

curl div

(38)
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(2) The elasticity complex:

H̊(curl) ˜̊Hcc

˜̊Hdd ˜̊H−1
ND(div)

def

inc

div

(39)

(3) The div div complex:

H̊(div) ˜̊Hcd⊤ ˜̊Hdd

˜̊H−1
P1

1
2
dev grad sym curl

div div (40)

Proof. These statements follow from the 2-complex properties of Theorem 2.4 and elemen-
tary manipulations with first-order differential operators. For instance, to prove the last,
sym curl ◦ dev gradw = −1

3
sym curl(tr(gradw)i) = −1

3
symmskw grad(tr(gradw)) = 0, where

we have used (26b); and of course, div div ◦ sym curl must vanish due to the 2-complex prop-
erty of Theorem 2.4. □

3. Regular decompositions, density, and continuous right inverses

Right inverses of exterior derivatives that are continuous in appropriate Sobolev norms
were given in [16], inspired by the classical work of [10]. In this section, we leverage their
results to show regular decompositions of some Sobolev spaces of matrix fields, prove density
of smooth functions in them, and construct right inverses of the differential operators in (37).

The right inverses of the derivative operators in (37) that act on or produce matrix fields
are the subscripted D and R operators labeling the diagonally upward arrows and rightward
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arrows in the following diagram:

H̊(grad) H̊(curl) H̊(div) L2,R

H̊(curl) ˜̊Hcc ˜̊Hcd ˜̊H−1
RT (curl)

H̊(div) ˜̊Hcd⊤ ˜̊Hdd ˜̊H−1
ND(div)

L2,R ˜̊H−1
RT (curl) ˜̊H−1

ND(div) ˜̊H−1
P1

grad

g
ra
d

hess

curl

d
ef

curl def

Tg

div

12 ⊤
d
ev

g
ra
d

1
3 grad div

Tc

13
g
ra
d

Td

def

cu
rl

⊤
curl def

curl

⊤
cu

rl

inc

D
gg

Rgg

div

sy
m

cu
rl⊤

1
2 curl div

D
gc

Rgc

12
cu

rl
D
gd

Rgd

1
2
dev grad

d
iv

1
3 grad div

sym curl

d
iv

⊤

1
2 curl div⊤

D
gc ⊤

Rgc⊤

div

d
iv

div div

D
cc

Rcc

d
iv

D
cd

Rcd

1
3
grad 1

2
curl

Rg

D
gd

div

Rc

⊤
D
cd

D
dd

Rd

(41)

The downward arrows in (41) can also be provided with corresponding upward right inverses.
They are not marked to reduce clutter and because the same information is contained in
the horizontal arrows back and forth. Below, we detail the construction of each new right
inverse operator. Note that some of the D and R operators map from and into subspaces of
the respective domains and codomains indicated in (41). The codomain subspaces consist of
(more) regular functions. The domain subspaces are kernels of one of the (multiple) operators
acting on the space. These subspaces are given precisely in the case by case results below (and
summarized in Theorem 3.21). Throughout, we denote the null space of a linear operator
A : X → Y by

ker(A : X).

Note, e.g., ker(curl : H̊(curl)) is different from ker(curl : ˜̊Hcc) = {g ∈ ˜̊Hcc : curl g = 0}.
Regular decompositions for standard Sobolev spaces based on the exterior derivative can

be inferred from the results of [16]. In this section, we also show how to combine their results
with our previous results to produce regular decompositions for the following new spaces of
matrix fields:

Ĥcc = {g ∈ ˜̊H−1 ⊗ S : curl g ∈ ˜̊H−1 ⊗ V, inc g ∈ ˜̊H−1 ⊗ S},

Ĥcd = {τ ∈ ˜̊H−1 ⊗ T : div τ ∈ ˜̊H−1 ⊗ V, sym curl τ ∈ ˜̊H−1 ⊗ S, curl div τ ∈ ˜̊H−1 ⊗ V},

Ĥdd = {σ ∈ ˜̊H−1 ⊗ S : div σ ∈ ˜̊H−1 ⊗ V, div div σ ∈ ˜̊H−1}.

They are normed, respectively, by ∥·∥ ˜̊Hcc
, ∥·∥ ˜̊Hcd

, ∥·∥ ˜̊Hdd
, the norms defined in (23). Obviously,

the spaces defined in (24) are subspaces of these spaces, i.e.,

˜̊Hcc ⊆ Ĥcc, ˜̊Hcd ⊆ Ĥcd, ˜̊Hdd ⊆ Ĥdd. (42)
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The theorems in this section (Theorems 3.4, 3.7, and 3.10) improve these inclusions to equal-
ities, thus also proving the density of their respective subspaces of compactly supported
smooth functions.

Our results are under the additional assumptions on Ω that it is simply connected and
that its boundary is connected. Then the topology of Ω is trivial. Covering Ω by subdomains
starlike with respect to a ball and using regularized Bogovskĭi operators in each subdomain,
[16, Theorem 4.9] proves that there exist continuous linear operators

Tg : ˜̊Hs ⊗ V → ˜̊Hs+1, Tc : ˜̊Hs ⊗ V → ˜̊Hs+1 ⊗ V, Td : ˜̊Hs → ˜̊Hs+1, (43a)

satisfying

grad(Tgv) = v for all v ∈ ˜̊Hs ⊗ V with curl v = 0, (43b)

curl(Tcq) = q for all q ∈ ˜̊Hs ⊗ V with div q = 0, (43c)

div(Tdu) = u for all u ∈ ˜̊Hs with u(1) = 0, (43d)

for any real number s, where ˜̊Hs is the subspace of distributions on R3 defined in (17). The
last condition in (43d) is a zero mean condition on u given through a functional action that
makes sense even for negative s. For s ≥ 0, it can be expressed using the L2 inner product
as (u, 1) = 0.

It is standard to use (43) to produce regular decompositions of H̊(curl) and H̊(div). Indeed,

any u ∈ H̊(curl) can be decomposed into

u = S̊(0)
c u+ grad S̊(1)

c u, with S̊(0)
c u = Tc curlu, S̊

(1)
c u = Tg(u− Tc curlu), (44)

as can be immediately verified using (43c) and (43b). By the continuity properties of Tg and

Tc, the operators S̊
(0)
c : H̊(curl) → H̊1 ⊗ V and S̊

(1)
c : H̊(curl) → H̊1 are continuous. Since

S̊
(0)
c u and S̊

(1)
c u have H̊1-regularity (higher than what may be expected of u), this is referred

to as a “regular decomposition” of H̊(curl). The process of arriving at this decomposition
can be viewed as first generating a zero curl function u − Tc curlu and then moving left
of H̊(curl) in the diagram (41) to create a potential in H̊1 using the operator Tg. For the
matrix-valued function spaces in the middle of (41), the process is similar, but we have more
options to move, such as up, left, or diagonally, and our regular decompositions that follow
have multiple potentials.

3.1. Regular decomposition of ˜̊Hcc. We start with a result that can also be found in [2,
Theorem 2] as a special case of existence of regular potential. Here we provide an explicit
construction (see also [11]).

Lemma 3.1. There is a linear map Dcc : ker(div : ˜̊Hs ⊗ S) → ˜̊Hs+2 ⊗ S such that

σ = incDccσ, ∥Dccσ∥ ˜̊Hs+2 ≲ ∥σ∥ ˜̊Hs .

for any s ∈ R.

Proof. Let σ ∈ ˜̊Hs⊗S and div σ = 0. Applying Tc to row vectors of σ, whose components are
all distributions in R3 supported on Ω̄ per (17), we find from (43c) that there is a η ∈ ˜̊Hs+1⊗M
such that the identity

σ = curl η
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holds in R3. Also, since σ is symmetric,

skw σ = 0 = skw curl η =
1

2
mskw divSη

by (26d). Hence Sη ∈ ˜̊Hs+1 ⊗ M has vanishing divergence in all R3 (and obviously Sη
is supported on Ω̄). Applying Tc row-wise to Sη, we conclude from (43c) that there is a

γ ∈ ˜̊Hs+2 ⊗ M such that
Sη = curl γ.

Set g = sym γ in ˜̊Hs+2 ⊗ S. Then

σ = curl η = curlS−1 curl γ

= curlS−1 curl(skw γ + g) = inc g

where the last equality is due to (26e) and (26f). By the continuity of Tc, the linear map
σ 7→ g we just constructed is continuous and is the needed map Dcc. □

Lemma 3.2. There is a linear map R̃gg : ker(inc : Ĥcc) → H̊1 ⊗ V such that for any

g ∈ ker(inc : Ĥcc),

curl def R̃ggg = curl g, ∥R̃ggg∥H1 ≲ ∥ curl g∥ ˜̊H−1 .

Proof. Given any g ∈ ker(inc : Ĥcc), since inc g = curl(⊤ curl g) = 0, applying Tg to each row

vector of ⊤ curl g in ˜̊H−1 ⊗ V and using (43b), we obtain a q ∈ L2(R3)⊗ V satisfying

⊤ curl g = grad q

on all R3. Moreover, by (26f), curl g has zero trace, so

0 = tr(⊤ curl g) = tr(grad q) = div q.

Hence u = 1
2
Tcq is in H̊1 ⊗ V and satisfies q = 1

2
curlu. Therefore, using (31),

curl g = ⊤ grad q =
1

2
⊤ grad curlu = curl def u.

Denoting the linear map g 7→ u by R̃gg, the proof is now completed using the continuity of
Tg and Tc. □

Lemma 3.3. There is a linear map Dgg : ker(curl : ˜̊Hs ⊗ S) → ˜̊Hs+2 such that

g = hessDgg g, ∥Dgg g∥ ˜̊Hs+2 ≲ ∥g∥ ˜̊Hs .

for any s ∈ R and g ∈ ˜̊Hs with vanishing curl.

Proof. Let g ∈ ˜̊Hs have zero curl. Then applying Tg to the row vectors of g and using (43b),

we obtain a u ∈ ˜̊Hs+1 ⊗ V, supported on Ω̄, such that the identity

g = gradu

holds on all R3. Applying sym to both sides, g = def u. A further application of curl on both
sides yields

0 = curl g = curl def u =
1

2
⊤ grad curlu,

by (31), i.e., all first order derivatives of curlu vanish. Hence there must exist a constant
vector b ∈ V such that curlu = b holds on all R3. But u is supported on Ω̄, so b must be the
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zero vector. Now that we have shown curlu = 0, putting w = Tgu and using (43b), we find

that w ∈ ˜̊Hs+2 satisfies gradw = u and

hess(w) = def(gradw) = def(u) = g.

The linear map g 7→ w we just constructed is the needed operator Dgg. □

Theorem 3.4. There exist three continuous linear operators

S̊(0)
cc : Ĥcc → H̊1 ⊗ S, S̊(1)

cc : Ĥcc → H̊1 ⊗ V, S̊(2)
cc : Ĥcc → H̊1,

such that any g ∈ Ĥcc can be decomposed into

g = S̊(0)
cc g + def S̊(1)

cc g + hess S̊(2)
cc g. (45)

Consequently, Ĥcc = ˜̊Hcc.

Proof. Put S̊
(0)
cc g := Dcc inc g. By Lemma 3.1,

inc(g − S̊(0)
cc g) = 0.

Consequently, by Lemma 3.2, S̊
(1)
cc g := R̃gg(g − S̊

(0)
cc g) is in H̊1 ⊗ V satisfies

curl
(
g − S̊(0)

cc g − def S̊(1)
cc g

)
= 0. (46)

Applying Lemma 3.3 with s = −1, we find that S̊
(2)
cc g := Dgg(g − S̊

(0)
cc g − def S̊

(1)
cc g) satisfies

g − S̊(0)
cc g − def S̊(1)

cc g = hess S̊(2)
cc g,

and has the required continuity property, thus completing the proof of 45.
To prove that Ĥcc = ˜̊Hcc, in view of (42), it suffices to prove that any g ∈ Ĥcc, decomposed

as above into g = S̊
(0)
cc g+def S̊

(1)
cc g+hess S̊

(2)
cc g, is in ˜̊Hcc. By the density of D(Ω) in H̊1(Ω),

there are gm ∈ D(Ω)⊗ S, um ∈ D(Ω)⊗ V, and wm ∈ D(Ω) such that

∥gm − S̊(0)
cc g∥H1 → 0, ∥um − S̊(1)

cc g∥H1 → 0, ∥wm − S̊(2)
cc g∥H1 → 0,

as m→ ∞. Hence, by (18), gm+def um+hesswm ∈ D(Ω)⊗S converges to g in ∥·∥ ˜̊Hcc
-norm,

proving that g ∈ ˜̊Hcc. □

3.2. Regular decomposition of ˜̊Hdd.

Lemma 3.5. There is a linear map Ddd : ˜̊Hs
P1

→ ˜̊Hs+2 ⊗ S such that for any s ∈ R and

w ∈ ˜̊Hs
P1
,

div divDddw = w, ∥Dddw∥ ˜̊Hs+2 ≲ ∥w∥ ˜̊Hs . (47)

Proof. Let w ∈ DP1 . Since (w, 1) = 0, by (43d), q = Tdw satisfies

div q = w, ∥q∥ ˜̊Hs+1 ≲ ∥w∥ ˜̊Hs .

Since q is supported on Ω̄, we may integrate by parts to see that 0 = (w, p1) = (div q, p1) =
−(q, grad p1) for any p1 ∈ P1. Thus all components of q have zero mean on Ω. Applying (43d)

again, we then obtain a τ ∈ ˜̊Hs+2⊗M such that div τ = q. Let u = vskw τ . Then div skw τ =
divmskw u = − curlu by (26a). Collecting these observations, and putting σ = sym τ ,

w = div q = div div τ = div div(sym τ + skw τ)

= div div σ − div curlu = div div σ.
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Denote the linear map w 7→ σ we just constructed by Dddw. By the continuity of Td, we see
that Ddd satisfies the norm estimate in (47) for all w ∈ DP1 . Hence by the density result of
Lemma 2.2, Ddd has a unique continuous extension, which is the required map. □

Lemma 3.6. There is a linear map R̃cc : ker(div div : Ĥdd) → H̊1 ⊗ T such that for all

σ ∈ ker(div div : Ĥdd),

div sym curl R̃ccσ = div σ, ∥R̃ccσ∥H1 ≲ ∥ div σ∥ ˜̊H−1 .

Proof. Consider a σ ∈ Ĥdd with div div σ = 0. Then, since div σ ∈ ˜̊H−1 ⊗ V has vanishing
divergence, u = Tc div σ is in L2 ⊗ V and satisfies curlu = div σ by (43c). Next, we claim
that (u, b) = 0 for any b ∈ V. To see this, first note that the distribution div σ satisfies

(div σ)(b× x) = σ(grad(b× x)) = σ(mskw b) = 0

due to the symmetry of σ. Relating to u,

0 = (div σ)(b× x) = (curlu)(b× x) = (u, curl(b× x)) = 2(u, b).

Hence we may apply Td to each component of 1
2
u and use (43d) to get a τ ∈ H̊1 ⊗ M such

that div τ = 1
2
u, which implies

div σ = curlu =
1

2
curl div τ =

1

2
curl div dev τ = div sym curl ⊤ dev τ.

Here we have used (30) and the fact that curl div vanishes on matrix fields that are scalar
multiples of the identity. Denoting the map σ 7→ ⊤ dev τ by R̃cc, the continuity of Tc and Td
finishes the proof. □

Theorem 3.7. There exist three continuous linear operators

S̊
(0)
dd : Ĥdd → H̊1 ⊗ S, S̊

(1)
dd : Ĥdd → H̊1 ⊗ T, S̊

(2)
dd : Ĥdd → H̊1 ⊗ S,

such that any σ ∈ Ĥdd can be decomposed into

σ = S̊
(0)
dd σ + symcurl S̊

(1)
dd σ + inc S̊

(2)
dd σ. (48)

Consequently, Ĥdd = ˜̊Hdd.

Proof. Let σ ∈ Ĥdd and S̊
(0)
dd σ := Ddd div div σ. Note that div div σ is in ˜̊H−1

P1
, the domain of

Ddd, because the hessian of p is zero for any p ∈ P1 and

(div div σ)(p) = σ(hess p) = 0.

By Lemma 3.5,

div div(σ − S̊
(0)
dd σ) = 0.

Next, set S̊
(1)
dd σ := R̃cc(σ − S̊

(0)
dd σ) in H̊

1 ⊗ T. By Lemma 3.6,

div
(
σ − S̊

(0)
dd σ − sym curl S̊

(1)
dd σ

)
= 0.

By Lemma 3.1, setting S̊
(2)
dd σ := Dcc(σ − S̊

(0)
dd σ − sym curl S̊

(1)
dd σ), we find that

σ − S̊
(0)
dd σ − sym curl S̊

(1)
dd σ = inc S̊

(2)
dd σ,

thus completing the proof of (48).
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To conclude, it suffices to prove that Ĥdd ⊆ ˜̊Hdd, due to (42). Decompose any σ ∈ Ĥdd

into σ = S̊
(0)
dd σ + symcurl S̊

(1)
dd σ + inc S̊

(2)
dd σ. By the density of D(Ω) in H̊1, there are

σm ∈ D(Ω)⊗ S, τm ∈ D(Ω)⊗ T, and gm ∈ D(Ω)⊗ S such that

∥σm − S̊
(0)
dd σ∥H1 → 0, ∥τm − S̊

(1)
dd σ∥H1 → 0, ∥gm − S̊

(2)
dd σ∥H1 → 0,

as m → ∞. Hence, by (18), σm + symcurl τm + inc gm ∈ D(Ω) ⊗ S converges to σ in

∥ · ∥ ˜̊Hdd
norm, thus proving that σ ∈ ˜̊Hdd. □

3.3. Regular decomposition of ˜̊Hcd. Next, we turn to constructing a regular decomposi-
tion of ˜̊Hcd. (The case of ˜̊Hcd⊤ obviously follows from that of ˜̊Hcd.) Unlike the three-term

decompositions of ˜̊Hcc and ˜̊Hdd cases, now we are only able to construct a decomposition
with four terms. We begin with a preparatory lemma.

Lemma 3.8. Let K = ker(curl div : Ĥcd). There are linear maps R̂gc : K → H̊1 ⊗ S,
D̂gc : K → H̊1 ⊗ V, and Ûgc : K → H̊1 ⊗ V, such that any τ ∈ Ĥcd with curl div τ = 0 can be
decomposed into

τ = curl R̂gcτ + curl def Ûgc τ + ⊤ dev grad D̂gc τ (49)

and the following continuity bound holds:

∥R̂gcτ∥H1 + ∥ D̂gc τ∥H1 + ∥ Ûgc τ∥H1 ≲ ∥τ∥ ˜̊Hcd
. (50)

If in addition, τ is in L2 ⊗ T, then Ûgc can be taken to be zero provided (50) is replaced by

∥R̂gcτ∥H1 ≲ ∥τ∥ ˜̊Hcd
, ∥ D̂gc τ∥H1 ≲ ∥τ∥L2 + ∥τ∥ ˜̊Hcd

.

Proof. Given any τ ∈ Ĥcd with curl div τ = 0, put w = Tg div τ . Then by (43b),

gradw = div τ, ∥w∥L2 ≲ ∥ div τ∥ ˜̊H−1 . (51)

Since tr(⊤ τ) = 0, we know that S ⊤ τ = τ , so

skw curl ⊤ τ =
1

2
mskw divS ⊤ τ =

1

2
mskw div τ =

1

2
mskw gradw = −1

2
curl(wi), (52)

where we have used (26d) and (26a).
Let σ = symcurl ⊤ τ . By the identity (30) of Lemma 2.1, div σ = curl div τ = 0, so

applying Lemma 3.2, g = R̃ggσ is in H̊1 ⊗ S and satisfies

σ = inc g, ∥g∥H1 ≲ ∥ sym curl ⊤ τ∥ ˜̊H−1 (53)

Combined with (52), we have the twin identities

sym curl ⊤ τ = curl ⊤ curl g,

skw curl ⊤ τ = −1

2
curl(wi).

Adding these equations, we find that curl(⊤ τ − ⊤ curl g + 1
2
wi) = 0. Hence, applying Tg to

each of the row vectors of ⊤ τ − ⊤ curl g + 1
2
wi and using (43b), we obtain a q ∈ L2 ⊗ V such

that

grad q = ⊤ τ − ⊤ curl g +
1

2
wi, (54a)

∥q∥L2 ≲ ∥τ − curl g + w∥ ˜̊H−1 . (54b)
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In fact, q|Ω is in H̊(div). To see this, take traces on both sides of (54a). Recall that tr τ = 0.
Also, tr(curl g) = 0 by (26f). Hence we conclude that 3

2
w = div q, an identity that holds

in all R3 with q and w supported only on Ω̄. Since w ∈ L2, this in particular shows that
q|Ω ∈ H̊(div), and the estimate

∥q∥H(div) ≲ ∥τ∥ ˜̊H−1 + ∥g∥H1 + ∥w∥L2 ≲ ∥τ∥ ˜̊Hcd
(55)

follows from the estimates of (54b), (53), and (51).
Taking the deviatoric part of both sides of (54a) and noting that τ = dev τ , we obtain a

preliminary two-term decomposition of τ,

τ = curl g + ⊤ dev grad q. (56)

However, here q is not in H̊1 ⊗ V, in general. To improve this to the needed result, we use
r = Td div q, which has the same divergence as q, but is in H̊1 ⊗ V:

div r = div q, ∥r∥H1 ≲ ∥ div q∥L2 ≲ ∥τ∥ ˜̊Hcd
,

by (55). Since div(q − r) = 0, putting u = 1
2
Tc(q − r) in H̊1 ⊗ V, by (43c),

1

2
curlu = q − r, ∥u∥H1 ≲ ∥q − r∥L2 ≲ ∥τ∥ ˜̊Hcd

.

Hence

dev grad q = dev grad r +
1

2
dev grad curlu = dev grad r + curl def u.

Substituting this into (56) and setting R̂gcτ = g, D̂gc τ = r, and Ûgc τ = u, we see that (49)
and (50) follow.

To prove the remaining statement, suppose τ ∈ L2 ⊗ T ∩ Ĥcd. Then, due to the higher
regularity of τ , observe that q in (54a) is in H̊1 ⊗ V and in place of (54b), we have

∥q∥H1 ≲ ∥τ − curl g + w∥L2 ≲ ∥τ∥L2 + ∥g∥H1 + ∥w∥L2 .

which can be used in place of (55). There is no longer a need to produce the r above, and

we may set D̂gc τ = q ∈ H̊1 ⊗ V. The decomposition (56) then concludes the proof. □

Lemma 3.9. There is a linear map Dcd : ker(div : ˜̊Hs
ND(div)) → ˜̊Hs+2 ⊗ T such that

curl divDcdv = v, ∥Dcdv∥ ˜̊Hs+2 ≲ ∥v∥ ˜̊Hs ,

for any s ∈ R and v in ˜̊Hs
ND(div) with zero divergence.

Proof. Since div v = 0, by (43c), u = Tcv is in ˜̊Hs ⊗ V and satisfies curlu = v in all R3. For
any constant vector b ∈ V, the action of the distribution u on b satisfies

2u(b) = u(curl(b× x)) = (curlu)(b× x) = v(b× x) = 0

since v(r) = 0 for any r ∈ ND. Hence, applying Td to each component of u and using (43d),

we obtain a τ ∈ ˜̊Hs+2 ⊗ M such that div τ = u, i.e.,

v = curl div τ = curl div dev τ,

since curl div(1
3
(tr τ)i) = 0. Denoting the map v 7→ dev τ by Dcd, the proof is finished by the

continuity of Tc and Td. □
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Theorem 3.10. There exist four continuous linear operators

S̊
(0)
cd : Ĥcd → H̊1⊗T, S̊

(1)
cd : Ĥcd → H̊1⊗S, S̊

(2)
cd : Ĥcd → H̊1⊗V, S̊

(3)
cd : Ĥcd → H̊1⊗V,

such that any τ ∈ Ĥcd can be decomposed into

τ = S̊
(0)
cd τ + curl S̊

(1)
cd τ + ⊤ dev grad S̊

(2)
cd τ + curl def S̊

(3)
cd τ. (57)

It then follows that Ĥcd = ˜̊Hcd.

Proof. Let τ ∈ Ĥcd and put q = curl div τ . Obviously div q = 0 and q ∈ ˜̊H−1(div). Moreover,
for any a, b ∈ V and r = a+ b× x ∈ ND, since curl r = 2b is constant, its gradient vanishes,
and

q(r) = (curl div τ)(r) = τ(grad curl r) = 0.

Thus q is in ˜̊H−1
ND(div) and we apply Dcd to it. Put S̊

(0)
cd τ := Dcd curl div τ . By Lemma 3.9

with s = −1, we find that S̊
(0)
cd τ ∈ H̊1 ⊗ T and

curl div(τ − S̊
(0)
cd τ) = 0.

Hence we may apply Lemma 3.8 to get

τ − S̊
(0)
cd τ = (curl R̂gc + curl def Ûgc + ⊤ dev grad D̂gc)(τ − S̊

(0)
cd τ).

The decomposition (57) now follows after setting S̊
(1)
cd τ = R̂gc(τ − S̊

(0)
cd τ), S̊

(2)
cd τ = D̂gc(τ −

S̊
(0)
cd τ) and S̊

(3)
cd τ = Ûgc(τ − S̊

(0)
cd τ).

To prove that Ĥcd = ˜̊Hcd, let τ ∈ Ĥcd be decomposed as in (57). By the density of D(Ω)

in H̊1, there are τm ∈ D(Ω)⊗ T, gm ∈ D(Ω)⊗ S, qm ∈ D(Ω)⊗ V, and um ∈ D(Ω)⊗ V, such
that

∥τm − S̊
(0)
cd τ∥H1 → 0, ∥gm − S̊

(1)
cd τ∥H1 → 0, ∥qm − S̊

(2)
cd τ∥H1 → 0, ∥um − S̊

(2)
dd τ∥H1 → 0,

as m→ ∞. By (31),

∥τm + curl gm + ⊤ dev grad qm + curl def um − τ∥ ˜̊Hcd

= ∥τm − τ∥ ˜̊Hcd
+ ∥ curl(gm − S̊

(1)
cd τ)∥L2 + ∥ ⊤ dev grad(qm − S̊

(2)
cd τ)∥L2

+ ∥ curl def(um − S̊
(3)
cd τ)∥L2 → 0,

which converges to zero as m → ∞ in view of (18). Thus Ĥcd ⊆ ˜̊Hcd and the proof is
complete due to (42). □

In view of these results, we shall no longer distinguish between Ĥcc and ˜̊Hcc, Ĥdd and ˜̊Hdd,
nor Ĥcd and ˜̊Hcd.

3.4. Continuous right inverses. Let us now complete the discussion of (41). Several right
inverse operators in (41) were already given in previous lemmas. The right inverses in the
top row of (41) are the same operators as in (43b)–(43d). For example, Tc is a right inverse

of curl : H̊(curl) → H̊(div) in the sense that Tc : ker(div : H̊(div)) → H̊(curl) is continuous

and curl ◦Tc equals the identity on ker(div : H̊(div)), which is just a restatement of (43c)
with s = 0. After construction of the remaining needed right inverses, Theorem 3.21 below
gathers everything together.
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Lemma 3.11. There are linear maps R̃gc : ker(div : ˜̊Hcd) → L2⊗S ⊂ ˜̊Hcc and D̃gc : ker(div :˜̊Hcd) → H̊1 ⊗ V ⊂ H̊(curl) such that for all τ ∈ ker(div : ˜̊Hcd),

τ = curl(R̃gcτ + def D̃gc τ), ∥R̃gcτ∥L2 + ∥ D̃gc τ∥H1 ≲ ∥τ∥ ˜̊H−1 .

Proof. Applying Tc to the divergence-free row vectors of τ , we find a γ ∈ L2 ⊗ M satisfying
curl γ = τ per (43c). Put g = sym γ and v = vskw γ. Then, by (26e),

τ = curl(sym γ + skw γ) = curl g − curlmskw v

= curl g − S grad v

= curl g − ⊤ grad v + (div v)i.

Since ˜̊Hcd consists of trace-free matrix fields and since trace of curl g vanishes by (26f), taking
the trace of the above expression, we find that

0 = tr τ = 2div v.

Therefore, by (43c), u = −1
2
Tcv ∈ H̊1 ⊗ V, satisfies v = −1

2
curlu, so

τ = curl g +
1

2
⊤ grad curlu

= curl(g + def u)

by (31) of Lemma 2.1. The linear maps τ 7→ g and τ 7→ u are the needed R̃gc and D̃gc. □

Lemma 3.12. There is a linear map Rgc : ker(div : ˜̊Hcd) → L2 ⊗ S ⊂ ˜̊Hcc such that for all

τ ∈ ker(div : ˜̊Hcd),

τ = curlRgcτ, ∥Rgcτ∥L2 ≲ ∥τ∥ ˜̊H−1 .

Proof. Using the operators of Lemma 3.11, define Rgcτ = R̃gcτ + def D̃gc τ . Then the result
follows immediately from Lemmas 3.11 and (18). □

Lemma 3.13. There is a linear map Dgc : ker(div : ˜̊Hcd)∩ker(sym curl ⊤ : ˜̊Hcd) → H̊1⊗V ⊂
H̊(curl) such that for all τ ∈ ˜̊Hcd with div τ = 0 and sym curl ⊤ τ = 0,

τ = curl defDgc τ, ∥Dgc τ∥H1 ≲ ∥τ∥ ˜̊H−1

Proof. Given any τ ∈ ˜̊Hcd with div τ = 0, by Lemma 3.11, τ = curl(R̃gcτ +def D̃gc τ). When
sym curl ⊤ τ also vanishes, this implies that

0 = sym curl ⊤ τ = symcurl ⊤ curl(R̃gcτ + def D̃gc τ) = inc(R̃gcτ).

Applying Lemma 3.2 with g = R̃gcτ , curl def R̃ggg = curl g, which in turn implies that

τ = curl(R̃gcτ + def D̃gc τ) = curl def(R̃ggR̃gcτ + D̃gc τ).

Hence the result follows by setting Dgc = R̃ggR̃gc + D̃gc. □

Lemma 3.14. There is a linear map Dgd : ker(curl : ˜̊H−1
RT (curl)) → H̊1 ⊗V such that for all

v ∈ ker(curl : ˜̊H−1
RT (curl))

v =
1

3
grad divDgdv, ∥Dgdv∥H1 ≲ ∥v∥ ˜̊H−1 . (58)
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Proof. Let v ∈ ˜̊H−1
RT (curl) have zero curl. Then w = Tgv is in L2(R3) ⊗ V, supported on Ω̄,

and satisfies v = gradw in all R3 due to (43b). Since v(r) = 0 for all r ∈ RT , choosing
r = bx for any constant b,

0 = (gradw)(r) = (w, div r) = 3(w, b).

Hence we may apply Td to each component of w and use (43d) to get a q ∈ H̊1⊗V satisfying
w = 1

3
grad div q. The linear map v 7→ w is the required Dgd. □

Lemma 3.15. There is a linear map Rgg : ker(inc : ˜̊Hcc) → H̊(curl) such that for any

g ∈ ker(inc : ˜̊Hcc),

def Rggg = g, ∥Rggg∥H(curl) ≲ ∥g∥ ˜̊Hcc
.

Proof. By Lemma 3.2, u = R̃ggg satisfies curl(g− def u) = 0. Hence applying Tg to each row
vector of g − def u, we obtain a v ∈ L2 ⊗ V such that g − def u = grad v. The symmetry of
the left hand side implies that

0 = skw(g − def u) = skw grad v =
1

2
mskw curl v

by (26c). Hence curl v = 0 on all R3, so the vector field v|Ω is in H̊(curl). We have thus
shown that g = def(u+ v). Letting the map g 7→ u+ v be denoted by Rgg, the norm bound

follows from the continuity of Tg and R̃gg. □

Lemma 3.16. There is a linear map Rgd : ˜̊H−1
RT (curl) → L2 ⊗ T ⊂ ˜̊Hcd such that for all

v ∈ ˜̊H−1
RT (curl),

v = divRgdv, ∥Rgdv∥L2 ≲ ∥v∥ ˜̊H−1 . (59)

Proof. Let v ∈ DRT . Since every component vi of v has zero mean on Ω, we may apply Td
to each and use (43d) to get a τ ∈ L2(R3) ⊗ M, supported on Ω̄, satisfying v = div τ on all

R3, which in particular, implies that τ is in H̊(div). Hence we may integrate by parts to
conclude that

(τ, grad r) = (div τ, r) = (v, r) = 0

for all r ∈ RT . Choosing r = bx for any b ∈ R and noting that grad(bx) = bi, we find that
(τ, i) = 0. Hence t = tr(τ) ∈ L2 satisfies

0 = (τ, i) = (dev τ, i) +
1

3
(ti, i) = (t, 1).

Now, by (43d), q = Tdt satisfies div q = t, so

v = div τ = div dev τ +
1

3
div(tr τ) i = div dev τ +

1

3
grad(t)

= div(dev τ) +
1

3
grad(div q)

= div(dev τ) +
1

2
div(⊤ dev grad q)

by (32) of Lemma 2.1. Denoting the linear maps v 7→ dev τ + 1
2
⊤ dev grad q by Rgd, the

norm estimate in (59) follows for v ∈ DRT . The proof is now finished by the density result
of Lemma 2.2. □
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Lemma 3.17. There is a linear map Rgc⊤ : ker(sym curl : ˜̊Hcd⊤) → H̊(div) such that for all

τ ∈ ker(sym curl : ˜̊Hcd⊤),

1

2
dev gradRgc⊤τ = τ, ∥Rgc⊤τ∥H(div) ≲ ∥τ∥ ˜̊Hcd

.

Proof. Let τ ∈ ker(sym curl : ˜̊Hcd⊤). Then curl div ⊤ τ = div sym curl τ = 0, so by (43b),
w = Tg div(⊤ τ) in L2(R3), supported on Ω̄, satisfies gradw = div ⊤ τ .

Next, recalling that tr τ = 0, note that

2 skw curl τ = mskw divSτ by (26d)

= mskw div ⊤ τ = mskw gradw

= − curl(wi), by (26b).

Hence curl τ = symcurl τ + skw curl τ = −1
2
curl(wi). Applying Tg to each row vector of

τ + 1
2
wi, (43b) we obtain a q ∈ L2 ⊗ V satisfying

τ +
1

2
wi =

1

2
grad q. (60)

In particular, applying the tr-operator to both sides of (60), we see that the identity 3w =

div q holds on all R3, so q ∈ H̊(div). Furthermore, applying dev-operator to both sides
of (60), we conclude that τ = dev τ = dev grad q. The map τ 7→ q is the required operator
Rgc and its stated norm bound follows from the continuity of Tg. □

Lemma 3.18. There is a linear map Rcc : ker(div div : ˜̊Hdd) → L2 ⊗ T such that for all

σ ∈ ker(div div : ˜̊Hdd),

sym curlRccσ = σ, ∥Rccσ∥L2 ≲ ∥σ∥ ˜̊H−1 .

Proof. By Lemma 3.6, σ − sym curl R̃ccσ has vanishing divergence. Applying Tc to its rows
and using (43c), we obtain a ρ ∈ L2 ⊗ M such that σ − sym curl R̃ccσ = curl ρ. Hence

σ = symcurl R̃ccσ + curl(dev ρ+
1

3
tr(ρ)i)

= sym curl R̃ccσ + curl(dev ρ)− 1

3
mskw grad tr(ρ)

by (26b). Applying sym-operator to both sides, σ = symcurl(R̃ccσ+dev ρ). The linear map
σ 7→ R̃ccσ + dev ρ is the required map Rcc. □

Lemma 3.19. There is a linear map Rcd : ˜̊H−1
ND(div) → L2 ⊗ S such that for all q in˜̊H−1

ND(div),
q = divRcdq, ∥Rcdq∥L2 ≲ ∥q∥ ˜̊H−1

ND(div). (61)

Proof. Let q ∈ DND. Since every component of q has zero mean, by (43d), there exists a
γ ∈ L2(R3) ⊗ M, supported on Ω̄, such that div γ = q. In particular, this implies that each

row vector of γ|Ω is in H̊(div). Hence, integration by parts shows that for any b ∈ V,

(q, b× x) = (div γ, b× x) = −(γ, grad(b× x)) = −(γ,mskw b).

Since (q, b × x) = 0 for all q ∈ DND, all terms above vanish, so 0 = (γ,mskw b) =
(mskw u,mskw b) with u = vskw γ, or equivalently, (u, b) = 0. Therefore, applying (43d)

to each component of u ∈ L2 ⊗ V, we obtain a τ ∈ H̊1 ⊗ M such that div τ = −2u.
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Collecting these observations, and putting σ = sym γ,

q = div γ = div(sym γ +mskw u)

= div σ − curlu by (26a),

= div σ +
1

2
curl div τ

= div σ +
1

2
curl div dev τ

= div(σ + symcurl ⊤ dev τ) by (30).

Set Rcdq = σ+symcurl ⊤ dev τ . Then by the continuity of Td in (43d), the norm estimate in
(61) follows for any q ∈ DND. The proof is finished using the density result of Lemma 2.2. □

Lemma 3.20. There are continuous linear maps Rg : ker(curl : ˜̊H−1
RT (curl)) → L2,R, Rc :

ker(div : ˜̊H−1
ND(div)) → (L2 ⊗ V) ∩ ˜̊H−1

RT (curl), and Rd : ˜̊H−1
P1

→ (L2 ⊗ V) ∩ ˜̊H−1
ND(div), such

that for any v ∈ ˜̊H−1
RT (curl) with curl v = 0, q ∈ ˜̊H−1

ND(div) with div q = 0, and w ∈ ˜̊H−1
P1
, we

have
1

3
gradRgv = v,

1

2
curlRcq = q, divRdw = w,

∥Rgv∥L2 ≲ ∥v∥ ˜̊H−1 ∥Rcq∥L2 ≲ ∥q∥ ˜̊H−1 , ∥Rdw∥L2 ≲ ∥w∥ ˜̊H−1 .

Proof. Let us construct the last operator first. The functional action of any w ∈ ˜̊H−1
P1

on
constant functions vanish, so we use (43d) to conclude that Tdw ∈ L2⊗V satisfies div Tdw =
w.

We proceed to correct Td to obtain orthogonality to ND. Let u ∈ H̊(curl) satisfy

(curlu, curl v) = (Tdw, curl v), div u = 0,

for all v ∈ H̊(curl), a constrained formulation that is well known to be uniquely solvable [31].
The first equation above implies that

∥ curlu∥L2 ≤ ∥Tdw∥L2 ≲ ∥w∥ ˜̊H−1 , (62)

curl curlu = curlTdw. (63)

Put Rdw := Tdw − curlu ∈ L2 ⊗ V. It satisfies

curlRdw = 0, divRdw = w, (Rdw, r) = 0

for all r ∈ ND. Indeed, the first equation follows from (63) and the second from div Tdw = w.
To see the third, first note that since the functional action of w on any p1 ∈ P1 vanish,

0 = w(p1) = (div Tdw)(p1) = (Tdw, grad p1),

so (Tdw, a) = 0 for any a ∈ V. Combined with (curlu, a) = (u, curl a) = 0, we have (Rdw, a) =
0. Moreover, since curl(bx · x) = −2b× x for any b ∈ V, we have

0 = (curlRdw)(bx · x) = (Rdw, curl(bx · x)) = (Rdw,−2b× x),

so Rdw is L2-orthogonal to a + b× x for any a, b ∈ V. By the continuity of Td and (62), we
also obtain the norm bound ∥Rdw∥L2 ≲ ∥w∥ ˜̊H−1 .

The construction of Rc is similar: set Rcq := 2(Tcq − gradw) where w ∈ H̊1 solves

(gradw, grad z) = (Tcq, grad z) for all z ∈ H̊1. Clearly, 1
2
curlRcq = q. Also, for any a ∈ V,
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since the action of q on anyND-function vanishes, 0 = q(a×x) = (curlTcq)(a×x) = (Tcq, 2a),
so (Rcq, a) = 0. Moreover, for any b ∈ R,

(Rcq, a+ bx) = (Rcq, bx) =
1

2
(Rcq, grad(bx · x)) =

1

2
(divRcq)(b|x|2)

which must vanish since divRcq = 0 by construction, so Rcq is L2-orthogonal to RT .
Finally, simply setting Rg = 3Tg, it is easy to verify the stated properties of Rg. □

Theorem 3.21. Each R and D operator in (41) is a continuous right inverse of the differ-
ential operator marked above it.

Proof. The result is proved by prior lemmas, as seen by the following pointers, which consider
the operators, row by row, from left to right, but omitting the obvious ones in the first row
and any obvious symmetrically opposite ones.

• Dgg : ker(curl : ˜̊Hcc) → H̊1 is a continuous right inverse of hess : H̊(grad) → ˜̊Hcc by
Lemma 3.3 applied with s = −1.

• Dgc : ker(div : ˜̊Hcd)∩ ker(sym curl ⊤ : ˜̊Hcd) → H̊1 ⊗V ⊂ H̊(curl) is a continuous right

inverse of curl def : H̊(curl) → ˜̊Hcd by Lemma 3.13.

• Dgd : ker(curl : ˜̊H−1
RT (curl)) → H̊1 ⊗ V ⊂ H̊(div) is a continuous right inverse of

1
3
grad div : H̊(div) → ˜̊H−1

RT (curl) by Lemma 3.14.

• Rgg : ker(inc : ˜̊Hcc) → H̊(curl) is a continuous right inverse of def : H̊(curl) → ˜̊Hcc

by Lemma 3.15.
• Rgc : ker(div : ˜̊Hcd) → L2 ⊗S ⊂ ˜̊Hcc is a continuous right inverse of curl : ˜̊Hcc → ˜̊Hcd

by Lemma 3.12.
• Rgd : ˜̊H−1

RT (curl) → L2 ⊗ T ⊂ ˜̊Hcd is a continuous right inverse of div : ˜̊Hcd →˜̊H−1
RT (curl) by Lemma 3.16.

• Rgc⊤ : ker(sym curl : ˜̊Hcd⊤) → H̊(div) is a continuous right inverse of 1
2
dev grad :

H̊(div) → ˜̊Hcd⊤ by Lemma 3.17.

• Dcc : ker(div : ˜̊Hdd) → H̊1 ⊗ S is a continuous right inverse of inc : ˜̊Hcc → ˜̊Hdd by
Lemma 3.1 applied with s = −1.

• Dcd : ker(div : ˜̊H−1
ND(div)) → H̊1⊗T ⊂ ˜̊Hdd is a continuous right inverse of 1

2
curl div :˜̊Hcd → ˜̊H−1

ND(div) by Lemma 3.9 applied with s = −1.

• Rcc : ker(div div : ˜̊Hdd) → L2 ⊗ T ⊂ ˜̊Hcd⊤ is a continuous right inverse of sym curl :˜̊Hcd⊤ → ˜̊Hdd by Lemma 3.18.
• Rcd : ˜̊H−1

ND(div) → L2 ⊗ S ⊂ ˜̊Hdd is a continuous right inverse of div : ˜̊Hcd →˜̊H−1
ND(div) by Lemma 3.19.

• Ddd : ˜̊H−1
P1

→ H̊1 ⊗ S ⊂ ˜̊Hdd is a continuous right inverse of div div : ˜̊Hdd → ˜̊H−1
P1

by
Lemma 3.5 applied with s = −1.

• Rg : ker(curl : ˜̊H−1
RT (curl)) → L2,R, Rc : ker(div : ˜̊H−1

ND(div)) → (L2 ⊗V)∩ ˜̊H−1
RT (curl),

and Rd : ˜̊H−1
P1

→ (L2 ⊗ V) ∩ ˜̊H−1
ND(div), are continuous right inverses of 1

3
grad :

L2,R → ˜̊H−1
RT (curl),

1
2
curl : ˜̊H−1

RT (curl) → ˜̊H−1
ND(div), and div : ˜̊H−1

ND(div) → ˜̊H−1
P1
,

respectively, by Lemma 3.20.

□

Corollary 3.22. The range of every differential operator in (41) is closed.
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Proof. This is an immediate consequence of the existence of continuous right inverses for each
differential operator in (41), as we have shown.

For example, consider the operator curl def . Clearly its range is contained in both ker(div :˜̊Hcd) and ker(sym curl ⊤ : ˜̊Hcd). But Lemma 3.13 shows that the intersection of these kernels
is also contained in the range of curl def, so

range(curl def) = ker(div : ˜̊Hcd) ∩ ker(sym curl ⊤ : ˜̊Hcd).

By the continuity of the differential operators proved in Theorem 2.3, both the above kernels
are closed, and so is their intersection. Hence the range of curl def is closed.

The proofs for the remaining operators are similar and simpler. □

Corollary 3.23. The hessian complex (38), the elasticity complex (39), and the div-div
complex (40) are exact complexes.

Proof. To prove that the hessian complex (38) is exact it suffices to prove that range(hess) ⊇
ker(curl : ˜̊Hcc), range(curl) ⊇ ker(div : ˜̊Hcd), and range(div) ⊇ ˜̊H−1

RT (curl) (since the reverse
inclusions are clear from Corollary 2.5). But these are now obvious by the existence of
continuous right inverses Dgg, Rgc, and Rgd given by Lemmas 3.3, 3.12, and 3.14, respectively.

Similarly, the continuous right inverse operatorsRgg,Dcc, andRcd, given by Lemmas 3.15, 3.1,
and 3.19, prove the exactness of the elasticity complex.

The exactness of the div div complex similarly follows from the continuous right inverse
operators of Rgc⊤, Rcc and Ddd of Lemmas 3.17, 3.18, and 3.5. □

4. Slightly more regular spaces of matrix fields

Consider the following slightly more regular spaces of matrix fields, contained in the pre-
viously introduced spaces ˜̊Hcc, ˜̊Hcd and ˜̊Hdd:˜̊Hcc = {g ∈ L2 ⊗ S : inc g ∈ ˜̊H−1 ⊗ S}, (64)˜̊Hcd = {τ ∈ L2 ⊗ T : curl div τ ∈ ˜̊H−1 ⊗ V}, (65)˜̊Hdd = {σ ∈ L2 ⊗ S : div div σ ∈ ˜̊H−1}, (66)

whose natural norms are defined respectively by

∥g∥2˜̊Hcc
= ∥g∥2L2

+ ∥ inc g∥2˜̊H−1 ,

∥τ∥2˜̊Hcd
= ∥τ∥2L2

+ ∥ curl div τ∥2˜̊H−1 ,

∥σ∥2˜̊Hdd
= ∥σ∥2L2

+ ∥ div div σ∥2˜̊H−1 .

Such spaces of matrix fields and their even smoother versions, have emerged in recent works [2,
20,38].

Note that one possible way to increase the regularity of the prior spaces ˜̊Hcc, ˜̊Hcd and ˜̊Hdd

is to uniformly replace ˜̊H−1 by ˜̊Hs with some s > −1 in (23) (and we expect the prior analysis
to go through with minimal changes for such modification). The new spaces of this section,˜̊Hcc, ˜̊Hcd, and ˜̊Hdd, are not obtained this way. Instead, they are obtained by increasing the
regularity of the matrix-valued function to L2 while maintaining the same ˜̊H−1-regularity
for its second-order derivative. We proceed to prove regular decompositions and density of
smooth functions for such spaces.
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Theorem 4.1 (Regular decomposition of ˜̊Hcc). There exist continuous linear operators S̊
(0)
cc :˜̊Hcc → H̊1 ⊗ S, S̊(1)

cc : ˜̊Hcc → H̊1 ⊗ V such that any g ∈ ˜̊Hcc can be decomposed into

g = S̊(0)
cc g + def S̊(1)

cc g. (67)

Consequently, ˜̊Hcc = D(Ω)⊗ S
∥·∥ ˜̊Hcc . (68)

Proof. Since any g ∈ ˜̊Hcc in also in ˜̊Hcc, we apply the operators S̊
(0)
cc and S̊

(1)
cc of Theorem 3.4

and follow along the lines of its proof to obtain (46), curl
(
g− S̊

(0)
cc g−def S̊

(1)
cc g

)
= 0. Setting

S̊
(2)
cc g = Dgg(g − S̊

(0)
cc g − def S̊

(1)
cc g) we apply Lemma 3.3, but this time with s = 0 since g is

now in L2 ⊗ S, to get that

S̊(2)
cc g ∈ ˜̊H2 ⊗ S, g − S̊(0)

cc g − def S̊(1)
cc g = hess S̊(2)

cc g.

Now (67) follows setting S̊(1)
cc g = S̊

(1)
cc g + grad S̊

(2)
cc g.

To prove (68), decompose g ∈ ˜̊Hcc as above. By the density of D(Ω) in H̊1, there are
gm ∈ D(Ω)⊗ S and um ∈ D(Ω)⊗ V such that

∥gm − S̊(0)
cc g∥H1 → 0, ∥um − S̊(1)

cc g∥H1 → 0,

as m→ ∞. Hence, gm + def um ∈ D(Ω)⊗ S and

∥g − (gm + def um)∥2˜̊Hcc
≤ ∥g − gm∥2L2

+ ∥ inc(g − gm)∥2˜̊H−1 ≲ ∥g − gm∥2H1

by (18). Since the last term converges to zero, we have proved that ˜̊Hcc is contained in the
closure of D(Ω)⊗ S. The reverse inclusion is obvious. □

Theorem 4.2 (Regular decomposition of ˜̊Hdd). There exist continuous linear operators S̊
(0)
dd :˜̊Hdd → H̊1 ⊗ S and S̊(1)

dd : ˜̊Hdd → H̊1 ⊗ T such that any σ ∈ ˜̊Hdd can be decomposed into

σ = S̊
(0)
dd σ + symcurl S̊(1)

dd σ. (69)

Consequently, ˜̊Hdd = D(Ω)⊗ S
∥·∥ ˜̊Hdd . (70)

Proof. We proceed along the lines of the proof of Theorem 3.7, but now with the more regular
σ in ˜̊Hdd, to obtain that

div
(
σ − S̊

(0)
dd σ − sym curl S̊

(1)
dd σ

)
= 0,

with S̊
(0)
dd and S̊

(1)
dd as defined there. At this point, we apply Lemma 3.1, now with s = 0,

setting S̊
(2)
dd σ := Dcc(σ − S̊

(0)
dd σ − sym curl S̊

(1)
dd σ), to find that

S̊(2)
cc σ ∈ ˜̊H2 ⊗ S, σ − S̊

(0)
dd σ − sym curl S̊

(1)
dd σ = inc S̊

(2)
dd σ.

The result now follows setting S̊(1)
dd σ = S̊

(1)
dd σ + ⊤ curl S̊

(2)
dd σ.

To conclude, let σ ∈ ˜̊Hdd and use the just proved decomposition (69) to split it into

σ = S̊
(0)
dd σ + symcurl S̊(1)

dd σ. By the density of D(Ω) in H̊1, there are σm ∈ D(Ω) ⊗ S and
τm ∈ D(Ω)⊗ T such that

∥σm − S̊
(0)
dd σ∥H1 → 0, ∥τm − S̊(1)

dd σ∥H1 → 0,
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as m → ∞. Hence, by (18) and (30) σm + symcurl τm ∈ D(Ω) ⊗ S converges to σ in
∥ · ∥ ˜̊Hdd

norm, thus proving that σ is contained in the closure of D(Ω)⊗ S. Since the reverse
inclusion is obvious, (70) is proved. □

Theorem 4.3 (Regular decomposition of ˜̊Hcd). There exist three continuous linear operators

S̊
(0)
cd : ˜̊Hcd → H̊1 ⊗ T, S̊

(1)
cd : ˜̊Hcd → H̊1 ⊗ S, S̊(2)

cd : ˜̊Hcd → H̊1 ⊗ V,

such that any τ ∈ ˜̊Hcd can be decomposed into

τ = S̊
(0)
cd τ + curl S̊

(1)
cd τ + ⊤ dev grad S̊(2)

cd τ. (71)

Consequently, ˜̊Hcd = D(Ω)⊗ T
∥·∥ ˜̊Hcd . (72)

Proof. We follow along the lines of the proof of Theorem 3.10 to find that given any τ ∈ ˜̊Hcd,

using the same S̊
(0)
cd operator defined there, we have curl div(τ − S̊

(0)
cd τ) = 0. But now,

since the higher regularity of τ implies that τ − S̊
(0)
cd τ is in L2 ⊗ T, we may apply the two-

term decomposition of Lemma 3.8 (taking Ûgc there to be zero) instead of the three-term
decomposition to obtain

τ − S̊
(0)
cd τ = (curl R̂gc + ⊤ dev grad D̂gc)(τ − S̊

(0)
cd τ).

The decomposition (71) now follows after setting S̊
(1)
cd τ = R̂gc(τ − S̊

(0)
cd τ), and S̊(2)

cd τ =

D̂gc(τ − S̊
(0)
cd τ).

To prove (72), let τ ∈ ˜̊Hcd be decomposed as in (71). By the density of D(Ω) in H̊1, there
are τm ∈ D(Ω)⊗T, gm ∈ D(Ω)⊗S and qm ∈ D(Ω)⊗V which converge to the decomposition

components S̊
(0)
cd τ , S̊

(1)
cd τ and ⊤ dev grad S̊(2)

cd τ , respectively, in the H1-norm, as m → ∞.
Hence

∥τm + curl gm + ⊤ dev grad qm − τ∥ ˜̊Hcd

≤ ∥τm − S̊
(0)
cd τ∥ ˜̊Hcd

+ ∥ curl(gm − S̊
(1)
cd τ)∥ ˜̊Hcd

+ ∥ ⊤ dev grad(qm − S̊(2)
cd τ)∥ ˜̊Hcd

≲ ∥τm − S̊
(0)
cd τ∥H1 + ∥ curl(gm − S̊

(1)
cd τ)∥L2 + ∥ ⊤ dev grad(qm − S̊(2)

cd τ)∥L2

≲ ∥τm − S̊
(0)
cd τ∥H1 + ∥gm − S̊

(1)
cd τ∥H1 + ∥qm − S̊(2)

cd τ∥H1

where we have used (31) (which implies that curl div ◦ ⊤ dev grad = 0) and (18). Since the
last bound converges to zero as m→ ∞, we have just exhibited a sequence in D(Ω)⊗T that

approximates any given τ ∈ ˜̊Hcd arbitrarily closely in ˜̊Hcd norm. □

5. Duality

In this section, we state extensions to 2-complexes built using Sobolev spaces that are
generally not closures of compactly supported smooth functions, such as those in (14), as

well as spaces built using H−1 instead of ˜̊H−1, such as

H−1(curl) = {u ∈ H−1 ⊗ V : curlu ∈ H−1 ⊗ V},
H−1(div) = {q ∈ H−1 ⊗ V : div q ∈ H−1},
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spaces of matrix-valued functions,

Hcc = {g ∈ H−1 ⊗ S : curl g ∈ H−1 ⊗ V, inc g ∈ H−1 ⊗ S}, (73a)

Hcd = {τ ∈ H−1 ⊗ T : div τ ∈ H−1 ⊗ V, sym curl τ ∈ H−1 ⊗ S,

curl div τ ∈ H−1 ⊗ V}, (73b)

Hdd = {σ ∈ H−1 ⊗ S : div σ ∈ H−1 ⊗ V, div div σ ∈ H−1}, (73c)

and their slightly more regular versions,

Hcc = {g ∈ L2 ⊗ S : inc g ∈ H−1 ⊗ S}, (74a)

Hdd = {σ ∈ L2 ⊗ S : div div σ ∈ H−1}, (74b)

Hcd = {τ ∈ L2 ⊗ T : curl div τ ∈ H−1 ⊗ V}. (74c)

Analogues of previous results can be proved for

H1 H(curl) H(div) L2

H(curl) Hcc Hcd H−1(curl)

H(div) Hcd⊤ Hdd H−1(div)

L2 H−1(curl) H−1(div) H−1

grad

g
ra
d

hess

curl

d
ef

curl def

div

12 ⊤
d
ev

g
ra
d

1
3 grad div

1
3
grad

def

cu
rl

⊤
curl def

curl

⊤
cu

rl

inc

div

sy
m

cu
rl⊤

1
2 curl div

1
2
curl

1
2
dev grad

d
iv

1
3 grad div

sym curl

d
iv

⊤

1
2 curl div⊤

div

d
iv

div div div

1
3
grad 1

2
curl div

(75)

using exactly the same techniques. They are summarized in the next theorem. We use D(Ω̄)
to denote the space of restrictions of functions in D(R3) to the closure Ω̄.

Theorem 5.1.

(1) The diagram (75) commutes.
(2) Every path in it is a 2-complex.
(3) Every differential operator in it is continuous, has closed range, and has a continuous

right inverse.
(4) There are regular decompositions for Hcc, Hdd, and Hcd. Namely, there exist continu-

ous linear operators S
(0)
cc : Hcc → H1⊗S, S(1)

cc : Hcc → H1⊗V, S(2)
cc : Hcc → H1, S

(0)
dd :

Hdd → H1⊗S, S(1)
dd : Hdd → H1⊗T, S(2)

dd : Hdd → H1⊗S, S(0)
cd : Hcd → H1⊗T, S(1)

cd :
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Hcd → H1 ⊗ S, S(2)
cd : Hcd → H1 ⊗ V, S(3)

cd : Hcd → H1 ⊗ V, such that

g = S(0)
cc g + def S(1)

cc g + hessS(2)
cc g, g ∈ Hcc, (76)

σ = S
(0)
dd σ + symcurlS

(1)
dd σ + incS

(2)
dd σ, σ ∈ Hdd, (77)

τ = S
(0)
cd τ + curlS

(1)
cd τ + ⊤ dev gradS

(2)
cd τ + curl def S

(3)
cd τ, τ ∈ Hcd. (78)

(5) The spaces D(Ω̄) ⊗ S,D(Ω̄) ⊗ T, and D(Ω̄) ⊗ S are dense in Hcc, Hcd, and Hdd,
respectively.

(6) There are regular decompositions for Hcc,Hdd, and Hcd. Namely, there are continuous

linear operators S(1)
cc : Hcc → H̊1 ⊗ V, S(2)

cd : Hcd → H̊1 ⊗ S, S(1)
dd : Hdd → H̊1 ⊗ T,

such that

g = S(0)
cc g + def S(1)

cc g, g ∈ Hcc, (79)

τ = S
(0)
cd τ + curlS

(1)
cd τ + ⊤ dev gradS(2)

cd τ, τ ∈ Hcd, (80)

σ = S
(0)
dd σ + symcurlS(1)

dd σ, σ ∈ Hdd. (81)

(7) The spaces D(Ω̄) ⊗ S,D(Ω̄) ⊗ T, and D(Ω̄) ⊗ S are dense in Hcc,Hcd, and Hdd,
respectively.

Proof. Proceed as in the proofs of Theorems 2.3, 2.4, and 3.21. □

Some spaces at the edges of the diagram (75) can be restricted to certain subspaces of
interest without affecting the matrix-valued function spaces to get the following commuting
diagram:

H1/P1 H(curl)/ND H(div)/RT L2/R

H(curl)/ND Hcc Hcd H−1(curl)

H(div)/RT Hcd⊤ Hdd H−1(div)

L2/R H−1(curl) H−1(div) H−1

grad

g
ra
d

hess

curl

d
ef

curl def

div

12 ⊤
d
ev

g
ra
d

1
3 grad div

1
3
grad

def

cu
rl

⊤
curl def

curl

⊤
cu

rl

inc

div

sy
m

cu
rl⊤

1
2 curl div

1
2
curl

1
2
dev grad

d
iv

1
3 grad div

sym curl

d
iv

⊤

1
2 curl div⊤

div

d
iv

div div div

1
3
grad 1

2
curl div

(82)

This is because of the following facts: (a) gradP1 = V is in the zero coset of H(curl)/ND,
(b) curlND = V is in the zero coset of H(div)/RT , (c) divRT = R is in the zero coset of
L2/R, (d) defND = 0, and (e) dev gradRT = 0.
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Next we turn to establishing certain duality relationships between the spaces in the dia-
gram (25) and those in the just introduced diagram (82). First we need a lemma that enlarges
the domain of certain functionals. Consider a q ∈ H−1(div). Then, since q is in H−1 ⊗ V, its
action on a function in H̊1⊗V is well defined, so the action of q on gradient fields, q(gradw),

is well defined provided gradw ∈ H̊1 ⊗ V. But in fact, it is also well defined if gradw is just
in L2 ⊗ V, as stated next, where similar other extensions are also collected.

Lemma 5.2. Let q ∈ H−1(div), σ ∈ Hdd, g ∈ Hcc, and τ ∈ Hcd. Then q ◦ grad, σ ◦ def,
extends to continuous linear maps such that

q ◦ grad : H̊1 → R, (q ◦ grad)(w) = −(div q)(w), w ∈ H̊1, (83a)

σ ◦ def : H̊1 ⊗ V → R, (σ ◦ def)(u) = −(div σ)(u), u ∈ H̊1 ⊗ V, (83b)

σ ◦ hess : H̊1 ⊗ S → R, (σ ◦ hess)(w) = (div div σ)(w), w ∈ H̊1, (83c)

g ◦ sym curl : H̊1 ⊗ T → R, (g ◦ sym curl)(η) = (curl g)(η), η ∈ H̊1 ⊗ T, (83d)

g ◦ inc : H̊1 ⊗ S → R, (g ◦ inc)(γ) = (inc g)(γ), γ ∈ H̊1 ⊗ S, (83e)

τ ◦ curl : H̊1 ⊗ T → R, (τ ◦ curl)(γ) = (sym curl τ)(γ), γ ∈ H̊1 ⊗ S, (83f)

τ ◦ dev grad : H̊1 ⊗ V → R, (τ ◦ dev grad)(u) = −(div τ)(u), u ∈ H̊1 ⊗ V, (83g)

τ ◦ curl def : H̊1 ⊗ V → R, (τ ◦ curl def)(u) = 1

2
(curl div τ)(u), u ∈ H̊1 ⊗ V, (83h)

where, component wise, the right hand sides are all duality pairings between H−1 and H̊1.

Proof. For any φ ∈ D(Ω), by the definition of the distributional divergence, (div q)(φ) =
−q(gradφ) ≡ −(q ◦ grad)(φ). Since div q is in H−1(div),

|(q ◦ grad)(φ)| ≤ ∥ div q∥H−1∥φ∥H̊1

showing that q◦grad can be continuously extended to the closure ofD(Ω) in the H̊1-norm, i.e.,

to H̊1. This proves the first statement. The remaining statements are proved similarly, noting
that at times we must use the identities of Lemma 2.1: e.g., for any given φ ∈ D(Ω) ⊗ V,
using (28) and (31), we have (curl div τ)(φ) = (div ⊤ curl ⊤ τ)(φ) = ⊤ τ(curl ⊤ gradφ) =
⊤ τ(⊤ dev grad curlφ) = 2τ(curl def φ). □

It was proved in [21] that the dual of H̊(div) equals H−1(curl), both algebraically and
topologically. The next lemma states this together with closely related identities.

Lemma 5.3. The following equalities of spaces hold algebraically and topologically.

H̊(div)∗=H−1(curl), H̊(curl)∗=H−1(div),

H(div)∗= ˜̊H−1(curl), H(curl)∗= ˜̊H−1(div).

Proof. The first identity was proved in [21, Theorem 2.2]. Here we prove the second and
the last (since the third is similar). The proofs are presented step by step below, but a
unified strategy for proving all identities will be evident: we use the Riesz representative of a
functional in X∗ to show that X∗ ↪→ Y , and then use a regular decomposition of X to prove
that Y ↪→ X∗.
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Step 1. H̊(curl)∗ ↪→ H−1(div): To prove that H̊(curl)∗ is continuously embedded in

H−1(div), consider an f ∈ H̊(curl)∗. By the Riesz representation theorem, there is a uf ∈
H̊(curl) such that

f(v) = (uf , v) + (curluf , curl v), v ∈ H̊(curl).

Choosing v ∈ D(Ω)⊗ V we find that the equality

f = uf + curl curluf

holds as distributions on Ω. It immediately follows that

∥f∥2H−1(div) = ∥uf + curl curluf∥2H−1 + ∥ div uf∥2H−1

≲ ∥uf∥H̊(curl) = ∥f∥H̊(curl)∗ .

This proves that the restriction of the distribution f to Ω̄ is an element of H−1(div) and that

the embedding of H̊(curl)∗ into H−1(div) is continuous.

Step 2. H−1(div) ↪→ H̊(curl)∗: Let q ∈ H−1(div). Applying the regular decomposi-

tion (44) to split any u in H̊(curl) as u = grad S̊
(1)
c u+ S̊

(0)
c u, we define a functional fq acting

on u by

fq(u) = −(div q)(S̊(1)
c u) + q(S̊(0)

c u). (84)

By the continuity of S̊
(i)
c ,

|fq(u)| ≤ ∥ div q∥H−1∥ S̊(1)
c u∥H̊1 + ∥q∥H−1∥ S̊(0)

c u∥H̊1

≲ ∥q∥H−1(div)∥u∥H̊(curl),

so fq ∈ H̊(curl)∗ and

∥fq∥H̊(curl)∗ ≲ ∥q∥H−1(div). (85)

Note that fq is a distribution (which can be seen for instance by the previously proved
imbedding showing that fq is in H

−1(div)). We now show that the distribution fq is identical
to q. Indeed, by (83a) of Lemma 5.2, for any φ ∈ D(Ω) × V, the definition (84) implies

fq(φ) = q(grad S̊
(1)
c φ + S̊

(0)
c φ) = q(φ), i.e., fq = q. Thus (85) implies that ∥fq∥H̊(curl)∗ ≡

∥q∥H̊(curl)∗ ≲ ∥q∥H−1(div) showing the stated continuous embedding.

Step 3. H(curl)∗ ↪→ ˜̊H−1(div): Writing H(curl) as H(curl, Ω) to explicitly indicate the

domain, we identify any given f ∈ H(curl, Ω)∗ with the following distribution in R3,

f̃ ∈ D(R3)′ : f̃(φ) = f(φ|Ω), φ ∈ D(R3).

By the Riesz representation theorem, there is a unique uf ∈ H(curl, Ω) such that f(v) =
(curluf , curl v) + (uf , v) for all v in H(curl, Ω). Let c̃f and ũf denote the extensions by zero
of L2(Ω)-functions curluf and uf by zero to all R3. Then, for any φ ∈ D(R3),

f̃(φ) = f(φ|Ω) = (c̃f , curlφ)L2(R3) + (ũf , φ)L2(R3).

This shows that the following identities hold in D(R3):

f̃ = curl c̃f + ũf , div f̃ = div ũf .
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These two identities give these corresponding bounds

∥f∥ ˜̊H−1 = ∥f̃∥H−1(R3) ≤ ∥ curl c̃f∥H−1(R3) + ∥ũf∥H−1(R3)

≲ ∥c̃f∥L2(R3) + ∥ũf∥L2(R3) ≲ ∥uf∥H(curl),

∥ div f∥ ˜̊H−1 = ∥ div f̃∥H−1(R3) = ∥ div ũf∥H−1(R3) ≲ ∥ũf∥L2(R3) = ∥uf∥L2 ,

which prove that ∥f∥ ˜̊H−1(div) ≲ ∥uf∥H(curl) = ∥f∥H(curl)∗ using the Riesz isometry.

Step 4. ˜̊H−1(div) ↪→ H(curl)∗: In exactly the same way the regularized Bogovskĭi oper-

ators of (43) give the regular decomposition (44), the regularized Poincaré operators of [16]

show that there are continuous operators S
(0)
c : H(curl) → H1 ⊗ V and S

(1)
c : H(curl) → H1

such that any u ∈ H(curl) can be decomposed into

u = S(0)
c u+ gradS(1)

c u. (86)

Let q ∈ ˜̊H−1(div). Using the regular decomposition, we define a functional

fq(u) = −(div q)(S(1)
c u) + q(S(u)

c )

where, on the right hand side, the functional actions are duality pairings between ˜̊H−1 and
H1, well defined in view of (20). Hence

|fq(u)| ≤ ∥ div q∥ ˜̊H−1∥S(1)
c u∥H1 + ∥q∥ ˜̊H−1∥S(0)

c u∥H1 ≲ ∥q∥ ˜̊H−1(div)∥u∥H(curl)

Therefore fq is in H(curl)∗ and

∥fq∥H(curl)∗ ≲ ∥q∥ ˜̊H−1(div). (87)

Since we have already shown that H(curl)∗ is embedded into the subspace of R3-distributions

in ˜̊H−1(div), we conclude that fq ∈ D(R3)′ satisfies, for any φ ∈ D(R3),

fq(φ) = −(div q)(S(1)
c φ) + q(S(0)

c φ) = q(gradS(1)
c φ+ S(0)

c φ) = q(φ),

i.e., fq and q coincide as distributions. Combined with (87), we have thus shown that
∥q∥H(curl)∗ = ∥fq∥H(curl)∗ ≲ ∥q∥ ˜̊H−1(div).

Steps 1 and 2 prove the second identity of the lemma. Steps 3 and 4 prove the last identity
of the lemma. The proofs of the remaining identities are similar. □

In the next theorem we show that more dualities such as those in Lemma 5.3 can be read
off the diagrams with and without boundary conditions. Let L : H1 → ˜̊H−1 ≡ (H1)∗ denote
the Riesz map of H1 defined by

(Lw)(v) = (w, v)H1 ≡ (gradw, grad v) + (w, v), w, v ∈ H̊1, (88)

where (·, ·)X denotes the inner product of X, and when the subscript is absent, we interpret it
as L2 products, as described previously in (8). By the Riesz representation theorem, recalling

that our spaces are over the real field, L is a linear invertible isometry, so for any q, r ∈ ˜̊H−1,

(q, r) ˜̊H−1 = (L−1q,L−1r)H1 = r(L−1q),

where we have used (88) in the last step. In particular, if a v ∈ L2 ⊂ H−1 is used in place of
r above, the functional action becomes an L2 product and we obtain

(q, v) ˜̊H−1 = (L−1q, v), v ∈ L2. (89)
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Note that L−1q is the result of solving a Neumann problem with q as the source. When q is
a vector or matrix field, by L−1q we mean the respective vector or matrix field obtained by
component-wise application of L−1.

Theorem 5.4. The diagrams (25) and (82) are in duality in the sense displayed below, where
the second diagram has been rearranged to easily display the duality (∗) correspondences.

H̊1 H̊(curl) H̊(div) L2,R

H−1 H−1(div) H−1(curl) L2/R

H̊(curl) ˜̊Hcc ˜̊Hcd ˜̊H−1
RT (curl)

H−1(div) Hdd Hcd⊤ H(div)/RT

H̊(div) ˜̊Hcd⊤ ˜̊Hdd ˜̊H−1
ND(div)

H−1(curl) Hcd Hcc H(curl)/ND

L2,R ˜̊H−1
RT (curl) ˜̊H−1

ND(div) ˜̊H−1
P1

L2/R H(div)/RT H(curl)/ND H1/P1

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

(90)

Proof. The strategy of this proof is the same as what was outlined in the beginning of the
proof of Lemma 5.3. We now focus on the spaces of matrix-valued functions.

Step 1. ˜̊H∗
cc ↪→ Hdd: Let f ∈ ˜̊H∗

cc. Then, by Riesz representation, there is a gf ∈ ˜̊Hcc

such that f(g) = (gf , g) ˜̊Hcc
for all g ∈ ˜̊Hcc. Expanding out the ˜̊Hcc inner product and using

(89), for any φ ∈ D(Ω)⊗ S,

f(φ) = (gf , φ)H−1 + (curl gf , curlφ)H−1 + (inc gf , incφ)H−1

= (L−1gf , φ) + (L−1 curl gf , curlφ) + (L−1 inc gf , incφ).

Thus

f = L−1gf + curlL−1 curl gf + incL−1 inc gf , (91)
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a sum of three terms, which are in H1, L2, and H
−1, respectively. Since H1 ↪→ L2 ↪→ H−1,

∥f∥H−1 ≤ ∥L−1gf∥H−1 + ∥ curlL−1 curl gf∥H−1 + ∥ incL−1 inc gf∥H−1

≲ ∥L−1gf∥H1 + ∥ curlL−1 curl gf∥L2 + ∥ incL−1 inc gf∥H−1

≲ ∥L−1gf∥H1 + ∥L−1 curl gf∥H1 + ∥L−1 inc gf∥H1

= ∥gf∥ ˜̊H−1 + ∥ curl gf∥ ˜̊H−1 + ∥ inc gf∥ ˜̊H−1

≲ ∥gf∥ ˜̊Hcc
= ∥f∥ ˜̊H∗

cc

where we have used the Riesz isometry multiple times as well as the continuity of the deriva-
tive ∂i : H

m → Hm−1 for some integers m (see e.g., [24, Theorem 1.4.4.6]). From (91) we also
see that div f = divL−1gf and div div f = div divL−1gf , so f is indeed in Hdd. Moreover,

∥f∥2Hdd
= ∥f∥2H−1 + ∥ divL−1gf∥2H−1 + ∥ div divL−1gf∥2H−1

≲ ∥f∥2H−1 + ∥L−1gf∥2H1 = ∥f∥2H−1 + ∥gf∥2˜̊H−1

≲ ∥f∥ ˜̊H∗
cc
,

thus completing the proof of continuity of the embedding of f into Hdd.

Step 2. Hdd ↪→ ˜̊H∗
cc: Let σ ∈ Hdd. Decomposing a g ∈ ˜̊Hcc using (45) as g = S̊

(0)
cc g +

def S̊
(1)
cc g + hess S̊

(2)
cc g, we define a linear functional fσ acting on g as follows:

fσ(g) = σ(S̊(0)
cc g)− (div σ)(S̊(1)

cc g) + (div div σ)(S̊(2)
cc g).

By the continuity of S̊
(i)
cc (see Theorem 3.4), |fσ(g)| ≲ ∥σ∥Hdd

∥g∥ ˜̊Hcc
so fσ is in ˜̊H∗

cc and

∥fσ∥ ˜̊H∗
cc
≲ ∥σ∥Hdd

. (92)

By the previous embedding, we know that fσ is in Hdd (in particular in H−1 ⊗ S) and is
therefore a distribution on Ω. We claim that fσ and σ are identical distributions. Indeed,
for any φ ∈ D(Ω)⊗ S,

fσ(φ) = σ(S̊(0)
cc φ)− (div σ)(S̊(1)

cc φ) + (div div σ)(S̊(2)
cc φ)

= σ(S̊(0)
cc φ+ def S̊(1)

cc φ+ hess S̊(2)
cc φ) = σ(φ)

where we have used (83b) and (83c) of Lemma 5.2. Combined with (92), we have ∥σ∥ ˜̊H∗
cc
≡

∥fσ∥ ˜̊H∗
cc
≲ ∥σ∥Hdd

, thus completing the proof of continuity of the embedding of σ into ˜̊H∗
dd.

Step 3. ˜̊H∗
cd ↪→ Hcd⊤: Let f ∈ ˜̊H∗

cd. By the Riesz representation theorem, there is a unique

τf ∈ ˜̊Hcd satisfying f(τ) = (τf , τ) ˜̊Hcd
for all τ ∈ ˜̊Hcd. Choosing τ = φ ∈ D⊗T, the definition

of ˜̊Hcd-inner product and (89) imply

f(φ) = (L−1τf , φ) + (L−1 div τf , divφ) + (L−1 sym curl ⊤ τf , sym curlφ)

+ (L−1 curl div τf , curl divφ).

Hence
f = L−1τf − gradL−1 div τf + ⊤ curl symL−1 sym curl ⊤ τf

− grad curlL−1 curl div τf .
(93)

Applying div ⊤, the identity (31) shows that last term vanishes and

div ⊤ f = div ⊤L−1τf − div ⊤ gradL−1 div τf . (94)
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Moreover, applying curl div ⊤ to both sides of (93) and using the identity (28),

curl div ⊤ f = curl div ⊤L−1τf . (95)

Also,

sym curl f = symcurlL−1τf + inc symL−1 sym curl ⊤ τf . (96)

Equations (93), (94), (95) and (96) imply that

∥f∥Hcd⊤ ≲ ∥τf∥ ˜̊Hcd
= ∥f∥ ˜̊H∗

cd

where we have used the isometry of L−1 and f 7→ τf . This proves that ˜̊H∗
cd ↪→ Hcd⊤.

Step 4. Hcd⊤ ↪→ ˜̊H∗
cd: Let τ ∈ Hcd⊤. Define a linear functional fτ acting on any η in ˜̊Hcd

as follows:

fτ (η) = τ(S̊
(0)
cd η) + (sym curl τ)(S̊

(1)
cd η)− (div ⊤ τ)(S̊

(3)
cd η)− (

1

2
curl div ⊤ τ)(S̊

(2)
cd η).

All the terms on the right are well defined duality pairings since τ, sym curl τ, div ⊤ τ, and

curl div ⊤ τ, have ˜̊H−1 components for any τ ∈ Hcd⊤ and since each S̊
(i)
cd η has H̊1 components

per Theorem 3.10. The continuity of S̊
(i)
cd asserted by the same theorem gives

|fτ (η)| ≲ ∥τ∥Hcd⊤∥η∥ ˜̊Hcd
. (97)

Next, observe that for any φ ∈ D(Ω) ⊗ T, decomposing φ by Theorem 3.10 into φ =

S̊
(0)
cd φ + curl S̊

(1)
cd φ + ⊤ dev grad S̊

(2)
cd φ + curl def S̊

(3)
cd φ, and using (83f), (83g) and (83h) of

Lemma 5.2,

fτ (φ) = τ(S̊
(0)
cd φ) + τ(curl S̊

(1)
cd φ) + τ(⊤ dev grad S̊

(3)
cd φ) + τ(curl def S̊

(2)
cd φ)

= τ(φ).

Hence fτ and τ are the same distribution. Using (97), ∥τ∥ ˜̊H∗
cd

≡ ∥fτ∥ ˜̊H∗
cd

≲ ∥τ∥Hcd⊤ , which

proves that Hcd⊤ ↪→ ˜̊H∗
cd is a continuous embedding.

Step 5. ˜̊H∗
dd ↪→ Hcc: Denoting the Riesz representative of any f ∈ ˜̊H∗

dd by σf ∈ ˜̊Hdd, its

defining equation f(σ) = (σf , σ) ˜̊Hdd
for all σ ∈ ˜̊Hdd gives a formula for f as in the previous

cases:
f = L−1σf − gradL−1 div σf + hessL−1 div div σf .

Then curl f = curlL−1σf is in L2 ⊗V and inc f = incL−1σf is in ˜̊H−1 ⊗S. Hence f is in Hcc

and by Riesz isometries, ∥f∥Hcc ≲ ∥f∥ ˜̊H∗
dd
.

Step 6. Hcc ↪→ ˜̊H∗
dd: Let g ∈ Hcc. We will show that g can be identified with the functional

fg acting on σ ∈ ˜̊Hdd by

fg(σ) = g(S̊
(0)
dd σ) + (curl g)(S̊

(1)
dd σ) + (inc g)(S̊

(2)
dd ).

By the regular decomposition result of Theorem 3.7, this implies that

|fg(σ)| ≲ ∥g∥Hcc∥σ∥ ˜̊Hdd
(98)

and also using (83d) and (83e) of Lemma 5.2, we find that

fg(φ) = g(S̊
(0)
dd φ+ symcurl S̊

(1)
dd φ+ inc S̊

(2)
dd φ) = g(φ)

for any φ ∈ D(Ω) ⊗ S, i.e., fg and g are the same distribution. Hence (98) shows that

∥g∥ ˜̊H∗
dd

= ∥fg∥ ˜̊H∗
dd

≲ ∥g∥Hcc thus establishing the continuous embedding of Hcc into ˜̊H∗
dd.
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To conclude the proof, note that Steps 1 and 2 prove that ˜̊H∗
cc = Hdd. Steps 3 and 4 prove

that ˜̊H∗
cd = Hcd⊤ and ˜̊H∗

cd⊤ = Hcd. Steps 5 and 6 prove that ˜̊H∗
dd = Hcc. To establish the

remaining nontrivial duality identities in (90), it suffices to use the identities of Lemma 5.3
and the fact that for any Hilbert space X and its closed subspace Z, the dual of the quotient
space (X/Z)∗ is isomorphic to the annihilator Z⊥ = {x′ ∈ X ′ : x′(z) = 0 for all z ∈ Z}
contained in X ′. For example, with X = H(curl) and Z = ND, we find that (H(curl)/ND)∗

is isomorphic to the annihilator of ND⊥ contained in H(curl)∗ = ˜̊H−1(div), which is exactly

the same as ˜̊H−1
ND(div), i.e.,

(
H(curl)/ND

)∗
= ˜̊H−1

ND(div). Taking duals on both sides we

obtain, due to the reflexivity of Hilbert spaces, ˜̊H−1
ND(div)

∗ = H(curl)/ND, which is one of
the identities indicated in (90). □
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