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The Model
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Goals of a Regression Analysis
Need unique and relevant predictor variables

I Regression model: Relate one or more predictor variables to
a response variable y , such as, for one predictor, ŷ = b0 + b1x1

I The analysis of a regression model has two primary purposes
◦ Forecast the value of y , ŷ?: From the value of each predictor
variable forecast (predict) unknown values of response y
◦ Explain the value of y such as with the slope coefficients, bj :

Show relationship of each predictor variable with y , with the
values of all other predictor variables held constant

I To enhance these goals, add predictor variables to the model
I Choose predictor variables that satisfy the following conditions
◦ New Information: A proposed predictor variable is relatively

uncorrelated with the predictor variables already in the model
◦ Relevant Information: A proposed predictor variable

correlates with y
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Multiple Regression: Organization of the Data
Data into rows and columns

X1 X2 y
1 19 9.47 1.45
2 16 8.29 1.59
...

50 15 7.88 1.13
Table: Excerpt from data table for multiple regression with two predictor

variables and 50 rows of data

I Observation or case: Data for a single row, that is, for a
single person or company or whatever the unit of analysis

I One column for each predictor variable, Xj , here j = 1, 2
I One column for the response variable, y
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The Multiple Regression Model

As many predictors as desired, usually up to six or so
I Multiple regression model: The fitted value of y as a

function, here linear, for a set of m predictor variables
ŷ = b0 + b1x1 + b2x2 + . . .+ bmxm

I Partial slope coefficient: The slope coefficient, bj , for the j th

predictor variable from a multiple regression model
I Key Concept: The value of each bj changes depending on the

other predictor variables that are in the model
I As an example, consider Age, Height and Weight for a sample

of 100 men and two different regression models
◦ ŷWt = −182.59 + 5.18xHt
◦ ŷWt = −209.82 + 5.43xHt + 0.21xAge
◦ bHt = 5.18 from 1st model 6= bHt = 5.43 from 2nd model
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9.1b
Statistical Control
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Assessing the Relation of Each Predictor Variable with y
The next best thing to experimental control

I How does one variable x causally impacts the response variable
y?

I Key Concept: The partial slope coefficient, bj , is the average
change in y for each unit increase in xj with the values of all
other predictor variables held constant, i.e., controlled

I Ceteris Paribus (with other things the same): Partial slope
coefficient bj isolates the relation of predictor xj to response y
with effects of the remaining predictor variables held constant

I Holding the values of the other variables constant mimics the
equivalence attained with experimental control

I To assess the effect of
◦ house selling price according to size in square feet, control by

the age of the house
◦ salaries by gender, control by years of work experience
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Control of Confounding Variables and Casual Analysis

The next best thing to experimental control
I Key Concept: To demonstrate causality requires controlling

for confounding variables that lead to spurious relationships
I Experimental control with randomization and manipulation is

always preferred, but not always possible
◦ cannot manipulate Gender to study impact on Salary
◦ cannot manipulate the MBA program a student attends to

study impact on Salary
I Statistical control: Observe the relation between two

variables y and x1 with the value of one or more other potential
confounding variables, x2, x3 . . . explicitly held constant

I Accomplish statistical control with some version of multiple
regression, that is, with two or more predictor variables
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Warning: Regression Not Necessarily Causal Analysis

Regression reflects causality only in special circumstances
I Many people are seduced by the mathematical expression of a

regression model into falsely concluding that the equation
expresses a causal relationship

I The seduction is understandable
◦ enter a value of X into the equation, out comes a value of y
◦ enter a different value of X, out comes a different value of y

I Key Concept: Mathematical manipulation of values in an
equation does not necessarily correspond to a causal effect in
the real world

I The estimated regression model depends on the correlations of
one or more X variables with each other and with y , and these
correlations could be spurious

c© 2019 by David W. Gerbing Multiple Regression: Statistical Control 8

Ex: Regression Not Necessarily Causal Analysis

Regression reflects causality only in special circumstances
I Consider correlation of the Number of Fire Trucks and

Economic Damage . . .
◦ the two variables are correlated
◦ correlation is spurious (not causal), due to a common factor

that causes both variables: Severity of the Fire
◦ Could regress Economic Damage onto Number of Fire
Trucks, and find a statistically significant slope coefficient
◦ but, more fire trucks does not cause more damage

I The slope coefficient b1 shows how damage increases with
more fire trucks, understanding that b1 provides information
regarding the correlation, but not causality
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Ex: Regression Not Necessarily Causal Analysis
Regression reflects causality only in special circumstances

I Estimate, from the data gather at many different fires,
Economic Damage (D) in $1000’s as a function of the Number
of Fire Trucks (F) at the fire

I Consider the following hypothetical result, b0 = 10 and b1 = 85
ŷD = 10 + 85xF

I The corresponding slope coefficient b1 = 85 specifies that, on
average, the Damage increases by $85,000 for each additional
Fire Truck present at the fire

I Yet the positive slope coefficient does not imply causality
because Fire Trucks do not cause damage, in fact, their
presence minimizes the damage

I Control for the effect of Severity of the Fire, include it as a
second predictor variable, and the effect of Number of Fire
trucks will disappear with b decreasing from 85 to b ≈ 0
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9.1c
Analysis
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I: Overview of Analysis, Input
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Criterion for Estimating the Multiple Regression Model

As many predictors as desired, usually up to six or so
I For one predictor variable, or many, implement the OLS

algorithm via computer to choose the values of the bj ’s from
the training data that together minimize the sum of squared
residuals, the training errors

∑(yi − ŷi)2 = ∑ e2
i

across all of the observations for that particular data set
I Can calculate ŷ from the values of the predictor variables for

each observation, that is, for each row of the data table
I Can then calculate the residual error term, yi − ŷi = ei , for

each observation
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Inferential Analysis for the Slope Coefficient

What is the value of each population slope coefficient?
I Everything done so far in this discussion of regression, such as

obtaining the sample slope coefficients, bj , has been in terms
of descriptive statistics only

I Is there a relationship in the population between the j th

predictor variable, xj , and the response variable y , with the
values of all other variables in the model held constant?

I The population regression model for a set of m xj ’s is
ŷ = β0 + β1x1 + β2x2 + . . .+ βmxm

I The focus of the inferential test for each βj is on 0
◦ If βj < 0, a negative relationship
◦ If βj = 0, no relationship
◦ If βj > 0, a positive relationship
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R: Multiple Regression
Simple extension of regression with one predictor variable

I The lessR function Regression provides regression analysis,
here illustrated for response variable y and three predictor
variables, x1, x2 and x3

> Regression(y ~ x1 + x2 + x3)

I The reg output is extensive
◦ Partial slope coefficients b0, b1, b2 and b3 and corresponding

hypothesis tests and confidence intervals
◦ Correlations among all the variables in the model
◦ If one predictor variable, scatter plot with regression line
◦ If multiple predictors, scatter plot matrix and a version of R2

for all possible models from the predictor variables
◦ Forecasting error intervals
◦ Residuals and influence statistics (defined later)
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Example Data Set

Input for the regression analysis
I Data table: http://lessRstats.com/data/bodyfat10.csv
I The data set consists of some body measurements of 10 men
I There are many variables, of which some values for Weight,

Height and Age are listed below

Wt Ht Age
1 182.25 71.75 57
2 168.25 71.75 49
...
10 166.25 68.00 35

I To account for Weight in terms of Height and Age, run the
analysis with: > Regression(Wt ~ Ht + Age)
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II: Output, Interpret Estimates
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R: Regression Output, General Form of the Estimates

R and Excel output for this basic analysis are similar
I For a basic regression analysis, equivalent to that provided by

Excel, use reg.brief in place of Regression
I Basic output is presented as a table, illustrated on the next

slide, with one row for each bj , starting with the intercept, b0
◦ The first column is a list that begins with the intercept

followed by each of the predictor variables
◦ The second column contains each estimate bj
◦ The third column lists the standard error of each bj
◦ The next two columns list the corresponding t-values and

p-values for each H0 : βj = 0
◦ The last two columns are the lower and upper bounds for the

corresponding 95% confidence intervals for each βj
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R: Regression Output, The Estimates and Inference

R and Excel output for this basic analysis are similar
I The output displays in one block of lines, but here listed in two

blocks to fit on the page

Estimate Std Err t-value p-value
(Intercept) -191.634 138.723 -1.381 0.210

Ht 5.155 2.089 2.468 0.043
Age 0.036 0.630 0.057 0.956

Lower 95% Upper 95%
(Intercept) -519.661 136.393

Ht 0.216 10.094
Age -1.453 1.525
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The Estimated OLS Model
Rewrite the tabular output as a standard linear equation

I One task to perform after obtaining the analysis is to write the
model that has been estimated

I That is, obtain the specific values for the estimated coefficients
in the regression model, b0, bHt , bAge

I In this example, the model, as read from the R output, follows

ŷWt = −191.63 + 5.15xHt + 0.04xAge

I Now, the questions of interest involve the interpretation and
inferential analyses, particularly of the slope coefficients

I Including Age in the model provides a statistical control for
Age when assessing the relation of Height to Weight

I The resulting partial slope coefficient for Height indicates the
relation of Height to Weight without any variation in Age
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R: Regression Output, 1st Partial Slope Coefficient
Conclusions for Height

I Descriptive Result: bHt = 5.15, so for these measurements of
10 men, each increase in Height of one inch leads to an
average increase of 5.15 lbs, for all men of the same Age

I Further, the p-value that evaluates the null hypothesis that
H0 : βHt = 0 is small, p-value < 0.043, so reject H0

I Interpretation of Hypothesis Test: A relation of Height and
Weight is detected for men of the same Age

I Consistent with this result, the 95% confidence interval only
contains positive values, from 0.22 lbs to 10.09 lbs

I Interpretation of Confidence Interval: At the 95% level of
confidence, on average, associate each 1 inch increase of
Height with an increase in Weight somewhere from 0.22 lbs to
10.09 lbs, for all men of the same Age
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R: Regression Output, 2nd Partial Slope Coefficient
Conclusions for Age

I Descriptive Result: bAge = 0.04, so for these measurements
of 10 men, each increase in Age of one year leads to an average
increase of 0.04 lbs, for all men of the same Height

I However, the p-value that evaluates the null hypothesis that
H0 : βAge = 0 is large, p-value = 0.956 > α = 0.05, no reject

I Interpretation of Hypothesis Test: No relation of Age and
Weight detected for men of the same Height

I Consistent with this result, the 95% confidence interval, which
is from −1.45 lbs to 1.53 lbs, contains 0

I Interpretation of Confidence Interval: Conclude that the
relation of Age on Weight is not detected, at least when all
men are of the same Height

I Perhaps there is an effect, but the effect is reasonably small
and this analysis did not have enough power to detect it
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III: Assess Model Fit
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R: Regression Output, Model Fit Index, se

Analyze the size of the residuals
I To analyze the efficacy of the entire model, not just the

individual partial slope coefficients, examine the fit indices
Standard deviation of residuals:

14.62 for 7 degrees of freedom
If normal, the approximate 95% range of residuals about each

fitted value is 2*t-cutoff*14.62165, with a 95% interval
t-cutoff of 2.365

95% range of variation: 69.15

I The se = 14.62 lbs for df = n − 3 = 10− 3 = 7
I Descriptive Result: For a sample of data in which the model

minimizes the sum of squared residuals of Weight about the
fitted value for specific values of Height and Weight, 95% of
the fitted Weights are estimated to span a range of 69.15 lbs,
much too large to be of practical use
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R: Regression Output, Model Fit Index, R2

Compare the size of the residuals to those of the null model
R-squared: 0.511 Adjusted R-squared 0.372

Null hypothesis that population R-squared=0
F-statistic: 3.662 df: 2 and 7 p-value: 0.082

I R2 = 0.51, so in this sample a reduction in training error
moving from the null model of Weight to the current model
with predictor variables Height and Age

I Statistical Decision: For the test of the null hypothesis,
H0 : population R2 = 0, the p-value is small, 0.082, so do not
reject the null hypothesis that the population R2 = 0 and
conclude that no difference of R2 is detected from 0

I Interpretation: Using Height to account for Weight, with Age
held constant, does not significantly reduce the residuals than a
model without these two predictor variables
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Compare Fit for 1- and 2-Predictor Variable Models

More predictor variables, better fit
I The addition of a predictor variable to a model for a given data

set increases the fit of the model
◦ The sum of squared residuals, ∑ e2

i always goes down
◦ R2 goes up

I In this example, moving from Height to Height and Age in a
model for Weight
◦ ∑ e2

i dropped from 1497.2 lbs to 1496.5 lbs
◦ R2 rose from 0.5111 to 0.5113

I Fit will always increase, but the increase will be trivial, as in
this example, unless the new predictor variable
◦ adds new information to the model: it does not correlate

much with the predictor variables in the model
◦ is relevant: it correlates with the response variable
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Scatterplot Matrix

Plot of multiple scatterplots on one graph
I As previously discussed, a scatterplot is a graph of the relation

between two numeric variables
I With multiple regression, there are more than two variables,

and, of course, when there are more than two variables, there is
more than one scatterplot
◦ For example, for three variables there is a scatterplot

between Variables 1 and 2, 1 and 3 and 2 and 3
I Scatterplot matrix: The display of a scatterplot for each pair

of variables, all on one graph
I The scatterplot matrix of all the variables in the model is

automatically displayed by the less Regression function

c© 2019 by David W. Gerbing Multiple Regression: Analysis 27

R: Regression Output, Scatterplot Matrix

Wt
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Forecasts from New Data
Have R calculate a forecast for any values of the predictors

I By default, the prediction interval is provided for each set of
values for the predictor variables in the data

I One of these prediction intervals is applicable to a forecast
from new data if the values of the predictor variables in the
new data matches the given value of the predictor variables in
the original data

I To have Regression provide prediction intervals for new data,
specify the new data values for the predictor variables using the
options X1.new, X2.new . . . up to X5.new
◦ Can specify the values individually with the combine

function, such as X1.new=c(2.3,4.1)
◦ Can specify the values systematically with the sequence

function, such as X1.new=seq(0,4,0.25), which specifies
a range of values from 0 to 4 in intervals of .25
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Regression Output: Forecasts from New Data
I Specify new values of X, Ht: 64, 65 and 65 inches, and two

new values of Age: 40 and 50
> reg(Wt ∼ Ht + Age, X1.new=c(64:66), X2.new=c(40,50))

Data, Fitted Values, Confidence and Prediction Intervals
[sorted by lower bound of prediction interval]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Ht Age Wt fitted ci:lwr ci:upr pi:lwr pi:upr width
64 50.00 140.08 100.22 179.94 87.31 192.84 105.53
64 40.00 139.72 107.52 171.92 92.47 186.96 94.49
65 50.00 145.23 109.79 180.68 95.72 194.75 99.03
65 40.00 144.87 117.27 172.48 100.63 189.12 88.49
66 50.00 150.39 119.19 181.58 103.82 196.95 93.13
66 40.00 150.03 126.87 173.18 108.42 191.64 83.23

I Ht and Wt is for new data with unknown values of Wt for the
estimation algorithm, so the values for Wt are empty in the
output
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I The End
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