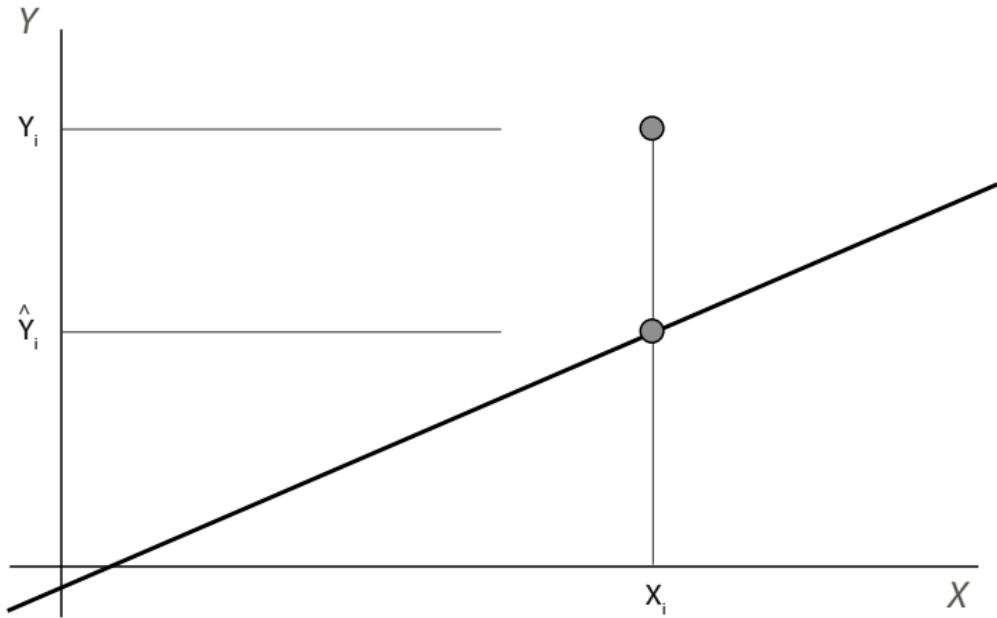
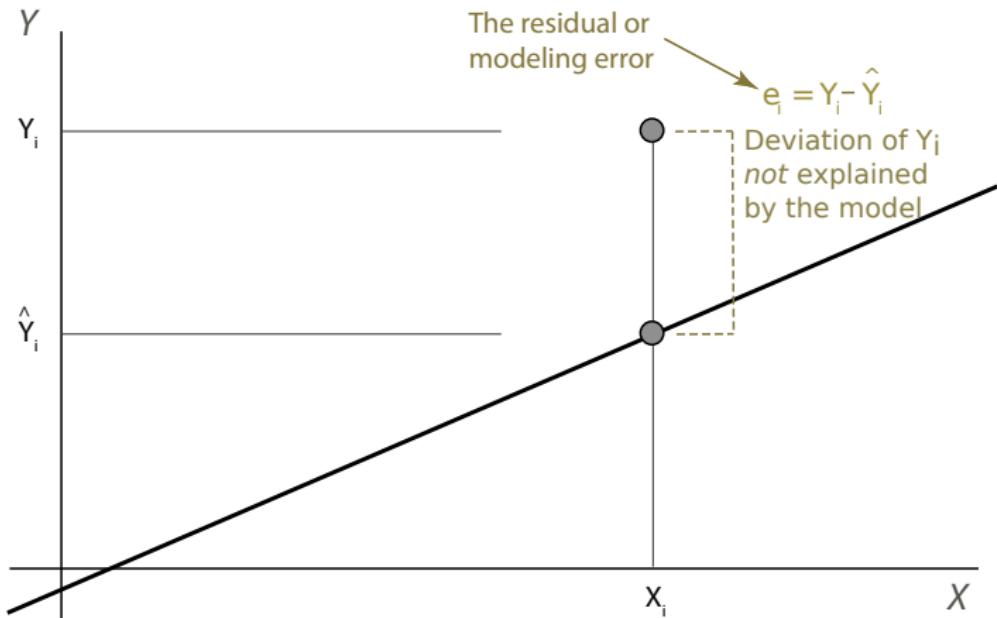


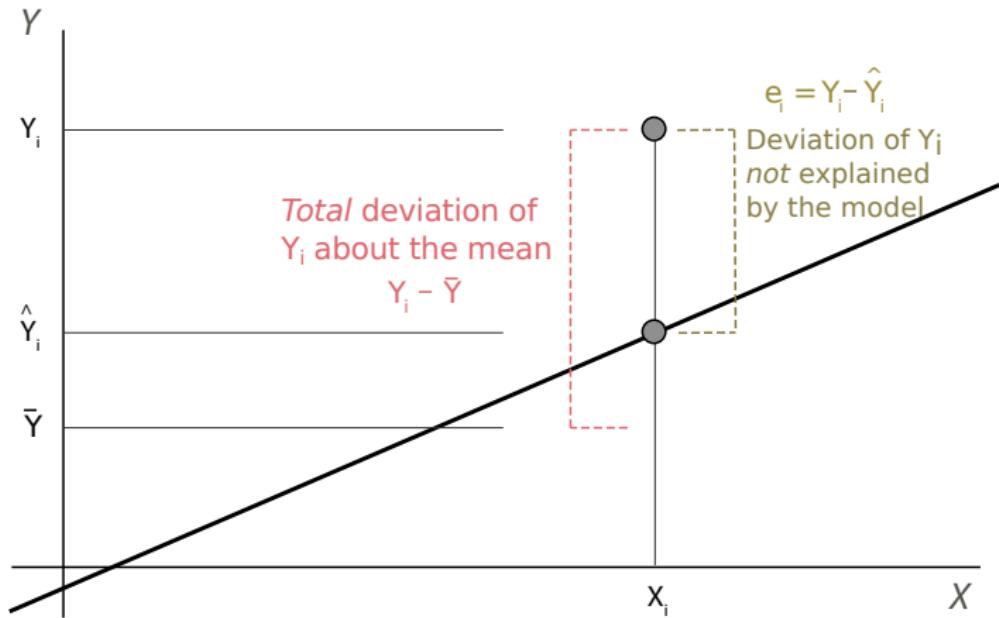
Key to R^2 : Breakdown of Variation of Y


Axes for Response Variable **Y** and Predictor Variable **X**

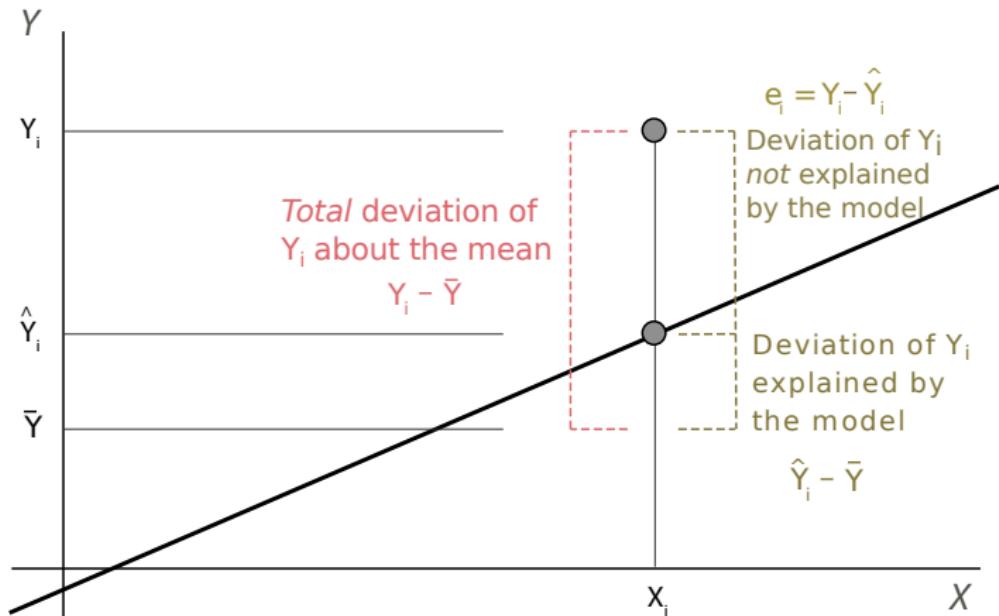
Key to R^2 : Breakdown of Variation of Y


Paired data values for i^{th} row, $\langle X_i, Y_i \rangle$, a single point

Key to R^2 : Breakdown of Variation of Y


Consider the regression line and fitted value of Y_i , \hat{Y}_i

Key to R^2 : Breakdown of Variation of Y


Modeling error is distance of Y_i from \hat{Y}_i

Key to R^2 : Breakdown of Variation of Y

Consider also the total deviation of Y, $Y_i - \bar{Y}_i$

Key to R^2 : Breakdown of Variation of Y

total deviation = explained deviation + unexplained deviation

Key to R^2 : Breakdown of Variation of Y

Explained and unexplained variation

- ▶ Express the result from the previous figure as an equation
- ▶ Express the total deviation in Y_i in terms of what is explained and what is not explained by the model
- ▶ The relation is additive
- ▶ Begin with the total deviation about the mean: $Y_i - \bar{Y}$
- ▶ $Y_i - \bar{Y} = Y_i - \hat{Y}$
- ▶ Now just add $-\hat{Y} + \hat{Y} = 0$ to the right side of the equation
- ▶ $Y_i - \bar{Y} = (Y_i - \hat{Y}) + (\hat{Y} - \bar{Y})$
- ▶ Total deviation =
 Unexplained deviation + Explained deviation
- ▶ This result generalizes to the computation of the corresponding sum of squared deviations for each term

Key to R^2 : Breakdown of Variation of Y

Explained and unexplained variation

- ▶ Express the result from the previous figure as an **equation**
- ▶ Express the total deviation in Y_i in terms of what is explained and what is not explained by the model
- ▶ The relation is additive
- ▶ Begin with the total deviation about the mean: $Y_i - \bar{Y}$
- ▶ $Y_i - \bar{Y} = Y_i - \hat{Y}$
- ▶ Now just add $-\hat{Y} + \hat{Y} = 0$ to the right side of the equation
- ▶ $Y_i - \bar{Y} = (Y_i - \hat{Y}) + (\hat{Y} - \bar{Y})$
- ▶ Total deviation =
 Unexplained deviation + Explained deviation
- ▶ This result generalizes to the computation of the corresponding sum of squared deviations for each term

Key to R^2 : Breakdown of Variation of Y

Explained and unexplained variation

- ▶ Express the result from the previous figure as an equation
- ▶ Express the **total** deviation in Y_i in terms of what is **explained** and what is **not explained** by the model
- ▶ The relation is additive
- ▶ Begin with the total deviation about the mean: $Y_i - \bar{Y}$
- ▶ $Y_i - \bar{Y} = Y_i - \hat{Y}$
- ▶ Now just add $-\hat{Y} + \hat{Y} = 0$ to the right side of the equation
- ▶ $Y_i - \bar{Y} = (Y_i - \hat{Y}) + (\hat{Y} - \bar{Y})$
- ▶ Total deviation =
 Unexplained deviation + Explained deviation
- ▶ This result generalizes to the computation of the corresponding sum of squared deviations for each term

Key to R^2 : Breakdown of Variation of Y

Explained and unexplained variation

- ▶ Express the result from the previous figure as an equation
- ▶ Express the total deviation in Y_i in terms of what is explained and what is not explained by the model
- ▶ The relation is **additive**
- ▶ Begin with the total deviation about the mean: $Y_i - \bar{Y}$
- ▶ $Y_i - \bar{Y} = Y_i - \hat{Y}$
- ▶ Now just add $-\hat{Y} + \hat{Y} = 0$ to the right side of the equation
- ▶ $Y_i - \bar{Y} = (Y_i - \hat{Y}) + (\hat{Y} - \bar{Y})$
- ▶ Total deviation =
 Unexplained deviation + Explained deviation
- ▶ This result generalizes to the computation of the corresponding sum of squared deviations for each term

Key to R^2 : Breakdown of Variation of Y

Explained and unexplained variation

- ▶ Express the result from the previous figure as an equation
- ▶ Express the total deviation in Y_i in terms of what is explained and what is not explained by the model
- ▶ The relation is additive
- ▶ Begin with the **total** deviation about the mean: $Y_i - \bar{Y}$
 - ▶ $Y_i - \bar{Y} = Y_i - \hat{Y}$
 - ▶ Now just add $-\hat{Y} + \hat{Y} = 0$ to the right side of the equation
 - ▶ $Y_i - \bar{Y} = (Y_i - \hat{Y}) + (\hat{Y} - \bar{Y})$
 - ▶ Total deviation =
 Unexplained deviation + Explained deviation
- ▶ This result generalizes to the computation of the corresponding sum of squared deviations for each term

Key to R^2 : Breakdown of Variation of Y

Explained and unexplained variation

- ▶ Express the result from the previous figure as an equation
- ▶ Express the total deviation in Y_i in terms of what is explained and what is not explained by the model
- ▶ The relation is additive
- ▶ Begin with the total deviation about the mean: $Y_i - \bar{Y}$
- ▶ $Y_i - \bar{Y} = Y_i - \hat{Y}$
- ▶ Now just add $-\hat{Y} + \hat{Y} = 0$ to the right side of the equation
- ▶ $Y_i - \bar{Y} = (Y_i - \hat{Y}) + (\hat{Y} - \bar{Y})$
- ▶ Total deviation =
 Unexplained deviation + Explained deviation
- ▶ This result generalizes to the computation of the corresponding sum of squared deviations for each term

Key to R^2 : Breakdown of Variation of Y

Explained and unexplained variation

- ▶ Express the result from the previous figure as an equation
- ▶ Express the total deviation in Y_i in terms of what is explained and what is not explained by the model
- ▶ The relation is additive
- ▶ Begin with the total deviation about the mean: $Y_i - \bar{Y}$
- ▶ $Y_i - \bar{Y} = Y_i - \hat{Y}$
- ▶ Now just add $-\hat{Y} + \hat{Y} = 0$ to the right side of the equation
- ▶ $Y_i - \bar{Y} = (Y_i - \hat{Y}) + (\hat{Y} - \bar{Y})$
- ▶ Total deviation =
 Unexplained deviation + Explained deviation
- ▶ This result generalizes to the computation of the corresponding sum of squared deviations for each term

Key to R^2 : Breakdown of Variation of Y

Explained and unexplained variation

- ▶ Express the result from the previous figure as an equation
- ▶ Express the total deviation in Y_i in terms of what is explained and what is not explained by the model
- ▶ The relation is additive
- ▶ Begin with the total deviation about the mean: $Y_i - \bar{Y}$
- ▶ $Y_i - \bar{Y} = Y_i - \hat{Y}$
- ▶ Now just add $-\hat{Y} + \hat{Y} = 0$ to the right side of the equation
- ▶ $Y_i - \bar{Y} = (Y_i - \hat{Y}) + (\hat{Y} - \bar{Y})$
- ▶ Total deviation =
 Unexplained deviation + Explained deviation
- ▶ This result generalizes to the computation of the corresponding sum of squared deviations for each term

Key to R^2 : Breakdown of Variation of Y

Explained and unexplained variation

- ▶ Express the result from the previous figure as an equation
- ▶ Express the total deviation in Y_i in terms of what is explained and what is not explained by the model
- ▶ The relation is additive
- ▶ Begin with the total deviation about the mean: $Y_i - \bar{Y}$
- ▶ $Y_i - \bar{Y} = Y_i - \hat{Y}$
- ▶ Now just add $-\hat{Y} + \hat{Y} = 0$ to the right side of the equation
- ▶ $Y_i - \bar{Y} = (Y_i - \hat{Y}) + (\hat{Y} - \bar{Y})$
- ▶ Total deviation =
 Unexplained deviation + Explained deviation
- ▶ This result generalizes to the computation of the corresponding sum of squared deviations for each term

Key to R^2 : Breakdown of Variation of Y

Explained and unexplained variation

- ▶ Express the result from the previous figure as an equation
- ▶ Express the total deviation in Y_i in terms of what is explained and what is not explained by the model
- ▶ The relation is additive
- ▶ Begin with the total deviation about the mean: $Y_i - \bar{Y}$
- ▶ $Y_i - \bar{Y} = Y_i - \hat{Y}$
- ▶ Now just add $-\hat{Y} + \hat{Y} = 0$ to the right side of the equation
- ▶ $Y_i - \bar{Y} = (Y_i - \hat{Y}) + (\hat{Y} - \bar{Y})$
- ▶ Total deviation =
 Unexplained deviation + Explained deviation
- ▶ This result generalizes to the computation of the corresponding sum of squared deviations for each term