

Chapter 8
Assessing Relationships with
Correlation and Regression

Section 8.4
Regression Model ANOVA

© 2013 by David W. Gerbing

School of Business Administration
Portland State University

- Model Based ANOVA

8.4a
Regression Model ANOVA

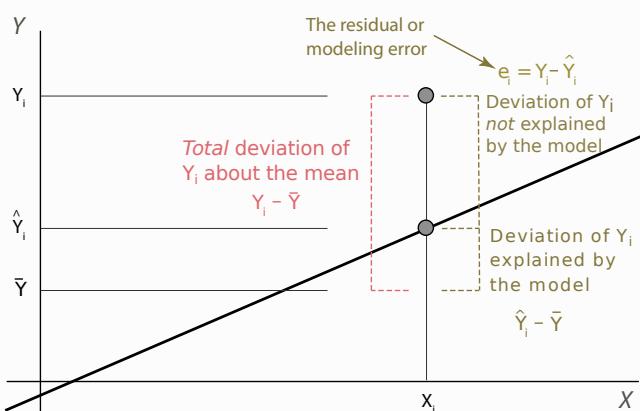
Variability via the Regression Model

More Insight Provided by a Regression Model

Variability of Y explained

- ▶ Underlying the meaning of R^2 is the **accounting of the variation of the response variable Y** provided by the regression model
- ▶ We have already explored the **variation of Y not accounted for by the model** in terms of scatter about the regression line as assessed by $\sum e_i^2$
- ▶ There is also **variation of Y that is accounted for by the model**
- ▶ And, there is the **total variation of Y** presented in the early chapters relating to the standard deviation of Y
- ▶ All of **these concepts are related**, as shown next

Key to R^2 : Breakdown of Variation of Y



Key to R^2 : Breakdown of Variation of Y

- ▶ Axes for Response Variable Y and Predictor Variable X
- ▶ Paired data values for i^{th} row, $\langle X_i, Y_i \rangle$, a single point
- ▶ Consider the regression line and fitted value of Y_i , \hat{Y}_i
- ▶ Modeling error or residual is distance of Y_i from \hat{Y}_i
- ▶ Consider also the total deviation of Y , $Y_i - m$
- ▶ total deviation = explained deviation + unexplained deviation

Key to R^2 : Breakdown of deviation of Y

Explained and unexplained deviation

- ▶ Express the result from the previous figure as an equation
- ▶ Express the total deviation in Y_i in terms of what is explained and what is not explained by the model
- ▶ The relation is additive
- ▶ Begin with the total deviation about the mean: $Y_i - m$
- ▶ $Y_i - m = Y_i - m$
- ▶ Now just add $-\hat{Y} + \hat{Y} = 0$ to the right side of the equation
- ▶ $Y_i - m = (Y_i - \hat{Y}) + (\hat{Y} - m)$
- ▶ Total deviation =
 Unexplained deviation + Explained deviation
- ▶ This result generalizes to the computation of the corresponding sum of squared deviations for each term

Key to R^2 : Breakdown of Variation

Understand how much the model does and does not explain

- ▶ **SSY (or SST)**: Total variation of Y based on deviation scores,
$$\sum(Y_i - m)^2$$
- ▶ **SSR**: Variation of Y accounted for by regression model
$$\sum(\hat{Y}_i - m)^2$$
- ▶ **SSE**: Error or residual variation of Y , not accounted for by model
$$e_i^2 = \sum(Y_i - \hat{Y}_i)^2$$
- ▶ For response variable Y , variation that the model explains and does not explain adds up to the total variation of Y
$$SSY = SSR + SSE$$

R: `reg` Output, ANOVA

Breakdown of overall variation of Y

- ▶ Return to the **ANOVA table** from the `reg` output, which contains both SSR and SSE

Analysis of Variance

	df	Sum Sq	Mean Sq	F-value	p-value
Ht	1	1565.226	1565.226	8.363	0.0201
Residuals	8	1497.249	187.156		

- ▶ For this model and data, $SSR = 1565.2$ and $SSE = \sum e^2 = 1497.2$
- ▶ The total variation of Y is not given, and so SSY would be computed from addition

$$SSY = SSR + SSE = 1565.2 + 1497.2 = 3062.4$$

▶ The End