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8.3a
Modeling Error




Fit of Model to the Data from which It is Estimated

How well does the model describe the sample data?

» Best OLS regression model can be found for any scatterplot
o Best means “best” only relative to all other possible models
o “Best” may be lousy, with much scatter about the line
» To forecast future values of y with the model, first validate
with statistical criteria that the “best” line fits the data
» Key Concept: First adequately fit the past data values of y
before attempting to predict the future values of y
» Two descriptive statistics describe the fit of the model to the
data from which the model was estimated
o Absolute criterion: standard deviation of the residuals, s,
based on size of errors (residuals) for the regression analysis
o Relative criterion: R squared, R2, compares size of
residuals to overall amount of variability of y

Regression Output: ANOVA
Fit of the model ultimately based on size of residuals

» The indicators of model fit, s, and RZ, are based directly on
the sum of the squared residuals, 3" €?

» Although not usually interpreted per se, find 3 2 in the

Regression output Analysis of Variance table, under the Sum
Sq column

Analysis of Variance

df Sum Sq Mean Sq F-value p-value
Ht 1 1565.226 1565.226 8.363 0.0201
Residuals 8 1497.249 187.156

» For this model and data, > e? = 1497.25, which, in turn,
enters into the expressions for both the standard deviation of
the residuals, s., and R?2

Standard Deviation of the Residuals




Definition: Standard Deviation of the Residuals

Assess absolute fit

» First criterion of goodness of fit directly evaluates amount of
scatter, the modeling error, about regression line
o modeling error, the residuals, represent variation about the
regression line
o Assess fit with the standard deviation of residuals

» Standard deviation of the residuals (o, or s.): Square root
of average squared residual

» To understand the meaning of s, realize that the mean of the
residuals is 0 for any one regression analysis

» So the sum of squared residuals is also the sum of squared
deviations about the mean of the residuals

Y& =3 (e —0)? = (e — )

Formula: Standard Deviation of the Residuals
Describe the size of the residuals
» The sum of the squared residuals confounds their size with the
number of the squared residuals
» Move from the sum to the mean, in this case, the variance

» Degrees of freedom is the size of the sample minus the number
of constrained parameters already estimated from which to
calculate the residuals, here by and by, so df = n—2

» Mean Squared Error: The average squared modeling error,
with the average calculated with the degrees of freedom

2
> &

MSE = oF

» Standard deviation of e: s, = VMSE

> s, illustrates the size of the typical residual, a summary of the
size of modeling errors encountered across the data

Ex: y = —193.45 +5.20X

Ht Wt PredWt Residual Residual™2

71.75 182.25( 179.76248 2.488 6.188
71.75 168.25( 179.76248 -11.512 132.537
75.50 194.00( 199.26847 -5.268 27.757
68.25 140.25( 161.55688 -21.307 453.983
68.25 156.50( 161.55688 -5.057 25.572
69.50 187.75( 168.05888 19.691 387.740
70.50 193.50( 173.26048 20.240 409.638
71.50 177.25( 178.46208 -1.212 1.469
67.00 151.00( 155.05488 -4.055 16.442
68.00 166.25( 160.25648 5.994 35.922
Sum of Squared Errors (SSE) 1497.249
Mean Squared Error (MSE), SSE/df 187.156
Standard Error of Estimate, sqrt(MSE) 13.681

1497.25

» df =10—-2=8, MSE = = 187.156

10 -2
» and s, = vV MSE = 13.681




Meaning of Standard Deviation of the Residuals

How big are the residuals?

» The standard deviation of the residuals, s., conveys the size of
the typical modeling error, or residual, e, = y; — ¥
o In this example, s, = 13.681
o There is no residual of exactly this size, but note that the
residuals tend to be around this size in magnitude, and not,
for example, .0004 or -115.82

> s. is a standard deviation, so if the modeling errors are
normally distributed, then the size of the standard error can
also be gauged according to normal curve probabilities

» About 95% of the values of normally distributed modeling
errors, €;, lie within about 42 standard deviations of their
mean of 0, for a range of 4 standard deviations

R: Regression Output: s,

Goodness of fit indices

» Always report s, for the analysis of any regression model

Standard deviation of residuals: 13.68
for 8 degrees of freedom

» Assuming a normal distribution of the residuals, then about
95% of residuals will span the range of twice the 95% t-cutoff
multiplied by the s,

If normal, the approximate 95}, range of residuals about
each fitted value is 2*t-cutoff*13.6805, with a 95Y%
interval t-cutoff of 2.306

95% range of variation: 63.09

> As expected from such a small sample size, this range of 63 Ibs
is much to large for the model to be of practical use

R? Fit Statistic




Basis of R?

Assess relative fit

» R? compares amount of scatter for two different regression
models, the model of interest with predictor variable X to the
null model, a model without X

> Null Model: A model of response variable y with no
contribution from any other variable X, which is either ...
o included in model but unrelated to y, or
o not included in the model

» Fit with null model is the worst case scenario

» In the absence of any information about a predictor variable X,
the fitted value for y is the mean of all the values of y

y=m

» Null model specifies random variation about the mean

SSE and SSY as Error Summaries for Two Models

Compare the error terms

» modeling errors from the regression model
o The fitted values of the model are the linear conditional
means of y, one conditional mean, y, for each value of X

o So assess variability about the regression line with
SSE =3 e? =3 (y; — #)? and then s,

» modeling errors from the null model
o The null model is for the analysis of variability about the one
unconditional mean of y, the same for all values of X
o So assess variability about this null line with

SSY =3 (yi — m)? and then s (i.e., s,)

Definition: R?
SSY vs SSE
» R? explicitly compares the variation about the conditional

means of y that define the regression line for each value of X
to the variation about the one unconditional mean of all of y

» Compare the ratio of SSE to SSY, the total sum of squares of
y, subtracted from 1 so that a high value indicates good fit

. ©.)2
R2:1_55E:1_Z(.yl .y’)2
SSY > (yi — m)

» Fundamental question: How much does X in the regression
model reduce the error variability from the null model?
» For R these sum of squares are under Analysis of Variance

o SSE is the Sum of Sq for Residuals
o SSY is obtained from adding all the sums of squares




Range of R?: From 0 to 1

Worst Case: X ignored or completely unrelated to y

» Null Model: y; = m, so SSE = SSY
SSy

2 — — g
> RP=1-%sy

1-1=0

Best Case: X perfectly related to y

> Regression Model: §; = y;, so SSE =0
SSE

> R2:1—$7Y:1—0:1

Interpretation: R?

Following are heuristics, informal “rules of thumb”

» An R? of ...
o 1 indicates perfect fit
o .6 is usually considered excellent fit
o .3 is usually considered adequate fit
o 0 indicates regression model provides no improvement over
null model

» The higher the R? statistic, in general, the better the quality of
the forecasts from the model

» Note, however, that R? does not directly address the quality of
the forecasts such that a high value of R? does not imply
quality forecasts

» Direct assessment of forecasting quality is provided in a
following section

A More Realistic Version of R*: RZ,

The adjusted R?

» Adding predictor variables to a model reduces R? to the extent
that if the number of predictors equals the sample size,
R?2=1.0

> Rfdj adjusts for this artificial increase in the fit of the model
with too many predictor variables relative to the sample size

» The adjustment is to divide each of the two sums of squares in
the definition of R? by their corresponding degrees of freedom
» In small samples the drop from R? to Rfdj can be large

> In larger samples Rgdj

usually much smaller

will still be somewhat smaller, but not




R: Regression Output: R?

Goodness of fit indices

» Always report R? and RZ,; for any regression analysis

R-squared: 0.511 Adjusted R-squared: 0.450

» Here, R2 = 0.51, a value considerable larger than zero

» Descriptive Result: For these data, the use of Height to
explain Weight better accounts for the value of Weight than if
Height is not included in the model

» The drop of R? = 0.51 to R3,; = 0.45 is somewhat large
because of the small sample size

R: Regression Output: Hypothesis Test of R?
Overall assessment of the model

» The fit indices s. and R? are descriptive statistics

» Here consider the inferential analysis of R?

Null hypothesis that population R-squared=0
F-statistic: 8.363 df: 1 and 8 p-value: 0.020

» The p-value is for the test of the null hypothesis that the
population R? = 0, that the inclusion of the predictor
variable(s) in the model contributes to a significant reduction
in the sum of squared residuals

» Here p-value = 0.020 < a = 0.05, so reject the null
» Interpretation: Although the residuals can be large, the use of
Height to account for Weight reduces the modeling errors for

the value of Weight at a given value of Height compared to a
model that does not include Height

Comparing the Fit Indices




R? vs s,

R? and s. do not always agree

» R? and s, provide complementary information, but not always
the same information regarding fit
o For the first two examples both fit indices agree
o The third example demonstrates that R? can also indicate

poor fit when s, by itself would indicate good fit

» A low R? indicates that the regression model is not much
better than the null model

» That is, scatter about the regression line is about as large as
scatter about the unconditional mean, such as when
o scatter about either line is large, as in previous example
o scatter about either line is small, illustrated next

R? vs s.: Good Fit is Large R? and Small s,

Y Y
Variability of . 'l"] ] Variability of
Y, about Y i (about Y)
X X
OLS Regression Line Null Mode! Line

» Regression Model: Points in the scatterplot (data) fall
relatively close to the regression line

» So sum of squared deviations about the conditional means,
SSE, tends to be small and s, tends to be small

» Null Model: Sum of squared deviations about the unconditional
mean, SSY, is relatively large compared to SSE

R? vs s.: Good Fit is Large R? and Small s,

Y Y
Variability of I J ‘J 3 ‘i'l] 1 Variability of
Y; about Y 4 Y| (about Y)
X X
OLS Regression Line Null Mode! Line

» A large decrease in variability about regression line relative to
variability about the unconditional mean, leading to a large R?
o Regression model does much better than null model
o Conclude that information provided by predictor variable X is
useful




R? vs s.: Poor Fit is Small R? and Large s,

Y ¥ -
Variability of
Y; about ¥ Variability of
[ Yi (about ¥)
X X
OLS Regression Line Mull Model Line

» A small decrease in variability about the regression line
compared to variability about the mean, leads to a small R?
o The regression model does not do much better than null
model
o Conclude that information provided by predictor variable X is
not particularly useful

R? vs s.: Poor Fit for R? and Good Fit for s,

Y
—-—‘TTL"L OVariabilit! of 11 ()Veriability of
Yi about ¥ [ Yi (about ¥)
X X
OLS Regression Line Null Model Line

. |

» The amount of scatter about the regression line is low, so s is
low, indicating good fit

» However, the variability of y is quite low, so there is not much
variation of y for the model to explain

» With little variance to explain, the improvement using X in the
regression model is also low, which means R? is low

» Small standard deviations of residuals do not necessarily mean
that the model is worthwhile

8.3b
Forecasting Error




The Process of Forecasting the Unknown

Obtain the forecasts from new data

>

>

Gather two columns of data, for variables y and X

To calculate the estimates by and by for the “best-fitting" line
drawn through the scatterplot, enter the data values into a
regression application such as R or Excel

There are no forecasts of the original y values because the
value of y for these observations are already known

Indeed both X and y values are required to estimate the
regression model, by and by

Forecasted value: A value of y = by + b; X in which the
value of X is from new data, beyond the original data from
which the model was estimated, and for which the value of y is
not yet known

The forecasted value is the fitted value, the same value, but a
different interpretation when applying a model to new data

Ex: The Process of Forecasting the Unknown

Forecasting an unknown weight from height

>

A man of unknown weight is 74 inches tall, for which there is
no corresponding data value in the scatter plot

> To forecast his weight, enter 74 into the regression model

9 = by + byX = —193.45 + 5.2(X) = —193.45 + 5.2(74) = 191.35

» Interpretation: For a man with a Height of 74 inches, from

the same population as the original sample of 10 men from
which the regression model was estimated, his forecasted
Weight is 191.35 Ibs

Ex: The Process of Forecasting the Unknown

Regression Line: \A(Wl =-193.45 + 5.2x,
I
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A Forecast is Based on New Data

Need to consider an X value with an unknown y value

>

The variability of the fitted values in the same sample from
which the model is estimated is assessed by modeling error

A forecast is calculated from a value of X in a new sample

In a new sample, the original regression model is no longer
optimal, that is, does not minimize " e?

Key Concept: To explain the variability of § for a specific
value of X from a new sample implies that sampling error, the
variability of the sample regression line from sample to sample,
must be considered

As previously discussed, these fitted values, y, are conditional
means, the means of all the values of y for a given value of X

95% Confidence Interval of a Conditional Mean: For a
specific value of X, the range of values that contains 95% of all
fitted values from all possible sample regression lines

Confidence Interval of a Conditional Mean

Consider a specific value of predictor X

>

There is a different confidence interval of the conditional mean
of X for each value of X

The fluctuation of the sample regression line from sample to
sample tends to resemble a teeter-totter

For the value of X equal to its mean, there is the least amount
of fluctuation from sample to sample of the point on the
regression line, the fitted value

The further the value of X is from its mean, the larger the
fluctuations of the fitted value across the hypothetical samples

Key Concept: The confidence interval of the conditional
mean, the point on the regression line for the corresponding
value of X, becomes larger as the value of X becomes farther
from its mean

Confidence Interval of Conditional Mean for X=70.5

>

This confidence interval of y is for the value of X=70.5 in,
close to its mean of x = 70.2
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Confidence Interval of Conditional Mean for X=75.5

» This confidence interval of y is for the value of X=75.5 in, the
largest value of X in the data set
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Confidence Intervals of Conditional Mean: All Values of X

» Plotting all confidence intervals of the conditional mean, y, for
all values of X, illustrates the teeter-totter effect
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Intervals for the Fitted Values

How much forecasting error is expected?

» Unfortunately the usual notation does not distinguish between
o y as a conditional mean, a point on the regression line
o y as a forecasted data value, a point in the scatterplot

» The future true value of y for a given value of X will not likely
equal the forecasted value, y

» Key Concept: A meaningful forecast of a specific data value
includes the range of values that likely contain the actual
future value of response variable y

» Forecasting Error: The difference between the actual value
and the forecasted value of response variable y for a given
value of predictor variable X

» 95% Prediction Interval: Range of values that contains 95%
of all future values of response variable y for a given future
value of the predictor variable, X




The Prediction Intervals of Likely Forecasting Error

How much forecasting error is expected?

» The size of the prediction interval depends on the standard
error of forecast, the standard deviation of the residuals from
true forecasting to new data

» The bad news is that forecasting error is larger than the
modeling error described by s. and R?, which are descriptive
statistics that apply only to the original sample of data

» Key Concept: The size of a prediction interval for a fitted
value depends on two sources of random variability
o The extent of modeling error, assessed by s¢
o The extent of sampling variability from sample to sample as

the regression line changes due to sampling variability,
assessed by the confidence interval

» In the analysis of prediction intervals, the smaller confidence
intervals for the regression line are usually included

Regression Output: Prediction Intervals

Assess forecasting error

» The lessR function Regression lists for each row of data its
95% prediction interval, sorted by the value of predictor
variable X

Data, Fitted Values, Confidence and Prediction Intervals

Ht Wt fitted ci:lwr ci:upr pi:lwr pi:upr width
67.00 151.00 155.05 138.45 171.66 119.40 190.70 71.30
68.00 166.25 160.26 146.74 173.78 125.93 194.58 68.64
68.25 140.25 161.56 148.71 174.40 127.50 195.62 68.12
68.25 156.50 161.56 148.71 174.40 127.50 195.62 68.12
69.50 187.75 168.06 157.67 178.45 134.84 201.27 66.43
70.50 193.50 173.26 163.21 183.31 140.15 206.37 66.22
71.50 177.25 178.46 167.12 189.80 144.94 211.99 67.05
71.75 182.25 179.76 167.89 191.63 146.06 213.47 67.41
71.75 168.25 179.76 167.89 191.63 146.06 213.47 67.41
75.50 194.00 199.27 175.13 223.41 159.54 238.99 79.45

= ©
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Interpretation of Forecasting Error

How much forecasting error is expected?

» For a Height of 67 inches, the fitted value is 155.05
§ = —193.45+5.20X = —193.45 + 5.20(67) = 155.05

» However, the actual value of y, the person’s weight, when
known, will almost certainly not be 155.05 Ibs

» Interpretation: For a man who is 67 inches tall, his actual
weight is forecasted, at the 95% prediction level, to be within
the range of 119.40 Ibs to 190.71 Ibs

» This specific prediction interval is 190.71 — 119.4 = 71.31 Ibs
wide, much too wide to be of practical use

» To decrease the width of the prediction intervals
o Decrease sampling error by increasing sample size

o Decrease modeling error by improving the fit of the model,
such as by adding additional predictor variables




Regression Output: Prediction Intervals

Prediction intervals illustrated in a scatterplot

» The lessR function Regression for a model with one
predictor variable, X, generates a graph that displays the
o a scatterplot of the data

@]

fitted regression line
o confidence intervals of fitted values
o prediction intervals of likely forecasting error

» The confidence intervals are the set of curved lines closest to
the regression line, displayed in the color blue

» The prediction intervals are the set of curved lines farthest
from the regression line, displayed in the orange/rust color

Regression Output: Prediction Intervals, n=10
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> A small sample size, with large confidence intervals and even
larger prediction intervals

Regression Output: Prediction Intervals, n=248

Wt

» A larger sample size, with small confidence intervals and still
fairly large prediction intervals




Forecasts from New Data

Have R calculate a forecast for any values of the predictor

» By default, the prediction interval is provided for each set of
values for the predictor variable in the data

» One of these prediction intervals is applicable to a forecast
from new data if the value of the predictor variable in the new
data matches the given value of the predictor variable in the
original data

» To have Regression provide prediction intervals for new data,
specify the new data values for the first predictor variable using
the X1.new option
o Can specify the values individually with the combine
function, such as X1.new=c(2.3,4.1)

o Can specify the values systematically with the sequence
function, such as X1.new=seq(0,4,0.25), which specifies
a range of values from 0 to 4 in intervals of .25

Regression Output: Forecasts from New Data

» Specify three new values of X, Ht: 64, 64.5 and 65 inches
> Regression(Wt ~ Ht, X1.new=c(64,64.5,65))

Data, Fitted Values, Confidence and Prediction Intervals
[sorted by lower bound of prediction intervall

Ht Wt fitted ci:lwr ci:upr pi:lwr pi:upr width
1 64.00 139.45 111.87 167.03 97.54 181.36 83.81
2 64.50 142.05 116.39 167.71 101.39 182.72 81.33
3 65.00 144.65 120.89 168.42 105.16 184.15 78.99

» Ht is for new data with unknown values of Wt, so the values
for Wt are empty in the output

- The End




