

Chapter 8

Assessing Relationships with Correlation and Regression

Section 8.3 Model Fit and Forecast

David Gerbing

The School of Business
Portland State University

- Model Fit and Forecast
 - Modeling Error
 - Standard Deviation of the Residuals
 - R^2 Fit Statistic
 - Comparing the Fit Indices
 - Forecasting Error

8.3a Modeling Error

Fit of Model to the Data from which It is Estimated

How well does the model *describe* the sample data?

- ▶ Best OLS regression model can be found for any scatterplot
 - Best means “best” only relative to all other possible models
 - “Best” may be lousy, with much scatter about the line
- ▶ To forecast future values of y with the model, first validate with statistical criteria that the “best” line fits the data
- ▶ **Key Concept:** First adequately fit the past data values of y before attempting to predict the future values of y
- ▶ Two descriptive statistics describe the fit of the model to the data from which the model was estimated
 - **Absolute criterion:** standard deviation of the residuals, s_e , based on size of errors (residuals) for the regression analysis
 - **Relative criterion:** R^2 , compares size of residuals to overall amount of variability of y

David Gerbing

Model Assessment: Modeling Error 2

Regression Output: ANOVA

Fit of the model ultimately based on size of residuals

- ▶ The indicators of model fit, s_e and R^2 , are based directly on the sum of the squared residuals, $\sum e^2$
- ▶ Although not usually interpreted per se, find $\sum e^2$ in the Regression output Analysis of Variance table, under the Sum Sq column

Analysis of Variance

	df	Sum Sq	Mean Sq	F-value	p-value
Ht	1	1565.226	1565.226	8.363	0.0201
Residuals	8	1497.249	187.156		

- ▶ For this model and data, $\sum e^2 = 1497.25$, which, in turn, enters into the expressions for both the standard deviation of the residuals, s_e , and R^2

David Gerbing

Model Assessment: Modeling Error 3

Standard Deviation of the Residuals

David Gerbing

Model Assessment: Modeling Error 4

Definition: Standard Deviation of the Residuals

Assess absolute fit

- ▶ First criterion of **goodness of fit** directly evaluates amount of scatter, the modeling error, about regression line
 - modeling error, the residuals, represent variation about the regression line
 - Assess fit with the standard deviation of residuals
- ▶ **Standard deviation of the residuals** (σ_e or s_e): Square root of average squared residual
- ▶ To understand the meaning of s_e , realize that the **mean of the residuals is 0** for any one regression analysis
- ▶ So the **sum of squared residuals** is also the sum of squared deviations about the mean of the residuals

$$\sum e_i^2 = \sum (e_i - 0)^2 = \sum (e_i - \bar{e})^2$$

Formula: Standard Deviation of the Residuals

Describe the size of the residuals

- ▶ The **sum of the squared residuals** **confounds** their **size** with the **number** of the squared residuals
- ▶ Move from the **sum to the mean**, in this case, the variance
- ▶ **Degrees of freedom** is the size of the sample minus the number of constrained parameters already estimated from which to calculate the residuals, here b_0 and b_1 , so $df = n - 2$
- ▶ **Mean Squared Error**: The average squared modeling error, with the average calculated with the degrees of freedom

$$MSE = \frac{\sum e_i^2}{df}$$

- ▶ **Standard deviation of e**: $s_e = \sqrt{MSE}$
- ▶ s_e illustrates the **size of the typical residual**, a summary of the size of modeling errors encountered across the data

Ex: $\hat{y} = -193.45 + 5.20X$

Ht	Wt	PredWt	Residual	Residual^2
71.75	182.25	179.76248	2.488	6.188
71.75	168.25	179.76248	-11.512	132.537
75.50	194.00	199.26847	-5.268	27.757
68.25	140.25	161.55688	-21.307	453.983
68.25	156.50	161.55688	-5.057	25.572
69.50	187.75	168.05888	19.691	387.740
70.50	193.50	173.26048	20.240	409.638
71.50	177.25	178.46208	-1.212	1.469
67.00	151.00	155.05488	-4.055	16.442
68.00	166.25	160.25648	5.994	35.922
Sum of Squared Errors (SSE)				1497.249
Mean Squared Error (MSE), SSE/df				187.156
Standard Error of Estimate, \sqrt{MSE}				13.681

- ▶ $df = 10 - 2 = 8$, $MSE = \frac{1497.25}{10 - 2} = 187.156$
- ▶ and $s_e = \sqrt{MSE} = 13.681$

Meaning of Standard Deviation of the Residuals

How big are the residuals?

- ▶ The standard deviation of the residuals, s_e , conveys the size of the typical modeling error, or residual, $e_i = y_i - \hat{y}_i$
 - In this example, $s_e = 13.681$
 - There is no residual of exactly this size, but note that the residuals tend to be around this size in magnitude, and not, for example, .0004 or -115.82
- ▶ s_e is a standard deviation, so if the modeling errors are normally distributed, then the size of the standard error can also be gauged according to normal curve probabilities
- ▶ About 95% of the values of normally distributed modeling errors, e_i , lie within about ± 2 standard deviations of their mean of 0, for a range of 4 standard deviations

David Gerbing

Model Assessment: Modeling Error 8

R: Regression Output: s_e

Goodness of fit indices

- ▶ Always report s_e for the analysis of any regression model

Standard deviation of residuals: 13.68
for 8 degrees of freedom

- ▶ Assuming a normal distribution of the residuals, then about 95% of residuals will span the range of twice the 95% t -cutoff multiplied by the s_e

If normal, the approximate 95% range of residuals about each fitted value is $2*t\text{-cutoff} * 13.6805$, with a 95% interval t -cutoff of 2.306
95% range of variation: 63.09

- ▶ As expected from such a small sample size, this range of 63 lbs is much to large for the model to be of practical use

David Gerbing

Model Assessment: Modeling Error 9

R^2 Fit Statistic

David Gerbing

Model Assessment: Modeling Error 10

Basis of R^2

Assess relative fit

- ▶ R^2 compares amount of scatter for two different regression models, the **model of interest** with predictor variable X to the **null model**, a model without X
- ▶ **Null Model:** A model of response variable y with no contribution from any other variable X, which is either ...
 - included in model but unrelated to y , or
 - not included in the model
- ▶ Fit with null model is the **worst case scenario**
- ▶ In the absence of any information about a predictor variable X, the **fitted value** for y is the **mean** of *all* the values of y
$$\hat{y} = m$$
- ▶ Null model specifies random variation about the mean

David Gerbing

Model Assessment: Modeling Error 11

SSE and SSY as Error Summaries for Two Models

Compare the error terms

- ▶ modeling errors from the regression model
 - The **fitted values** of the model are the **linear conditional means** of y , one conditional mean, \hat{y} , for each value of X
 - So **assess variability** about the regression line with
$$SSE = \sum e_i^2 = \sum (y_i - \hat{y})^2 \text{ and then } s_e$$
- ▶ modeling errors from the null model
 - The **null model** is for the **analysis of variability** about the **one unconditional mean** of y , the same for all values of X
 - So **assess variability** about this null line with
$$SSY = \sum (y_i - m)^2 \text{ and then } s (i.e., s_y)$$

David Gerbing

Model Assessment: Modeling Error 12

Definition: R^2

SSE vs SSY

- ▶ R^2 explicitly compares the variation about the **conditional means** of y that define the regression line for each value of X to the variation about the **one unconditional mean** of all of y
- ▶ Compare the **ratio of SSE to SSY**, the total sum of squares of y , subtracted from 1 so that a high value indicates good fit

$$R^2 = 1 - \frac{SSE}{SSY} = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - m)^2}$$

- ▶ Fundamental question: **How much does X in the regression model reduce the error variability from the null model?**
- ▶ For R these sum of squares are under **Analysis of Variance**
 - **SSE** is the **Sum of Sq for Residuals**
 - **SSY** is obtained from adding all the **sums of squares**

David Gerbing

Model Assessment: Modeling Error 13

Range of R^2 : From 0 to 1

Worst Case: X ignored or completely unrelated to y

- ▶ Null Model: $\hat{y}_i = m$, so SSE = SSY
- ▶ $R^2 = 1 - \frac{SSE}{SSY} = 1 - 1 = 0$

Best Case: X perfectly related to y

- ▶ Regression Model: $\hat{y}_i = y_i$, so SSE = 0
- ▶ $R^2 = 1 - \frac{SSE}{SSY} = 1 - 0 = 1$

Interpretation: R^2

Following are heuristics, informal “rules of thumb”

- ▶ An R^2 of ...
 - 1 indicates perfect fit
 - .6 is usually considered excellent fit
 - .3 is usually considered adequate fit
 - 0 indicates regression model provides no improvement over null model
- ▶ The higher the R^2 statistic, in general, the better the quality of the forecasts from the model
- ▶ Note, however, that R^2 does not directly address the quality of the forecasts such that a high value of R^2 does not imply quality forecasts
- ▶ Direct assessment of forecasting quality is provided in a following section

A More Realistic Version of R^2 : R^2_{adj}

The adjusted R^2

- ▶ Adding predictor variables to a model reduces R^2 to the extent that if the number of predictors equals the sample size, $R^2 = 1.0$
- ▶ R^2_{adj} adjusts for this artificial increase in the fit of the model with too many predictor variables relative to the sample size
- ▶ The adjustment is to divide each of the two sums of squares in the definition of R^2 by their corresponding degrees of freedom
- ▶ In small samples the drop from R^2 to R^2_{adj} can be large
- ▶ In larger samples R^2_{adj} will still be somewhat smaller, but not usually much smaller

R: Regression Output: R^2

Goodness of fit indices

- ▶ Always report R^2 and R^2_{adj} for any regression analysis
R-squared: 0.511 Adjusted R-squared: 0.450
- ▶ Here, $R^2 = 0.51$, a value considerably larger than zero
- ▶ **Descriptive Result:** For these data, the use of Height to explain Weight better accounts for the value of Weight than if Height is not included in the model
- ▶ The drop of $R^2 = 0.51$ to $R^2_{adj} = 0.45$ is somewhat large because of the small sample size

R: Regression Output: Hypothesis Test of R^2

Overall assessment of the model

- ▶ The fit indices s_e and R^2 are descriptive statistics
- ▶ Here consider the inferential analysis of R^2
Null hypothesis that population R-squared=0
F-statistic: 8.363 df: 1 and 8 p-value: 0.020
- ▶ The p -value is for the test of the **null hypothesis** that the population $R^2 = 0$, that the inclusion of the predictor variable(s) in the model contributes to a **significant reduction in the sum of squared residuals**
- ▶ Here p -value = 0.020 $< \alpha = 0.05$, so **reject** the null
- ▶ **Interpretation:** Although the residuals can be large, the use of Height to account for Weight reduces the modeling errors for the value of Weight at a given value of Height compared to a model that does not include Height

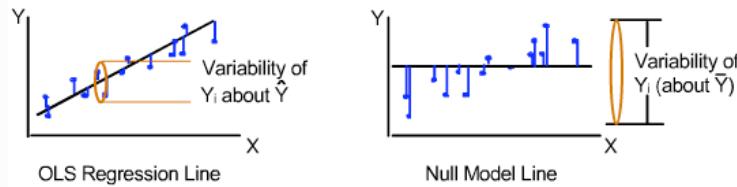
Comparing the Fit Indices

R^2 vs s_e

R^2 and s_e do not always agree

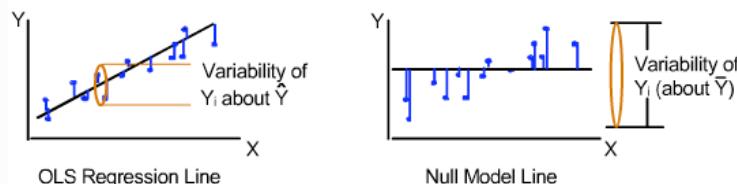
- ▶ R^2 and s_e provide complementary information, but not always the same information regarding fit
 - For the first two examples both fit indices agree
 - The third example demonstrates that R^2 can also indicate poor fit when s_e by itself would indicate good fit
- ▶ A low R^2 indicates that the regression model is not much better than the null model
- ▶ That is, scatter about the regression line is about as large as scatter about the unconditional mean, such as when
 - scatter about either line is large, as in previous example
 - scatter about either line is small, illustrated next

R^2 vs s_e : Good Fit is Large R^2 and Small s_e



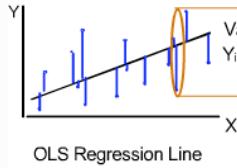
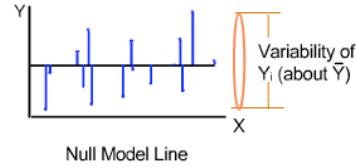
- ▶ **Regression Model:** Points in the scatterplot (data) fall relatively close to the regression line
- ▶ So sum of squared deviations about the conditional means, SSE, tends to be small and s_e tends to be small
- ▶ **Null Model:** Sum of squared deviations about the unconditional mean, SSY, is relatively large compared to SSE

R^2 vs s_e : Good Fit is Large R^2 and Small s_e



- ▶ A large decrease in variability about regression line relative to variability about the unconditional mean, leading to a large R^2
 - Regression model does much better than null model
 - Conclude that information provided by predictor variable X is useful

R^2 vs s_e : Poor Fit is Small R^2 and Large s_e

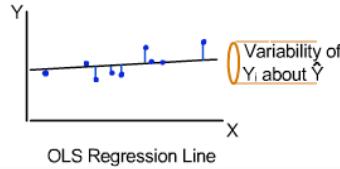
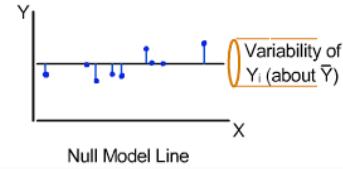


- ▶ A small decrease in variability about the regression line compared to variability about the mean, leads to a small R^2
 - The regression model does *not* do much better than null model
 - Conclude that information provided by predictor variable X is *not* particularly useful

David Gerbing

Model Assessment: Modeling Error 23

R^2 vs s_e : Poor Fit for R^2 and Good Fit for s_e



- ▶ The amount of scatter about the regression line is low, so s_e is low, indicating good fit
- ▶ However, the variability of y is quite low, so there is not much variation of y for the model to explain
- ▶ With little variance to explain, the improvement using X in the regression model is also low, which means R^2 is low
- ▶ Small standard deviations of residuals do not necessarily mean that the model is worthwhile

David Gerbing

Model Assessment: Modeling Error 24

8.3b Forecasting Error

David Gerbing

Model Assessment: Forecasting Error 25

The Process of Forecasting the Unknown

Obtain the forecasts from new data

- ▶ Gather two columns of data, for variables y and X
- ▶ To calculate the estimates b_0 and b_1 for the "best-fitting" line drawn through the scatterplot, enter the data values into a regression application such as R or Excel
- ▶ There are no forecasts of the original y values because the value of y for these observations are already known
- ▶ Indeed both X and y values are required to estimate the regression model, b_0 and b_1
- ▶ **Forecasted value:** A value of $\hat{y} = b_0 + b_1X$ in which the value of X is from new data, beyond the original data from which the model was estimated, and for which the value of y is not yet known
- ▶ The forecasted value is the fitted value, the same value, but a different interpretation when applying a model to new data

Ex: The Process of Forecasting the Unknown

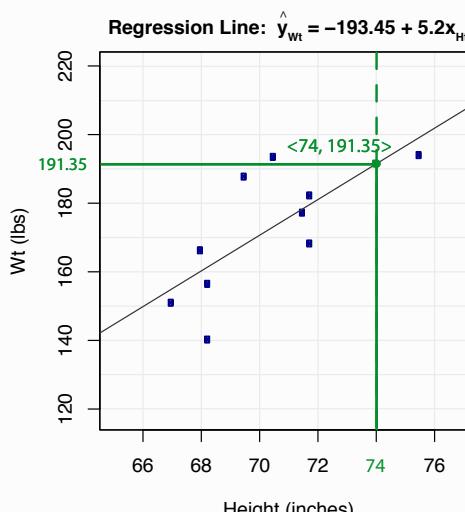
Forecasting an unknown weight from height

- ▶ A man of unknown weight is 74 inches tall, for which there is no corresponding data value in the scatter plot
- ▶ To forecast his weight, enter 74 into the regression model

$$\hat{y} = b_0 + b_1X = -193.45 + 5.2(X) = -193.45 + 5.2(74) = 191.35$$

- ▶ **Interpretation:** For a man with a Height of 74 inches, from the same population as the original sample of 10 men from which the regression model was estimated, his forecasted Weight is 191.35 lbs

Ex: The Process of Forecasting the Unknown



A Forecast is Based on New Data

Need to consider an X value with an unknown y value

- The **variability of the fitted values** in the *same* sample from which the model is estimated is assessed by **modeling error**
- A forecast is calculated from a value of X in a *new* sample
- In a new sample, the original regression model is no longer optimal, that is, **does not minimize** $\sum e_i^2$
- **Key Concept:** To explain the variability of \hat{y} for a specific value of X from a new sample implies that sampling error, the **variability of the sample regression line from sample to sample**, must be considered
- As previously discussed, these **fitted values**, \hat{y} , are **conditional means**, the means of all the values of y for a given value of X
- **95% Confidence Interval of a Conditional Mean:** For a specific value of X , the range of values that contains 95% of all fitted values from all possible sample regression lines

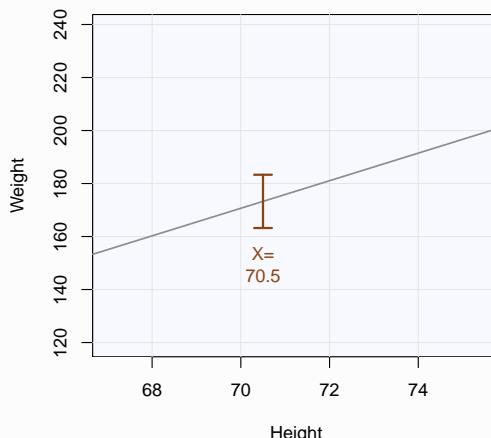
Confidence Interval of a Conditional Mean

Consider a specific value of predictor X

- There is a different confidence interval of the conditional mean of X for each value of X
- The fluctuation of the sample regression line from sample to sample tends to **resemble a teeter-totter**
- For the value of X equal to its mean, there is the **least amount of fluctuation** from sample to sample of the point on the regression line, the fitted value
- The further the value of X is from its mean, the **larger the fluctuations** of the fitted value across the hypothetical samples
- **Key Concept:** The confidence interval of the conditional mean, the point on the regression line for the corresponding value of X , becomes larger as the value of X becomes farther from its mean

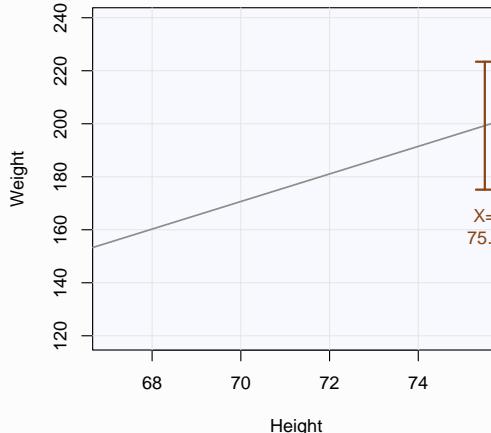
Confidence Interval of Conditional Mean for $X=70.5$

- This confidence interval of \hat{y} is for the value of $X=70.5$ in, **close to its mean** of $\bar{x} = 70.2$



Confidence Interval of Conditional Mean for $X=75.5$

- ▶ This confidence interval of \hat{y} is for the value of $X=75.5$ in, the largest value of X in the data set

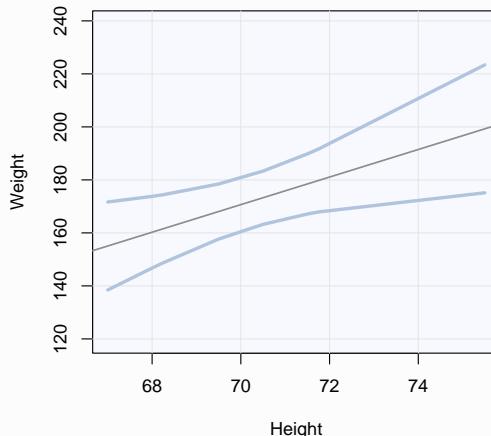


David Gerbing

Model Assessment: Forecasting Error 33

Confidence Intervals of Conditional Mean: All Values of X

- ▶ Plotting all confidence intervals of the conditional mean, \hat{y} , for all values of X , illustrates the teeter-totter effect



David Gerbing

Model Assessment: Forecasting Error 34

Intervals for the Fitted Values

How much forecasting error is expected?

- ▶ Unfortunately the usual notation does not distinguish between
 - \hat{y} as a conditional mean, a point on the regression line
 - \hat{y} as a forecasted data value, a point in the scatterplot
- ▶ The future true value of y for a given value of X will not likely equal the forecasted value, \hat{y}
- ▶ **Key Concept:** A meaningful forecast of a specific data value includes the range of values that likely contain the actual future value of response variable y
- ▶ **Forecasting Error:** The difference between the actual value and the forecasted value of response variable y for a given value of predictor variable X
- ▶ **95% Prediction Interval:** Range of values that contains 95% of all future values of response variable y for a given future value of the predictor variable, X

David Gerbing

Model Assessment: Forecasting Error 35

The Prediction Intervals of Likely Forecasting Error

How much forecasting error is expected?

- ▶ The size of the prediction interval depends on the **standard error of forecast**, the standard deviation of the residuals from true forecasting to **new data**
- ▶ The bad news is that **forecasting error is larger than the modeling error described by s_e and R^2** , which are descriptive statistics that apply only to the original sample of data
- ▶ **Key Concept:** The size of a prediction interval for a fitted value depends on two sources of random variability
 - The extent of **modeling error**, assessed by s_e
 - The extent of **sampling variability from sample to sample** as the regression line changes due to sampling variability, assessed by the confidence interval
- ▶ In the analysis of prediction intervals, the **smaller confidence intervals for the regression line are usually included**

David Gerbing

Model Assessment: Forecasting Error 36

Regression Output: Prediction Intervals

Assess forecasting error

- ▶ The **lessR** function **Regression** lists for **each row of data its 95% prediction interval**, sorted by the value of predictor variable X

Data, Fitted Values, Confidence and Prediction Intervals

	Ht	Wt	fitted	ci:lwr	ci:upr	pi:lwr	pi:upr	width
9	67.00	151.00	155.05	138.45	171.66	119.40	190.70	71.30
10	68.00	166.25	160.26	146.74	173.78	125.93	194.58	68.64
4	68.25	140.25	161.56	148.71	174.40	127.50	195.62	68.12
5	68.25	156.50	161.56	148.71	174.40	127.50	195.62	68.12
6	69.50	187.75	168.06	157.67	178.45	134.84	201.27	66.43
7	70.50	193.50	173.26	163.21	183.31	140.15	206.37	66.22
8	71.50	177.25	178.46	167.12	189.80	144.94	211.99	67.05
1	71.75	182.25	179.76	167.89	191.63	146.06	213.47	67.41
2	71.75	168.25	179.76	167.89	191.63	146.06	213.47	67.41
3	75.50	194.00	199.27	175.13	223.41	159.54	238.99	79.45

David Gerbing

Model Assessment: Forecasting Error 37

Interpretation of Forecasting Error

How much forecasting error is expected?

- ▶ For a Height of 67 inches, the fitted value is 155.05
$$\hat{y} = -193.45 + 5.20X = -193.45 + 5.20(67) = 155.05$$
- ▶ However, the **actual value of y** , the person's weight, when known, will **almost certainly not be 155.05 lbs**
- ▶ **Interpretation:** For a man who is 67 inches tall, his **actual weight is forecasted, at the 95% prediction level, to be within the range of 119.40 lbs to 190.71 lbs**
- ▶ This specific prediction interval is $190.71 - 119.4 = 71.31$ lbs wide, **much too wide to be of practical use**
- ▶ To **decrease the width** of the prediction intervals
 - **Decrease sampling error** by increasing sample size
 - **Decrease modeling error** by improving the fit of the model, such as by adding additional predictor variables

David Gerbing

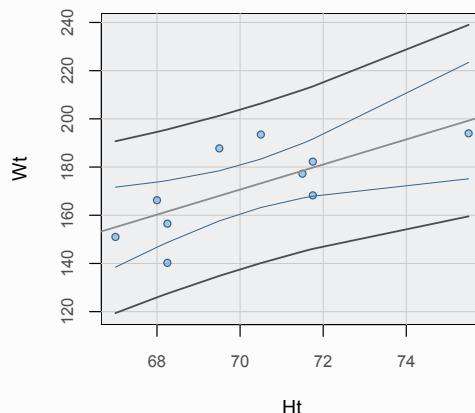
Model Assessment: Forecasting Error 38

Regression Output: Prediction Intervals

Prediction intervals illustrated in a scatterplot

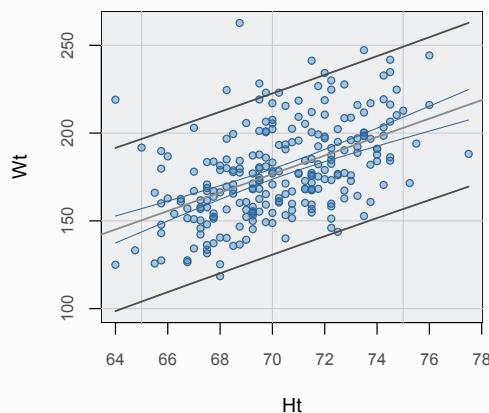
- ▶ The `lessR` function `Regression` for a model with one predictor variable, X , generates a graph that **displays** the
 - a scatterplot of the data
 - fitted regression line
 - confidence intervals of fitted values
 - prediction intervals of likely forecasting error
- ▶ The **confidence intervals** are the set of curved lines closest to the regression line, displayed in the color **blue**
- ▶ The **prediction intervals** are the set of curved lines farthest from the regression line, displayed in the **orange/rust** color

Regression Output: Prediction Intervals, $n=10$



- ▶ A **small sample size**, with large confidence intervals and even larger prediction intervals

Regression Output: Prediction Intervals, $n=248$



- ▶ A **larger sample size**, with small confidence intervals and still fairly large prediction intervals

Forecasts from New Data

Have R calculate a forecast for any values of the predictor

- ▶ By default, the prediction interval is provided for each set of values for the predictor variable in the data
- ▶ One of these prediction intervals is applicable to a forecast from new data if the value of the predictor variable in the new data matches the given value of the predictor variable in the original data
- ▶ To have **Regression** provide prediction intervals for new data, specify the new data values for the first predictor variable using the **X1.new** option
 - Can specify the values individually with the **combine** function, such as **X1.new=c(2.3,4.1)**
 - Can specify the values systematically with the **sequence** function, such as **X1.new=seq(0,4,0.25)**, which specifies a range of values from 0 to 4 in intervals of .25

David Gerbing

Model Assessment: Forecasting Error 42

Regression Output: Forecasts from New Data

- ▶ Specify three new values of X, Ht: 64, 64.5 and 65 inches

```
> Regression(Wt ~ Ht, X1.new=c(64,64.5,65))
```

Data, Fitted Values, Confidence and Prediction Intervals
[sorted by lower bound of prediction interval]

```
-----  
Ht Wt fitted ci:lwr ci:upr pi:lwr pi:upr width  
1 64.00 139.45 111.87 167.03 97.54 181.36 83.81  
2 64.50 142.05 116.39 167.71 101.39 182.72 81.33  
3 65.00 144.65 120.89 168.42 105.16 184.15 78.99
```

- ▶ Ht is for new data with unknown values of Wt, so the values for Wt are empty in the output

David Gerbing

Model Assessment: Forecasting Error 43

▶ The End