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Fit of Model to the Data from which It is Estimated

How well does the model describe the sample data?
I Best OLS regression model can be found for any scatterplot
◦ Best means “best” only relative to all other possible models
◦ “Best” may be lousy, with much scatter about the line

I To forecast future values of y with the model, first validate
with statistical criteria that the “best” line fits the data

I Key Concept: First adequately fit the past data values of y
before attempting to predict the future values of y

I Two descriptive statistics describe the fit of the model to the
data from which the model was estimated
◦ Absolute criterion: standard deviation of the residuals, se ,

based on size of errors (residuals) for the regression analysis
◦ Relative criterion: R squared, R2, compares size of

residuals to overall amount of variability of y

David Gerbing Model Assessment: Modeling Error 2

Regression Output: ANOVA
Fit of the model ultimately based on size of residuals

I The indicators of model fit, se and R2, are based directly on
the sum of the squared residuals, ∑ e2

I Although not usually interpreted per se, find ∑ e2 in the
Regression output Analysis of Variance table, under the Sum
Sq column

Analysis of Variance

df Sum Sq Mean Sq F-value p-value
Ht 1 1565.226 1565.226 8.363 0.0201

Residuals 8 1497.249 187.156

I For this model and data, ∑ e2 = 1497.25, which, in turn,
enters into the expressions for both the standard deviation of
the residuals, se , and R2
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Standard Deviation of the Residuals

David Gerbing Model Assessment: Modeling Error 4



Definition: Standard Deviation of the Residuals

Assess absolute fit
I First criterion of goodness of fit directly evaluates amount of

scatter, the modeling error, about regression line
◦ modeling error, the residuals, represent variation about the

regression line
◦ Assess fit with the standard deviation of residuals

I Standard deviation of the residuals (σe or se): Square root
of average squared residual

I To understand the meaning of se , realize that the mean of the
residuals is 0 for any one regression analysis

I So the sum of squared residuals is also the sum of squared
deviations about the mean of the residuals

∑ e2
i = ∑(ei − 0)2 = ∑(ei − ē)2
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Formula: Standard Deviation of the Residuals
Describe the size of the residuals

I The sum of the squared residuals confounds their size with the
number of the squared residuals

I Move from the sum to the mean, in this case, the variance
I Degrees of freedom is the size of the sample minus the number

of constrained parameters already estimated from which to
calculate the residuals, here b0 and b1, so df = n − 2

I Mean Squared Error: The average squared modeling error,
with the average calculated with the degrees of freedom

MSE =
∑ e2

i
df

I Standard deviation of e: se =
√

MSE
I se illustrates the size of the typical residual, a summary of the

size of modeling errors encountered across the data
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Ex: ŷ = −193.45 + 5.20X

I df = 10− 2 = 8, MSE = 1497.25
10− 2 = 187.156

I and se =
√

MSE = 13.681
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Meaning of Standard Deviation of the Residuals

How big are the residuals?
I The standard deviation of the residuals, se , conveys the size of

the typical modeling error, or residual, ei = yi − ŷi
◦ In this example, se = 13.681
◦ There is no residual of exactly this size, but note that the

residuals tend to be around this size in magnitude, and not,
for example, .0004 or -115.82

I se is a standard deviation, so if the modeling errors are
normally distributed, then the size of the standard error can
also be gauged according to normal curve probabilities

I About 95% of the values of normally distributed modeling
errors, ei , lie within about ±2 standard deviations of their
mean of 0, for a range of 4 standard deviations
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R: Regression Output: se

Goodness of fit indices
I Always report se for the analysis of any regression model

Standard deviation of residuals: 13.68
for 8 degrees of freedom

I Assuming a normal distribution of the residuals, then about
95% of residuals will span the range of twice the 95% t-cutoff
multiplied by the se

If normal, the approximate 95% range of residuals about
each fitted value is 2*t-cutoff*13.6805, with a 95%
interval t-cutoff of 2.306

95% range of variation: 63.09

I As expected from such a small sample size, this range of 63 lbs
is much to large for the model to be of practical use
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R2 Fit Statistic
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Basis of R2

Assess relative fit
I R2 compares amount of scatter for two different regression

models, the model of interest with predictor variable X to the
null model, a model without X

I Null Model: A model of response variable y with no
contribution from any other variable X, which is either . . .
◦ included in model but unrelated to y , or
◦ not included in the model

I Fit with null model is the worst case scenario
I In the absence of any information about a predictor variable X,

the fitted value for y is the mean of all the values of y
ŷ = m

I Null model specifies random variation about the mean
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SSE and SSY as Error Summaries for Two Models

Compare the error terms
I modeling errors from the regression model
◦ The fitted values of the model are the linear conditional

means of y , one conditional mean, ŷ , for each value of X
◦ So assess variability about the regression line with

SSE = ∑ e2
i = ∑(yi − ŷ)2 and then se

I modeling errors from the null model
◦ The null model is for the analysis of variability about the one

unconditional mean of y , the same for all values of X
◦ So assess variability about this null line with

SSY = ∑(yi −m)2 and then s (i.e., sy )
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Definition: R2

SSY vs SSE
I R2 explicitly compares the variation about the conditional

means of y that define the regression line for each value of X
to the variation about the one unconditional mean of all of y

I Compare the ratio of SSE to SSY, the total sum of squares of
y , subtracted from 1 so that a high value indicates good fit

R2 = 1− SSE
SSY = 1−

∑(yi − ŷi )2
∑(yi −m)2

I Fundamental question: How much does X in the regression
model reduce the error variability from the null model?

I For R these sum of squares are under Analysis of Variance
◦ SSE is the Sum of Sq for Residuals
◦ SSY is obtained from adding all the sums of squares
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Range of R2: From 0 to 1

Worst Case: X ignored or completely unrelated to y
I Null Model: ŷi = m, so SSE = SSY

I R2 = 1− SSY
SSY = 1− 1 = 0

Best Case: X perfectly related to y
I Regression Model: ŷi = yi , so SSE = 0

I R2 = 1− SSE
SSY = 1− 0 = 1
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Interpretation: R2

Following are heuristics, informal “rules of thumb”
I An R2 of . . .
◦ 1 indicates perfect fit
◦ .6 is usually considered excellent fit
◦ .3 is usually considered adequate fit
◦ 0 indicates regression model provides no improvement over

null model
I The higher the R2 statistic, in general, the better the quality of

the forecasts from the model
I Note, however, that R2 does not directly address the quality of

the forecasts such that a high value of R2 does not imply
quality forecasts

I Direct assessment of forecasting quality is provided in a
following section
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A More Realistic Version of R2: R2
adj

The adjusted R2

I Adding predictor variables to a model reduces R2 to the extent
that if the number of predictors equals the sample size,
R2 = 1.0

I R2
adj adjusts for this artificial increase in the fit of the model

with too many predictor variables relative to the sample size
I The adjustment is to divide each of the two sums of squares in

the definition of R2 by their corresponding degrees of freedom
I In small samples the drop from R2 to R2

adj can be large
I In larger samples R2

adj will still be somewhat smaller, but not
usually much smaller
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R: Regression Output: R2

Goodness of fit indices
I Always report R2 and R2

adj for any regression analysis
R-squared: 0.511 Adjusted R-squared: 0.450

I Here, R2 = 0.51, a value considerable larger than zero
I Descriptive Result: For these data, the use of Height to

explain Weight better accounts for the value of Weight than if
Height is not included in the model

I The drop of R2 = 0.51 to R2
adj = 0.45 is somewhat large

because of the small sample size
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R: Regression Output: Hypothesis Test of R2

Overall assessment of the model
I The fit indices se and R2 are descriptive statistics
I Here consider the inferential analysis of R2

Null hypothesis that population R-squared=0
F-statistic: 8.363 df: 1 and 8 p-value: 0.020

I The p-value is for the test of the null hypothesis that the
population R2 = 0, that the inclusion of the predictor
variable(s) in the model contributes to a significant reduction
in the sum of squared residuals

I Here p-value = 0.020 < α = 0.05, so reject the null
I Interpretation: Although the residuals can be large, the use of

Height to account for Weight reduces the modeling errors for
the value of Weight at a given value of Height compared to a
model that does not include Height
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Comparing the Fit Indices
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R2 vs se

R2 and se do not always agree
I R2 and se provide complementary information, but not always

the same information regarding fit
◦ For the first two examples both fit indices agree
◦ The third example demonstrates that R2 can also indicate

poor fit when se by itself would indicate good fit
I A low R2 indicates that the regression model is not much

better than the null model
I That is, scatter about the regression line is about as large as

scatter about the unconditional mean, such as when
◦ scatter about either line is large, as in previous example
◦ scatter about either line is small, illustrated next
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R2 vs se: Good Fit is Large R2 and Small se

I Regression Model: Points in the scatterplot (data) fall
relatively close to the regression line

I So sum of squared deviations about the conditional means,
SSE, tends to be small and se tends to be small

I Null Model: Sum of squared deviations about the unconditional
mean, SSY, is relatively large compared to SSE
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R2 vs se: Good Fit is Large R2 and Small se

I A large decrease in variability about regression line relative to
variability about the unconditional mean, leading to a large R2

◦ Regression model does much better than null model
◦ Conclude that information provided by predictor variable X is

useful
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R2 vs se: Poor Fit is Small R2 and Large se

I A small decrease in variability about the regression line
compared to variability about the mean, leads to a small R2

◦ The regression model does not do much better than null
model
◦ Conclude that information provided by predictor variable X is

not particularly useful
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R2 vs se: Poor Fit for R2 and Good Fit for se

I The amount of scatter about the regression line is low, so se is
low, indicating good fit

I However, the variability of y is quite low, so there is not much
variation of y for the model to explain

I With little variance to explain, the improvement using X in the
regression model is also low, which means R2 is low

I Small standard deviations of residuals do not necessarily mean
that the model is worthwhile
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8.3b
Forecasting Error
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The Process of Forecasting the Unknown
Obtain the forecasts from new data

I Gather two columns of data, for variables y and X
I To calculate the estimates b0 and b1 for the “best-fitting" line

drawn through the scatterplot, enter the data values into a
regression application such as R or Excel

I There are no forecasts of the original y values because the
value of y for these observations are already known

I Indeed both X and y values are required to estimate the
regression model, b0 and b1

I Forecasted value: A value of ŷ = b0 + b1X in which the
value of X is from new data, beyond the original data from
which the model was estimated, and for which the value of y is
not yet known

I The forecasted value is the fitted value, the same value, but a
different interpretation when applying a model to new data
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Ex: The Process of Forecasting the Unknown

Forecasting an unknown weight from height
I A man of unknown weight is 74 inches tall, for which there is

no corresponding data value in the scatter plot
I To forecast his weight, enter 74 into the regression model

ŷ = b0 + b1X = −193.45 + 5.2(X ) = −193.45 + 5.2(74) = 191.35
I Interpretation: For a man with a Height of 74 inches, from

the same population as the original sample of 10 men from
which the regression model was estimated, his forecasted
Weight is 191.35 lbs
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Ex: The Process of Forecasting the Unknown
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A Forecast is Based on New Data
Need to consider an X value with an unknown y value

I The variability of the fitted values in the same sample from
which the model is estimated is assessed by modeling error

I A forecast is calculated from a value of X in a new sample
I In a new sample, the original regression model is no longer

optimal, that is, does not minimize ∑ e2
i

I Key Concept: To explain the variability of ŷ for a specific
value of X from a new sample implies that sampling error, the
variability of the sample regression line from sample to sample,
must be considered

I As previously discussed, these fitted values, ŷ , are conditional
means, the means of all the values of y for a given value of X

I 95% Confidence Interval of a Conditional Mean: For a
specific value of X, the range of values that contains 95% of all
fitted values from all possible sample regression lines
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Confidence Interval of a Conditional Mean
Consider a specific value of predictor X

I There is a different confidence interval of the conditional mean
of X for each value of X

I The fluctuation of the sample regression line from sample to
sample tends to resemble a teeter-totter

I For the value of X equal to its mean, there is the least amount
of fluctuation from sample to sample of the point on the
regression line, the fitted value

I The further the value of X is from its mean, the larger the
fluctuations of the fitted value across the hypothetical samples

I Key Concept: The confidence interval of the conditional
mean, the point on the regression line for the corresponding
value of X, becomes larger as the value of X becomes farther
from its mean
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Confidence Interval of Conditional Mean for X=70.5
I This confidence interval of ŷ is for the value of X=70.5 in,

close to its mean of x̄ = 70.2
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Confidence Interval of Conditional Mean for X=75.5
I This confidence interval of ŷ is for the value of X=75.5 in, the

largest value of X in the data set
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Confidence Intervals of Conditional Mean: All Values of X
I Plotting all confidence intervals of the conditional mean, ŷ , for

all values of X, illustrates the teeter-totter effect
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Intervals for the Fitted Values
How much forecasting error is expected?

I Unfortunately the usual notation does not distinguish between
◦ ŷ as a conditional mean, a point on the regression line
◦ ŷ as a forecasted data value, a point in the scatterplot

I The future true value of y for a given value of X will not likely
equal the forecasted value, ŷ

I Key Concept: A meaningful forecast of a specific data value
includes the range of values that likely contain the actual
future value of response variable y

I Forecasting Error: The difference between the actual value
and the forecasted value of response variable y for a given
value of predictor variable X

I 95% Prediction Interval: Range of values that contains 95%
of all future values of response variable y for a given future
value of the predictor variable, X
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The Prediction Intervals of Likely Forecasting Error
How much forecasting error is expected?

I The size of the prediction interval depends on the standard
error of forecast, the standard deviation of the residuals from
true forecasting to new data

I The bad news is that forecasting error is larger than the
modeling error described by se and R2, which are descriptive
statistics that apply only to the original sample of data

I Key Concept: The size of a prediction interval for a fitted
value depends on two sources of random variability
◦ The extent of modeling error, assessed by se
◦ The extent of sampling variability from sample to sample as

the regression line changes due to sampling variability,
assessed by the confidence interval

I In the analysis of prediction intervals, the smaller confidence
intervals for the regression line are usually included
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Regression Output: Prediction Intervals
Assess forecasting error

I The lessR function Regression lists for each row of data its
95% prediction interval, sorted by the value of predictor
variable X

Data, Fitted Values, Confidence and Prediction Intervals
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Ht Wt fitted ci:lwr ci:upr pi:lwr pi:upr width
9 67.00 151.00 155.05 138.45 171.66 119.40 190.70 71.30
10 68.00 166.25 160.26 146.74 173.78 125.93 194.58 68.64
4 68.25 140.25 161.56 148.71 174.40 127.50 195.62 68.12
5 68.25 156.50 161.56 148.71 174.40 127.50 195.62 68.12
6 69.50 187.75 168.06 157.67 178.45 134.84 201.27 66.43
7 70.50 193.50 173.26 163.21 183.31 140.15 206.37 66.22
8 71.50 177.25 178.46 167.12 189.80 144.94 211.99 67.05
1 71.75 182.25 179.76 167.89 191.63 146.06 213.47 67.41
2 71.75 168.25 179.76 167.89 191.63 146.06 213.47 67.41
3 75.50 194.00 199.27 175.13 223.41 159.54 238.99 79.45
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Interpretation of Forecasting Error

How much forecasting error is expected?
I For a Height of 67 inches, the fitted value is 155.05

ŷ = −193.45 + 5.20X = −193.45 + 5.20(67) = 155.05
I However, the actual value of y , the person’s weight, when

known, will almost certainly not be 155.05 lbs
I Interpretation: For a man who is 67 inches tall, his actual

weight is forecasted, at the 95% prediction level, to be within
the range of 119.40 lbs to 190.71 lbs

I This specific prediction interval is 190.71− 119.4 = 71.31 lbs
wide, much too wide to be of practical use

I To decrease the width of the prediction intervals
◦ Decrease sampling error by increasing sample size
◦ Decrease modeling error by improving the fit of the model,

such as by adding additional predictor variables
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Regression Output: Prediction Intervals

Prediction intervals illustrated in a scatterplot
I The lessR function Regression for a model with one

predictor variable, X, generates a graph that displays the
◦ a scatterplot of the data
◦ fitted regression line
◦ confidence intervals of fitted values
◦ prediction intervals of likely forecasting error

I The confidence intervals are the set of curved lines closest to
the regression line, displayed in the color blue

I The prediction intervals are the set of curved lines farthest
from the regression line, displayed in the orange/rust color
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Regression Output: Prediction Intervals, n=10
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I A small sample size, with large confidence intervals and even
larger prediction intervals

David Gerbing Model Assessment: Forecasting Error 40

Regression Output: Prediction Intervals, n=248
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I A larger sample size, with small confidence intervals and still
fairly large prediction intervals
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Forecasts from New Data
Have R calculate a forecast for any values of the predictor

I By default, the prediction interval is provided for each set of
values for the predictor variable in the data

I One of these prediction intervals is applicable to a forecast
from new data if the value of the predictor variable in the new
data matches the given value of the predictor variable in the
original data

I To have Regression provide prediction intervals for new data,
specify the new data values for the first predictor variable using
the X1.new option
◦ Can specify the values individually with the combine

function, such as X1.new=c(2.3,4.1)
◦ Can specify the values systematically with the sequence

function, such as X1.new=seq(0,4,0.25), which specifies
a range of values from 0 to 4 in intervals of .25
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Regression Output: Forecasts from New Data

I Specify three new values of X, Ht: 64, 64.5 and 65 inches
> Regression(Wt ∼ Ht, X1.new=c(64,64.5,65))

Data, Fitted Values, Confidence and Prediction Intervals
[sorted by lower bound of prediction interval]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Ht Wt fitted ci:lwr ci:upr pi:lwr pi:upr width

1 64.00 139.45 111.87 167.03 97.54 181.36 83.81
2 64.50 142.05 116.39 167.71 101.39 182.72 81.33
3 65.00 144.65 120.89 168.42 105.16 184.15 78.99

I Ht is for new data with unknown values of Wt, so the values
for Wt are empty in the output
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I The End


