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Application of Regression Analysis
Many uses regression analysis as a form of machine learning

I Two primary goals of regression analysis, usually of which one
is the primary focus of a given analysis: Build a model to
◦ Forecast the unknown value of response variable y from one

or more predictor variables X (capital X because can be, and
usually is, more than 1 variable)
◦ Explain why the value of response variable y is obtained in

terms of the relations among the predictor variables X to
each other and to the y

I Regression analysis has many, many applications in
management and economics, including most instances of
forecasting . . .
◦ demand for more hospital beds as population size increases
◦ demand for inventory items at different times of the year
◦ selling price of a house based on size and age
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Regression Compared to Correlation
Two complementary procedures

I Both regression and correlation provide evidence regarding the
strength of a relationship between variables

I Size of correlation coefficient indicates extent of linear
relationship, shown by the width of a confidence ellipse

I Regression analysis: Estimate a linear equation or model,
plotted as the best line through the scatterplot of X and y

I Regression analysis indicates the extent of a relationship by
how accurately the model (i.e., line) estimates the value of y
from the corresponding value of X

I Multiple regression analysis: Estimate and analyzes a model
of y from two or more X’s

I Key Concept: Prediction complements correlation, but
neither prediction nor correlation imply causation
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Unconditional and Conditional Means

Analyze Distribution of y separately for each value of X
I Unconditional Mean: The mean of all the data, m
I The unconditional mean is just the regular mean, but the term

is introduced to set up the following concept
I Conditional Mean: Mean of y for just those data values with

a specific value of X
I Consider relating Height and Weight
◦ The mean Weight for all people in the sample is the

unconditional mean of Weight
◦ The mean Weight just for the people who are 68 inches tall

is the conditional mean of Weight for xHt = 68
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The Mean as the Basis of the Forecast

Use information about X to forecast y
I Key Concept: The forecast of a value of y is the mean of y
◦ If there is no information regarding variable X, or if X is

unrelated to y, the forecast of y is the unconditional mean
◦ If X and y are related, the forecast is the conditional mean

of y for that specific value of X from which to forecast the
corresponding value of y

I If you had enough data at each value of X, x for a single
variable as in this example, then calculate forecasts as simple
averages

David W. Gerbing Regression Analysis: The Model 5

Illustration: Conditional Mean, Data
Consider Price per Share (PPS) and Earnings per Share (EPS)

I Analyze PPS for three levels of EPS: $0.60, $0.70, $0.80
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Illustration: Conditional Mean, Plot

Scatterplot with conditional means

I The conditional means, the forecasted values of PPS based on
EPS, are almost linearly related
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Conditional Means Plus Linearity Assumption

Apply concept of conditional means with an assumption
I Usually not enough data values for each value of X to estimate

the corresponding conditional mean directly from the data
I Instead, assume a functional relationship which is usually

linearity
I Key Concept: Every point on the regression line is a

conditional mean
I Assuming linearity, each point on the line is a conditional mean

that could hypothetically be estimated directly as the mean of
y just for those rows of data that have a specified value of X
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The Regression Model

Basic terminology and notation
I Function: Relationship among variables in which the value of

one (or more) variables, X, exactly determines the value of
another variable, y

I Regression model: From a sample of paired data values for
variables X and y , estimate the coefficients of the linear
function that calculates ŷ given the value of X
◦ General linear form for one X variable: ŷ = b0 + b1x
◦ A specific linear equation: ŷ = 1.5 + 10x

I From the data values of X and y , the regression analysis
provides sample values that estimate the y-intercept and slope
of the model
◦ b0, the y-intercept
◦ b1, the slope coefficient
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The Regression Model
Basic terminology and notation

I Predictor variable: X, the data values entered into the
equation, also called the independent variable, explanatory
variable, or feature

I Response variable: y , the variable to be explained, also called
the dependent variable, explained variable, outcome variable, or
label

I Fitted value: A value of ŷi calculated from the model, where
ŷi = b0 + b1xi for a model with one predictor variable

I Slope coefficient: Change in ŷ for each unit increase in X,
which is the average change in the data values of y

I Estimated from the data, the sample slope coefficient b1
describes the average change of y only for the particular data
set from which the model was estimated

I Intercept: b0, value of ŷ when x = 0
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8.2b
Estimation of the Model

David W. Gerbing Regression Analysis: Estimation of the Model 11

Ex: Data for Regression Analysis with Scatterplot

I Height (x) and
Weight (y) for
ten men:

I Coordinates of one point, for the data for
one person, here from row six of data,
< x6, y6 >: The man with a Height of
69.50 inches and a Weight of 187.75 lbs

66 68 70 72 74 76

12
0

14
0

16
0

18
0

20
0

22
0

Height (inches)

W
t (

lb
s)

●

<69.50,187.75>
187.75

69.50

David W. Gerbing Regression Analysis: Estimation of the Model 12

R: Regression of y on X with lessR reg function
R/lessR instructions for regression

I The lessR Regression function does regression analysis, here
illustrated for response variable y and one predictor variable x

Regression(y ∼ x) or reg(y ∼ x)

I The ∼ means “depends on” or “explained by”, which indicates
a model in R notation

reg.brief(y ∼ x) for briefer output

I Following are the R/lessR instructions for the regression with
briefer output for the 10 paired values of Height and Weight
library("lessR")
d <- Read("http://lessRstats.com/data/bodyfat10.csv")
reg.brief(Wt ∼ Ht)
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Regression Output: Estimated Model
Selectively edited output for the estimates of the model

Response Variable: Wt
Predictor Variable: Ht

Estimate
(Intercept) -193.452
Ht 5.202

I The sample statistics, the values of intercept and slope
estimated from the data: b0 = −193.45 and b1 = 5.20,
so the estimated regression model is

ŷ = −193.45 + 5.20x
I Descriptive Result: The sample slope coefficient, b1 = 5.20,

indicates that, for this one sample of data, an increase of
Height of 1 inch yields an average increase of Weight of 5.2 lbs
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Ex: Fitted Value from Regression Line
What value of Weight is consistent with a specific Height?

I Consider a value of the predictor variable, Height of 6th man in
the data set: 69.5 inches

I To get the fitted value of the response variable, Weight, enter
xHT = 69.5 into the model to calculate ŷWT ,
ŷWT = −193.45 + 5.20xHT = −193.45 + 5.20(69.5) = 167.95

I Descriptive Result: For the man in these data with a Height
of 69.5 inches, the fitted value is a Weight of 167.95 lbs

I The coordinate of the 6th point on the regression line,
< x6, ŷ6 >=< 69.5, 167.95 >

I Note that in this context ŷ = 167.95 lbs is not a literal forecast
of Weight for the 6th man because we already know his actual
weight, y = 187.75 lbs, from the data
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Ex: Fitted Value from Regression Line
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Distinction Between Actual and Fitted Values of y

Data in a scatterplot do not fall on a line
I A plot of the pairs of data points is a scatterplot from which

the “best-fitting" line is calculated
I For each data value xi of predictor variable x , there is
◦ The data, a point in the scatterplot < xi , yi >

◦ The corresponding value on the regression line < xi , ŷi >

I Modeling error or residual: ei = yi − ŷi , difference between
actual and fitted values of y for a given xi

I One important goal of the analysis is to obtain a model that
has small modeling errors
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Ex: Error, the Distinction between y and ŷ

Illustrated on following slide
I Distinguish between what occurred for x = 69.50, the data,

y = 187.75,

and what is consistent with the underlying regression model,
the fitted value,

ŷ = 167.95
I To get the modeling error, the residual, for the sixth row of

data,

e6 = y6 − ŷ6,

= 187.75− 167.95,

so e6 = 19.80 lbs, the amount of underestimate by the model
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Ex: Error, the Distinction between y and ŷ
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Criterion Used to Construct a Regression Line
Estimate b0 and b1 in the equation ŷ = b0 + b1x

I For each observation, a paired value of X and y , calculate ŷ ,
and then the corresponding residual term, the error e = ŷ

I For example, 10 rows of data yields 10 values of e
I

∑ e2
i is the sum of squared (modeling) errors or SSE

I OLS: Ordinary Least Squares, the usual choice, from among
many, for estimating the coefficients of the regression model

I The OLS criterion chooses the sample coefficients b0 and b1
that provide the minimal possible value of the sum of the
squared residuals for that specific sample

estimate model that minimizes: ∑(yi − ŷi )2 = ∑ e2
i

I The resulting estimated model that uses the OLS estimates, b0
and b1, defines the “best-fitting line” through the scatterplot

I Any other choice of values for b0 and b1 would result in more
cumulative squared modeling errors, a larger value of ∑ e2

i
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Sum of Squared Errors for ŷ = −193.45 + 5.20x
Illustration of the meaning of the sum of squared errors

I Given a value for b0 and for b1, can compute the sum of
squared residuals, Σe2

I Sum of squared residuals is 1497.25
I Any other choice of b0 = −193.45 and b1 = 5.20 results in a

larger sum of squared residuals for these data
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8.2c
Inferential Analysis

David W. Gerbing Regression Analysis: Inferential Analysis 24



Inferential Considerations

What happens in the population?
I There is a question always to be asked of any descriptive

statistic, such as b0 or b1
I How close is the calculated descriptive statistic likely to be to

the unknown, but desired, population value?
I Key Concept: If a new sample of X and y values were taken,

a different value of the slope coefficient b1 would be obtained
I Like any descriptive statistic, the slope coefficient b1 has a

standard error, the standard deviation of the statistic across
repeated samples, here sb1

I The basis of statistical inference is to understand the sampling
variability of the descriptive statistic, that is, its standard error
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Population Regression Coefficients

What happens in the population?
I Each of the sample regression coefficients, the y-intercept, b0,

and slope coefficient, b1, has a corresponding population value
I Notation: The coefficients of the population regression line

are β0 and β1, which define
ŷ = β0 + β1x

I For OLS regression estimates, unknown, but desired, population
coefficients, β0 and β1, minimize ∑ e2

i for the entire population
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Population Regression Line

yy x

x

y

I The population coefficients, β0 and β1 describe the population
regression line, which unfortunately cannot be directly observed
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Population Regression Line

y x

y

x

I Obtain a random sample and calculate the sample regression
line, which differs from the population line because of sampling
error
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Population Regression Line

y x

y

x

I Draw a second random sample and get another sample
regression line because of sampling error, which leads to each
sample regression line different from another
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Population Regression Line

y x

y

x

I Conceptually, the sample regression line randomly fluctuates
from random sample to random sample even though only one
sample is typically taken and only one regression line estimated
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Inference of the Slope Coefficient: Focus on 0

What is the value of the population slope coefficient?
I The sample slope coefficients, b1, the fitted values ŷi , and

modeling errors or residuals, ei , are all descriptive statistics
I Regarding the slope coefficient specifically: Is there a

relationship in the population between the predictor variable, X,
and the response variable y?

I For the population regression model,
ŷ = β0 + β1x1

I The focus of the inferential test for the population slope
coefficient β1 is on 0
◦ If β1 < 0, a negative relationship of X and y
◦ If β1 = 0, no relationship of X and y
◦ If β1 > 0, a positive relationship of X and y
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Logic of Inference for the Slope Coefficient

What is the value of each population slope coefficient?
I Basic logic of confidence intervals and hypothesis tests for

means and mean difference remains unchanged
I Here the statistic of interest is the sample slope coefficient, b1,

with corresponding population value β1
I Inference is based on the t-cutoff, t.025, and corresponding

degrees of freedom, df
◦ first pass through data calculates two values: b0 and b1
◦ second pass through the same data to calculate residuals
with the two previously estimated values, for b0 and b1
◦ effective sample size, or degrees of freedom, is df = n − 2

for single predictor regression model
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Hypothesis Test for the Slope Coefficient

How many estimated standard errors from the null?
I Hypothesis Test for β1: Test the null hypothesis that β1 = 0

with the t-statistic, the estimated number of standard errors
the obtained b1 is from 0, and then compare the resulting
p-value to a pre-specified value of α, such as α = 0.05
◦ Null hypothesis: H0 : β1 = 0
◦ Alternative hypothesis: H1 : β1 6= 0

I If p > .05, conclude no difference detected from 0, that is, a
relationship was not detected

I If p < .05, conclude a difference detected from 0, and, more
informally, state the direction of the relation, positive or
negative
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Regression Output: Hypothesis Tests
Selectively edited output for the OLS estimates of the model

I The inferential analysis of a statistic begins with its estimated
standard error, which, for the slope coefficient, is sb1 = 1.799

Estimate Std Err t-value p-value
(Intercept) -193.452 126.340 -1.531 0.164

Ht 5.202 1.799 2.892 0.020

I The corresponding t-value is tb1 = b1 − 0
sb1

= 5.202
1.799 = 2.892

I Statistical Decision: p-value = 0.020 < α = 0.05, so reject
the null hypothesis of no relation of Heigth and Weight and,
because b1 > 0, conclude that β1 > 0

I Interpretation: As Height increases, on average, Weight
increases
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Confidence Interval for the Slope Coefficient

What is the estimated value of the slope coefficient?
I Confidence Interval for the slope coefficient: Range of

plausible values of β1
I To construct the confidence interval, move t.025 standard errors

on either side of the sample slope coefficient
β1 within b1 ± (t.025)(sb1) for df = n − 2

I Is 0 is in the confidence interval?
◦ If 0 is in the interval, then no relation detected between the

corresponding predictor variable X and response variable y
◦ If 0 is not in the interval, then all plausible values of the

population slope coefficient, β1, are either negative or
positive, so either a negative or a positive relation has been
detected between X and y
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R: lessR reg Output, Confidence Intervals
Selectively edited output for the OLS estimates of the model

Lower 95% Upper 95%
(Intercept) -484.794 97.889

Ht 1.054 9.349

I Margin of Error: (t.025;n−2)(sb1) = (2.306)(1.799) = 4.15
I The 95% confidence interval for β is

from 5.202− 4.15 = 1.05 to 5.202 + 4.15 = 9.35
I This confidence interval sets the likely bounds of the

population slope coefficient, β, so apply the definition of β to
each end of the interval

I Interpretation: At the 95% level of confidence, for each one
inch increase in Height, on average, weight likely increases
somewhere from slightly more than 1 pound to 91

3 pounds
I Margin of error is very large, but no surprise for just n = 10
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Epilogue
Ultimate purpose is to interpret the statistical results

I The interpretation ...
◦ generalizes the results from the sample to the population
◦ without the use of jargon, explained in relaxed,

conversational English
I The output by itself is worthless for business decision making
I The numbers on the output need to be translated into

meaningful conclusions
I Use statistical jargon like “null hypothesis” and “p-value” for

statistical reasoning, but no jargon for interpreting the results
I Statistical inference generalizes to the population
◦ Hypothesis test tells us if a relationship exists, from which
we can infer the direction, + or -
◦ Confidence interval estimates the extent of the relationship, a

range of plausible values of the population slope coefficient
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I The End


