

Chapter 6

Compare Two Groups

Section 6.3: Standardized Mean Difference, d

David W. Gerbing

The School of Business
Portland State University

- Standardized Mean Difference, d
 - Definition and Meaning
 - Separation of Distributions
 - Application

6.3a Definition and Meaning

Statistical Significance

An hypothesis test is the search for statistical significance

- ▶ Does a mean difference exist, that is, does $\mu_1 - \mu_2 \neq 0$?
- ▶ Regarding the relationship of grouping variable X with response variable Y, an hypothesis test results in either
 - “Yes, one true mean is likely larger than the other mean”
 - or
 - “No difference between true means detected”
- ▶ The *p-value* from the hypothesis test provides evidence as to the existence of a mean difference, but ...
- ▶ **Key Concept:** If significant, less than $\alpha = 0.05$, the *p-value* by itself provides *no* information regarding the size of the difference between μ_1 and μ_2

Effect Size

Strength of a relationship

- ▶ **Effect Size:** The magnitude of an existing difference
- ▶ The *effect size* is the separation between the group means, expressed, for example, directly as the *mean difference*
 - sample: $m_1 - m_2$
 - population: $\mu_1 - \mu_2$, estimated with the confidence interval
- ▶ The *effect size* answers the question:
 - If the group means are not equal, $\mu_1 - \mu_2 \neq 0$, how large is the difference between them?
- ▶ That is, the difference between μ_1 and μ_2 is real, but ...
 - Is $\mu_1 - \mu_2$ small and more likely not of interest even though it is nonzero?
 - Is $\mu_1 - \mu_2$ large and more likely of interest?

Practical Importance

Ultimate focus for the decision maker

- ▶ **Practical Importance:** An assessment as to whether the effect size is large enough to be useful
- ▶ Consider the effect of remodeling a retail outlet: compare average sales on a daily basis before and after the remodeling
 - If average sales per day increases, but only by \$0.01, the investment in remodeling is not justified
 - An average increase of \$148.34 per day may have justified the investment, so the effect would be of practical importance
- ▶ The *effect size* provides more information than provided by just the *p-value*
 - if $p\text{-value} > \alpha = 0.05$, then conclude a relationship exists
 - effect size indicates the *magnitude* of this relationship

Standardized Mean Difference

Traditionally called Cohen's d , after Jacob Cohen

- ▶ Express the **mean difference** in the sample as $m_1 - m_2$, and in the population as $\mu_1 - \mu_2$
- ▶ One assessment of effect size is the **mean difference** itself, expressed with units such as \$ USD, length, and hours
- ▶ Effect size can also be expressed in the universal standardized metric, as a **standardized mean difference**, based on the **standard deviation of the data**
- ▶ There are two samples of data, with **two standard deviations**, s_1 and s_2 , so standardize with the **within-group standard deviation**, s_w , calculated as an average from both samples
- ▶ **Standardized mean difference:** Number of standard deviations of the data that separate the group means

$$\text{Sample: } d = \frac{m_1 - m_2}{s_w} \quad \text{Population: } \delta = \frac{\mu_1 - \mu_2}{\sigma_w}$$

David W. Gerbing

Standardized Mean Difference: Definition and Meaning 5

Standardized Mean Difference is Unitless

d and measurement scales

- ▶ The **size of the expressed mean difference** depends, in part, on the **scale of measurement**
- ▶ For example, the **same physical distance** is expressed with **larger numbers** if in inches instead of centimeters
- ▶ True of all standardized values, d is **unitless**
- ▶ **Unitless Statistic:** The value of a statistic does not depend on the measurement scale in which the variable is expressed
- ▶ For d , this unitless property means that, for example, in the analysis of two different average lengths, the **same effect size** is **obtained** if length is measured in inches or centimeters
- ▶ This unitless property facilitates the **comparison of the strength of an effect across different studies** of variable Y in which Y is measured with different measurement scales

David W. Gerbing

Standardized Mean Difference: Definition and Meaning 6

Qualitative Description of Effect Size

Some guidelines that often, but not always, apply

- ▶ In any one situation the following guidelines may not apply, but they provide a useful context in the interpretation of d as long as **flexibility in their interpretation is maintained**
- ▶ Cohen studied many published scientific studies and, when possible from the available information, **calculated and classified the resulting values of d**
- ▶ From this analysis, he formulated some **general guidelines**
 - **Trivial Effect:** $d < .2$
 - **Small Effect:** $d > .2$ and $d < .6$
 - **Medium Effect:** $d > .6$ and $d < .8$
 - **Large Effect:** $d > .8$

David W. Gerbing

Standardized Mean Difference: Definition and Meaning 7

6.3b Separation of Distributions

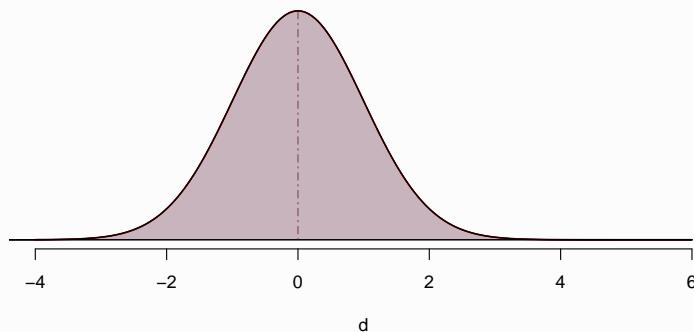
Express d in Terms of the Overlap Between Distributions

Meaning of the Standardized Mean Difference, d

- ▶ A focus on the size of the mean difference naturally leads to a consideration of **how much the two distributions of Y , one for each group, overlap**
- ▶ Consider the **amount of overlap** when Y is normally distributed for each group
- ▶ Express the distributions as **standardized normal distributions**, that is, expressed in terms of standard or z -values
- ▶ The following examples illustrate the **relation of the mean difference to the differences of the *entire* two standardized normal distributions**
- ▶ The **standardized mean difference, d** , calibrates the **separation of distributions**, best illustrated for normal distributions
- ▶ Question: How **distinct** are the two distributions depending on the value of d

Meaning of $d = 0.0$ in Terms of Distribution Overlap

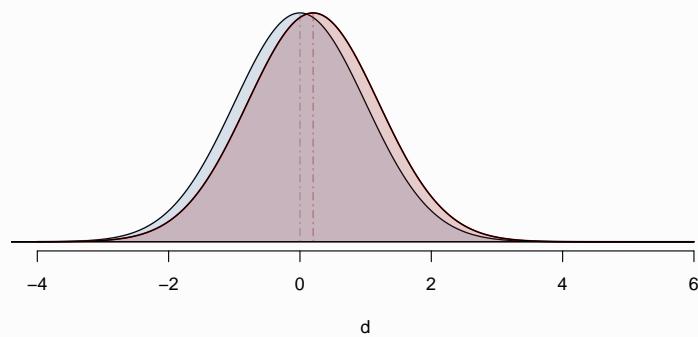
Cohen's $d = 0$, Proportion Overlap = 1



- ▶ Null hypothesis is true, $\mu_1 - \mu_2 = 0$, complete overlap

Meaning of $d = 0.2$ in Terms of Distribution Overlap

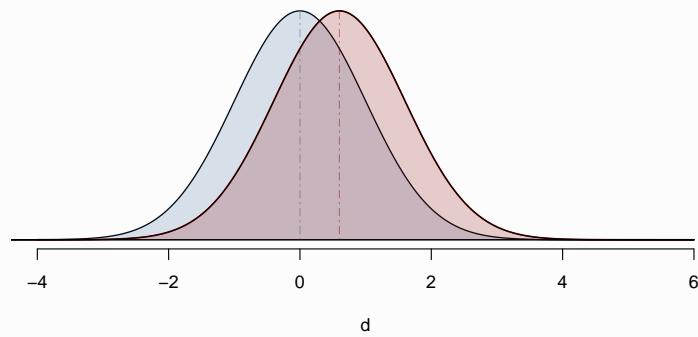
Cohen's $d = 0.2$, Proportion Overlap = 0.85



- $\mu_1 - \mu_2 \neq 0$, Effect is **small**, distributions mostly overlapped

Meaning of $d = 0.6$ in Terms of Distribution Overlap

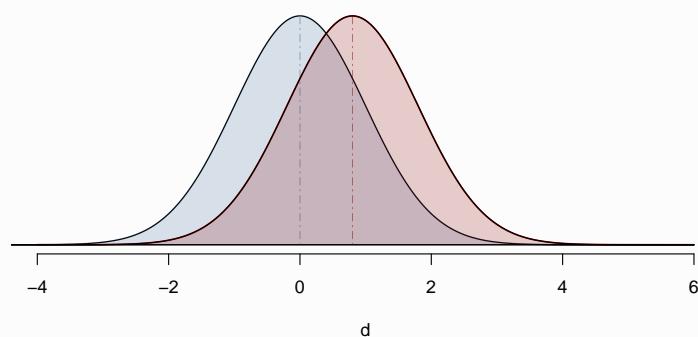
Cohen's $d = 0.6$, Proportion Overlap = 0.62



- $\mu_1 - \mu_2 \neq 0$, Effect is **moderate**, overlap pronounced

Meaning of $d = 0.8$ in Terms of Distribution Overlap

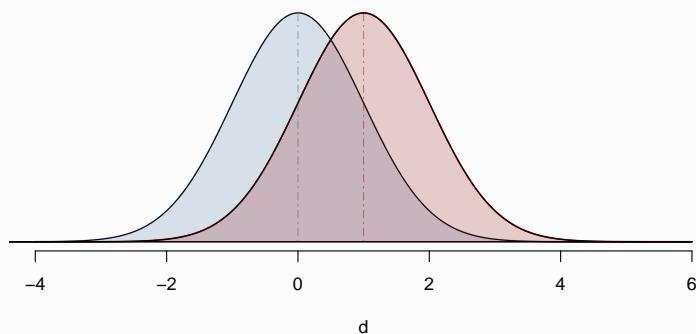
Cohen's $d = 0.8$, Proportion Overlap = 0.53



- $\mu_1 - \mu_2 \neq 0$, Effect is **large**, still more than 50% overlap

Meaning of $d = 1.00$ in Terms of Distribution Overlap

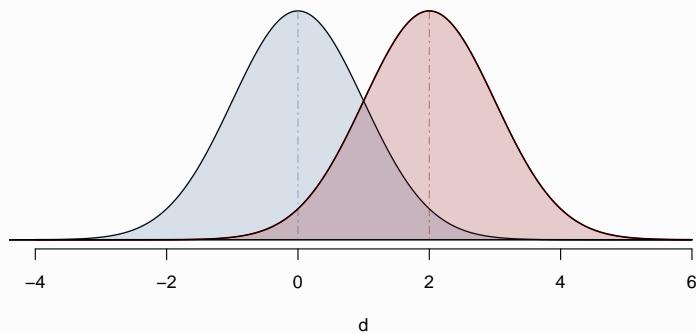
Cohen's $d = 1$, Proportion Overlap = 0.45



- $\mu_1 - \mu_2 \neq 0$, Effect is quite large, overlap still substantial

Meaning of $d = 2.00$ in Terms of Distribution Overlap

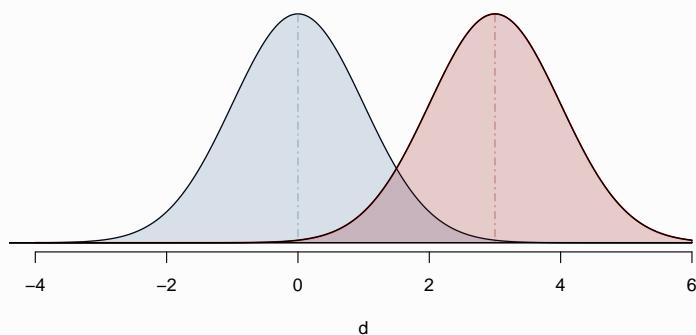
Cohen's $d = 2$, Proportion Overlap = 0.19



- $\mu_1 - \mu_2 \neq 0$, Effect is very large, overlap still considerable

Meaning of $d = 3.00$ in Terms of Distribution Overlap

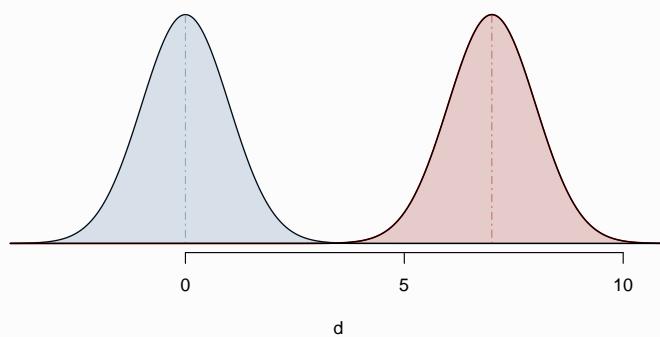
Cohen's $d = 3$, Proportion Overlap = 0.07



- $\mu_1 - \mu_2 \neq 0$, Effect is huge, still 7% percentage overlap

Meaning of $d = 7.00$ in Terms of Distribution Overlap

Cohen's $d = 7$, Proportion Overlap = 0.00023



- ▶ 7 standard deviations of separation of means finally results in mostly distinct distributions, that is, with very little overlap

A More Complete Consideration of Differences

The mean difference is one part of a more complete scenario

- ▶ The difference between means is just one characteristic of the distinction between two distributions
- ▶ Effect size in terms of d can be expressed as the amount of overlap between the distributions of the response variable Y for each group
- ▶ Focus on the standardized mean difference, d , changes the emphasis from a summary index, the mean difference, to →
 - ▶ a more complete consideration of the relation between two distributions
- ▶ Relate the two distributions plotted on the same graph to more completely reveal their differences
- ▶ Even a relatively large mean difference can reflect a substantial overlap between the distributions

6.3c Effect Size and Significance

t-statistic Depends on Size of Effect, *d*, and Sample Size

d and *t* can be expressed in terms of each other

- ▶ Divide the sample mean difference, $m_1 - m_2$, by either ...
 - standard deviation of the data, to obtain *d*
 - standard deviation of the mean difference, to obtain *t*
- ▶

$$t_{m_1 - m_2} = \frac{m_1 - m_2}{s_{m_1 - m_2}} = \frac{m_1 - m_2}{s_w} \frac{1}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = d \frac{1}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- ▶ **Key Concept:** The assessment of statistical significance, assessed with the *t*-statistic, confounds the magnitude of the relationship, assessed with *d*, with the sample sizes, *n*₁ and *n*₂
- ▶ For any given value of effect size *d*, a significant *t*-value can be obtained by increasing the sample sizes of the two groups

Statistical Significance vs. Practical Importance

A significant *p*-value does not imply an important result

- ▶ The *t*-statistic from an hypothesis test, and its associated *p*-value, do *not* estimate the size of the population mean difference
- ▶ Even for a very small separation between the distributions of response variable Y for each group, *d* slightly larger than 0, large sample sizes, *n*₁ and *n*₂, result in statistical significance
- ▶ When *d* is close to but still larger than zero, a difference from the null exists so that the null hypothesis is false, but the result may be of little or no practical importance
- ▶ Even with a result too small to be of practical importance, with a large enough sample, statistical significance is *always* obtained

Meaning of *t* vs. *d*

Move beyond just significance testing

- ▶ *t* and associated *p*-value: statistical significance, does a difference between population means exist?
- ▶ Mean difference and standardized mean difference, *d*: size of the difference as it relates to practical importance
- ▶ A statistically significant difference between means can *always* be found for sufficiently large sample sizes, no matter how small the difference between population means
- ▶ Accordingly, analysis of a mean difference should generally also include a consideration of the minimum mean difference of practical importance
- ▶ Express this minimum effect size in terms of the mean difference, in original units of measurement, *mmd*, and/or as the minimum standardized mean difference, *msmd*

6.3d Application

David W. Gerbing

Standardized Mean Difference: Application 23

Begin the Analysis

R instructions

- ▶ Invoke the `lessR` *t*-test function, `ttest()`, or `tt_brief()`, with `response` variable `Time` as a function of the `grouping variable` `Supplier`
`> tt_brief(Time ~ Supplier)`
- ▶ This application extends the previous analyses to a consideration of `effect size` and `practical importance`
 - **Section 6.1:** Statement of the problem, data, descriptive statistics, evaluation of stable process and normality assumptions, inferential analysis, conclusion
 - **Section 6.2:** Evaluation of homogeneity of variance assumption, standard error, inferential analysis not assuming homogeneity of variance

David W. Gerbing

Standardized Mean Difference: Application 24

Effect Size

--- Effect Size ---

-- Assume equal population variances of `Time` for each `Supplier`

Sample Mean Difference of `Time`: 1.49

Standardized Mean Difference of `Time`, Cohen's `d`: 0.98

95% Confidence Interval for `smd`: 0.26 to 1.70

David W. Gerbing

Standardized Mean Difference: Application 25

Graphical Display of Effect Size

Compare more than just the means

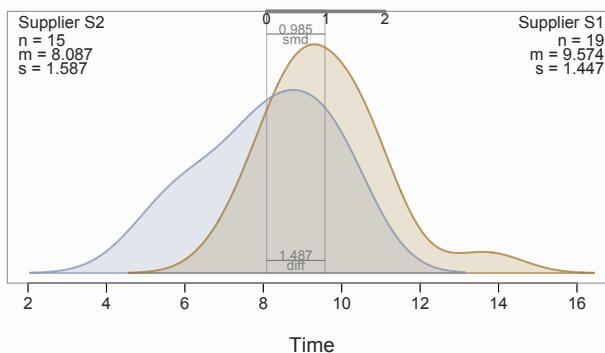
- ▶ Display the mean difference in the metric of
 - unit of measurement of the response variable, Y
 - standardized units of the response variable, Cohen's d
- ▶ Directly display the overlapping distributions, expressed as smoothed histograms, called density functions
- ▶ Observe the difference between the entire distributions
- ▶ An additional parameter for invoking `ttest()` specifies the minimum effect size, displayed in the resulting analysis
 - `mmd` for the minimum mean difference, or
 - `msmd` for the minimum standardized mean difference
- ▶ For example,

```
> tt_brief(Time ~ Supplier, mmd=0.75)
```

David W. Gerbing

Standardized Mean Difference: Application 26

Overlapping Density Curves



David W. Gerbing

Standardized Mean Difference: Application 27

Practical Importance

- ▶ As is true of any statistic, including the standardized mean difference, d , a confidence interval provides the range of plausible values for the corresponding population value, here δ

--- Practical Importance ---

Minimum Mean Difference of practical importance: `mmd`
Compare `mmd` = 0.75 to the obtained value of md = 1.49
Compare `mmd` to the confidence interval for md :
0.42 to 2.55

Minimum Standardized Mean Difference of practical importance: `msmd`
Compare `msmd` = 0.5 to the obtained value of smd = 0.98
Compare `msmd` to the confidence interval for smd :
0.26 to 1.7

David W. Gerbing

Standardized Mean Difference: Application 28

Extent of Graphics Smoothing

--- Graphics Smoothing Parameter ---

Density bandwidth for Supplier S1: 0.91
Density bandwidth for Supplier S2: 1.05

- ▶ Increase the default bandwidth for a smoother density curve
- ▶ Decrease the default bandwidth for a density curve with more fluctuations
- ▶ Change the density bandwidth from the default with `bw1` and `bw2` options, for the first and second groups, respectively

Index Subtract 2 from each listed value to get the Slide

effect size, 5
practical importance, 6

standardized mean difference, 7
unitless statistic, 8

▶ The End