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Statistical Inference Requires the Standard Error
Basic tools of inference

I Statistical inference, confidence interval or hypothesis test, is
based on the concept of a standard error

I Standard Error: The (usually hypothetical) standard deviation
of a statistic over multiple samples

I Instead of actually taking multiple samples, the standard error
can be estimated from the information in a single sample,
though it only has meaning defined over multiple samples

I In the case of the standard error of the mean difference . . .
◦ two independent samples are drawn
◦ the corresponding means computed
◦ the difference between the two sample means computed

I Conceptually, the meaning of standard error is the standard
deviation of the entire distribution of the sample mean
difference over many (usually hypothetical) repeated trials
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Conceptual Meaning of Standard Error of Mean Difference

Y11st Population, 2nd Population, Y2

Take a sample of size       n1 Take a sample of size       n2
m1Calculate sample mean m2Calculate sample mean

Calculate sample mean difference 

1m m2–

Hypothetically repeat this 
sampling process many  
times, forming a distribution
of sample mean differences

m1 m2–

–µ  µ21

Standard error of the sample mean difference: Standard
deviation of the distribution of sample mean differences
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Standard Error: Homogeneity of Variance
A technical issue that requires consideration

I Homogeneity of variance: Equal population variances of Y
for each group, that is, σ21 = σ22, which equal a common σ2

I For technical, mathematical reasons, only when homogeneity of
variance is true can the t-distribution be strictly applied to
statistical inference of the mean difference

I In practice, homogeneity of variance is usually demonstrated, or
at least assumed, for the analysis of the mean difference

I Fortunately, even if the assumption is not true, the
t-distribution probabilities are still generally appropriate unless
one of the sample sizes is particularly small and/or the two
sample variances are dramatically discrepant

I If the population variances do not appear to be equal, as shown
by some analyses described shortly, use a second version of the
t-test which is free of this assumption
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Standard Error: Within-group Variability
The average of the variability of Y within each group

I Key Concept: To estimate a single common population
variance, σ2, combine the two separate sample variances for
each group, s21 and s22 , into a single estimate of σ2

I Combine the sample variances by calculating the average of the
two sample variances

I To calculate this average, weight each variance by its degree of
freedom, df1 = n1 − 1 and df2 = n2 − 1, to give the variance
from the larger sample more weight

I Average the variance of Y within the first group with the
variance within the second group, so denote as s2w

I Overall average variability within the groups:

s2w =
df1s21 + df2s22

df1 + df2
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Standard Error of the Mean Difference: Formula
Generalize from the mean to the mean difference

I Estimated standard error of the mean: sm =
s√n = s

√
1
n

I To generalize to two groups
◦ Replace s, the standard deviation of Y for one group, with

its corresponding averaged value for two groups, sw =
√

s2w
◦ Add a second term for the second sample size

I The straightforward generalization to the estimated

standard error of the mean difference: sm1−m2 = sw

√
1
n1

+
1
n2

I For equal sample sizes, n1 = n2, or n, sm1−m2 = sw

√
2
n
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Evaluate Homogeneity of Variance
Formal hypothesis tests

I Evaluate the assumption of homogeneity of variance, such as
with two different hypothesis tests described next

I The null hypothesis for each test is equal population variances
H0 : σ21 = σ22

I When evaluating the p-value from a specific hypothesis test of
equal variances, the goal is usually a p-value larger than
α = 0.05, consistent with the assumption of equal variances

I Unfortunately, hypothesis tests of equal variances have low
power at low samples sizes, exactly when the test becomes
more important

I Instead of a literal interpretation of the corresponding p-values
from these hypothesis tests, probably best to interpret the
results as an informal “rule of thumb", or heuristic
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Evaluate Homogeneity of Variance: Test #1
Variance Ratio Test

I Calculate the ratio of the two variances, called an F -statistic,
often for convenience with the larger variance on top

I To calculate this ratio in terms of hypothetical repeated
sampling, draw a sample from each population, so that
◦ Each numerator variance is of a sample from 1st population
◦ Each corresponding denominator variance is of a sample

from 2nd population
I The distribution of the ratio of variances over repeated pairs of

samples follows an F -distribution, one distribution for each
combination of numerator df and denominator df

I Null hypothesis: Equal population variances, so their ratio is 1
I Is the obtained variance so much larger than 1 that the null

hypothesis of variance equality becomes untenable?
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Evaluate Homogeneity of Variance: Test #2

Levene’s Test
I Levene proposed the following test for equal group variances

given the null hypothesis of equal population group variances
◦ Deviate each data value Yi from its own group mean
◦ Evaluate the mean difference of these deviation scores for

the groups, such as with the t-test
I Brown and Forsythe modified this procedure: Calculate each

deviation from the respective group median
I The result of this modification is a more robust hypothesis test,

able to provide more accurate results across a wider range of
different scenarios, and generally accepted as the preferred
method
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The Standard Error for Unequal Group Variances
What to do if the group variances are not equal?

I If the population variances of the two groups cannot be
assumed equal, particularly at small sample sizes, use another
version of the standard error to define a different t-test

I This version, s ′m1−m2 , does not assume equality of the variances
as it separately includes the variance of each group

s ′m1−m2 =

√
s21
n1

+
s22
n2

I A t-test based on this version of the standard error is called the
Welch Two-Sample t-test

I The problem from using two separate variances instead of a
single average is that the corresponding t-statistic, the ratio of
the mean difference divided by this standard error, only
approximately follows the mathematical t-distribution
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Degrees of Freedom Depending on the Standard Error
Assume homogeneity of variance

I For the usual case of equal variances, the degrees of freedom
for the analysis is just the sum of the degrees of freedom for
each group

df = df1 + df2 = (n1 − 1) + (n2 − 1)

Do not assume homogeneity of variance
I For unequal variances, a rather extensive expression for this df

approximates the proper use of t-distribution probabilities

df ′ =
[(

s21/n1
)
+
(
s22/n2

)]2
(
s21/n1

)2
/(n1 − 1) +

(
s22/n2

)2
/(n2 − 1)

I Generally this df has decimal digits
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6.2b
Application
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Homogeneity of Variance
I Evaluate Homogeneity of Variance with the lessR ttest function,

here for the Supplier data: > ttest(Time ∼ Supplier)

––– Assumptions –––

These hypothesis tests can perform poorly, and the
t-test is typically robust to violations of assumptions.
Use as heuristic guides instead of interpreting literally.

Null hypothesis is equal variances of Time, i.e., homogeneous.
Variance Ratio test: F = 2.52/2.09 = 1.20, df = 14;18,

p-value = 0.700
Levene’s test, Brown-Forsythe: t = -0.621, df = 32,

p-value = 0.539

I Both p-values > 0.05, so evidence that the populations from
which the data values are sampled have at least approximately
equal variances
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Within-Group Standard Deviation: Traditional Notation

Descriptive statistics
I Data Summary

n1 = 19, m1 = 9.574 days, s1 = 1.447 days
n2 = 15, m2 = 8.087 days, s2 = 1.587 days

I Within-group variance

s2w =
df1s21 + df2s22

df1 + df2
=

(18)1.4472 + (14)1.5872
18+ 14 = 2.28

I Within-group standard deviation

sw =
√

s2w =
√
2.28 = 1.51 days
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Standard Error for Classic t-test

The standard error of the sample mean difference
I Get the needed standard error and df for the hypothesis test

Description Name Value Formula

estimated std error sterr 0.522 sw*SQRT((1/_nn1)+(1/_nn2))
total deg of freedom df 32 (nn1-1)+(nn2-1)

I df df = df1 + df2 = (19− 1) + (15− 1) = 32

I Standard Error sm1−m2 = sw

√
1
n1

+
1
n2

= 1.51
√

1
19 +

1
15 = 0.5215
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Standard Error for Welch t-test

The standard error of the sample mean difference
I n, s n1 = 19, n2 = 15, s1 = 1.447, s2 = 1.587

I df

df ′ =

[(
s21/n1

)
+
(
s22/n2

)]2

(s21/n1)
2
/(n1 − 1) + (s22/n2)

2
/(n2 − 1)

= 28.762

I Standard Error s ′m1−m2 =

√
s21
n1

+
s22
n2

=

√
1.4472
19 +

1.5872
15 = 0.5274
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R Analysis of the Mean Difference, Welch t-test
R input and output
lessR t-test function provides for both the t-test with
(Section 6.1) and without the assumption of equal group variances

> tt(Time ~ Supplier)

–- Do not assume equal population variances of Time
for each Supplier

t-cutoff: tcut = 2.046
Standard Error of Mean Difference: SE = 0.53

Hypothesis Test of 0 Mean Diff:
t = 2.82, df = 28.76, p-value = 0.009

Margin of Error for 95% Confidence Level: 1.08
95% Confidence Interval for Mean Difference:

0.41 to 2.57
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Equal vs Unequal Variances Assumption
Compare results of classic and Welch t-tests

I Assuming equal population variances yields the classic t-test
I Allowing unequal population variances yields the Welch t-test

Estimate σ21 = σ22 σ21 6= σ22
df 32 28.762
lower bound 0.4247 0.4080
upper bound 2.5493 2.5661
t-value 2.8513 2.8195
p-value 0.0076 0.0086

I As noted, homogeneity of variance is supported in these data,
and here there is no practical distinction between between
classic and Welch analyses

I If population variances demonstrated not equal, then results of
the two tests may diverge, particularly in small samples
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Index Subtract 2 from each listed value to get the Slide #

homogeneity of variance, 6
Levene test, 11

standard error, 4
within-group variance, 7



I The End


