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Managerial vs Statistical Decisions
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Managerial Decision versus Statistical Decision

Purpose of statistical analysis is to guide managerial decisions
I Managerial decision: Implement, or not, a specific action
I Key Concept: A technical decision regarding statistical

inference provides information about reality that guides a
subsequent managerial decision

I Statistical inference, confidence interval or hypothesis test,
often focuses on a specific value in terms of the null hypothesis

I Statistical decision regarding a mean: Does a difference exist
from the hypothesized value?

I The statistical decision is to either reject or not reject this
reference value of interest, µ = µ0

I Each outcome of the statistical decision, reject or not, may
lead to a different managerial decision
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Statistical Decision Guides the Managerial Decision

The statistical analysis informs the decision maker
I Consider the goal to assess a potential improved process with a

trial version, implemented on a small scale, which management
is considering to implement company wide

I To assess, compare a sample mean from the new process
against the current mean, which is the null hypothesis

I One outcome is that the statistical analysis detects a difference
from the null in the desired direction
◦ Statistical decision → Reject the null hypothesis, so . . .
◦ typical Managerial decision → Implement the change

I Another outcome is that the statistical analysis does not detect
a difference from the null
◦ Statistical decision → Do not reject the null, so . . .
◦ typical Managerial decision → Retain the current process
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Slippage Between Statistical and Managerial Decisions
Issue: These two decisions are not so tightly coupled

I However, this relation between statistical and managerial
decisions must be qualified because the statistical and
managerial decisions are distinct concepts

I Key Concept: The managerial decision does not necessarily
follow directly from the statistical decision

I The statistical decision guides the managerial decision, but the
statistical decision does not rigidly imply what action the
manager should take

I In terms of deciding to retain or change to a new process
◦ Rejection of the null hypothesis does not necessarily imply

that the new process should be implemented
◦ Failure to reject the null hypothesis does not necessarily

imply that the current process should be retained
I This potential slippage is explored next
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5.4b
Type I and Type II Errors
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Binary Decisions
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Definition and Examples of Binary Decisions

Choose one alternative or the other
I Binary decision: Choose between two alternatives
I Professional and personal life presents a series of binary

decisions, from the trivial to the profound
◦ Cross the road now, do not cross now
◦ Hire the applicant, do not hire the applicant
◦ Invest in increased manufacturing capacity, do not invest
◦ Marry the person, do not marry
◦ Reject the null hypothesis, do not reject
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Consequences of Binary Decisions

Four possible outcomes from one binary decision
I Each binary decision provides two ways to be right

(opportunity) and two ways to be wrong (error)
I Each outcome implies different consequences
, Correct: Cross road now and do not get run over
, Correct: Do not cross road now and watch the car go by
/ Error: Do not cross now and no car goes by –

consequence is to lose a little bit of time
/ Error: Cross now and get run over –

consequence is death or severe injury
I These two types of errors have names, rather unimaginatively

called Type I and Type II errors
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Four Possible Outcomes for an Hypothesis Test

Four possible outcomes from one binary decision
I The manager’s decision regards an unknown reality, which at

some later time reveals itself
I Statistical Decision Rule for analysis of the mean: If m is in

the rejection region, decide H0 is false, otherwise the data is
consistent with H0

, Correct: Decide the null is true, and it really is
, Correct: Decide a false null is false, a real difference detected
/ Type I Error, False Positive: An unusually deviant event leads

to decide the null is false, but it really is true
/ Type II Error, False Negative: Decide the null is true,

but fail to detect a difference that actually exists
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Four Possible Outcomes for an Hypothesis Test

Decision

Reality

H0 H0

0 is true

H0

0

0 is false

H

RejectDo Not Reject

CORRECT:
"accept" a true null

TYPE I ERROR:
reject a true null

TYPE II ERROR:
accept a false null

CORRECT:
reject a false null
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Type I Error

c© 2018 by David W. Gerbing Power Analysis: Type I and Type II Errors 12

Null Hypothesis is True: Probability of a Type I Error

Consider the null hypothesis to be true
I Distribution of sample mean, m, centered over hypothesized

value, µ0, assumed true for purposes of the test
I Presume the hypothesized value, µ0, really is true, not just for

purposes of the test
I IF µ0 is true, then . . .
◦ The applicable error is a Type I error, rejecting a true µ0
◦ A Type I Error occurs when m falls in the rejection region
◦ What is the (conditional) probability that m falls in the

rejection region given that the null hypothesis is true?
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Null Hypothesis is True: Probability of a Type I Error

μ0

Presumed True Value of μ 

2.5% 2.5%

I Probability of a Type I Error for any one sample is not
computed, but instead set at the probability of the complete
rejection region, α, usually α = .05 as shown here
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Type II Error
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More of the What-If Game
Assume µ = µ0, but what if this assumption is false?

I To understand and estimate the value of the unknown value of
µ, probe the consequences of assuming different values of µ

I The basis of analyzing Type II error is that the assumed null
hypothesis, µ = µ0 is wrong

I Alternative value of the mean: To presume µ 6= µ0 means
that some alternative value of µ, µALT , is true, µ = µALT

I Type II Error Analysis:
◦ First, set up the hypothesis test by assuming

WHAT IF µ = µ0?
◦ Second, add a second assumption beyond the first,

WHAT IF we first assume µ = µ0,
but then ask actually WHAT IF, instead, µ = µALT ?

I Will we properly reject our first assumption of µ = µ0 if,
instead, the truth is that µ = µALT ?
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Concepts and Notation
Many presumed values of µ when µ0 is false

I Decision rule: Fail to reject µ0 if m is reasonably close to µ0,
as assessed by the corresponding hypothesis test

I The error here, a Type II error, is to “accept” µ = µ0 when
some alternative value is actually the true mean, µ = µALT

I The probability of a Type II error is defined in terms of one
corresponding specific value of µALT relative to the specified
value of µ0

I There are many probabilities of a Type II error, each probability
calculated relative to a specific value of the presumed true
mean, µ = µALT

I There are many possibilities for µALT , which each can be
systematically investigated, as shown next, beginning with a
specific example where µALT = 45
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Probability of a Type II Error
Presume true mean is actually µALT = 45

I Hypothetical distribution of m is centered over the presumed
true mean of 45, with most values between 40 and 50

I For example, if a sample were taken, values might be obtained
such as m=48.8, m=47.1 or m=41.5

25 30 35 40 45 50

True Mean
μ=45

mmm
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Probability of a Type II Error
Consider an extremely deviant sample mean, m = 31.0

I A value of m = 31.0 would be highly unlikely to ever occur for
this distribution with µALT = 45

I Although theoretically possible, a value of m this far below the
mean of 45 would not happen in practice

25 30 35 40 45 50

True Mean
μ=45

NOT
Happening

m
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Probability of a Type II Error
Hypothesized mean is µ0 = 30

I Now consider a hypothesis test with µ0 set at 30, which, in this
scenario is false as the true mean is presumed to be 45

I Around the value of the hypothesized mean of 30 is the
“acceptance” region of the hypothesis test

25 30 35 40 45 50

True Mean
μ=45

Accept μ=30
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Probability of a Type II Error

Presume true mean is actually µALT = 45
I µ = 30 is false in this scenario, so a Type II error occurs when

m falls in the “acceptance” region, ”accepting” the false null
I But m will virtually never fall in the “acceptance” region
I The false µ0 = 30 would almost certainly be correctly rejected

for any one sample because the sample mean, m, would be
much higher than the hypothesized mean, µ0

I The value of the one observed m is not known until the data
are collected, but whatever value it assumes, a difference from
the null value will be properly detected in this situation
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Basis of a Type II Error
Focus on a specific alternative to µ

I The hypothesis test “accepts” the null hypothesis when m falls
in the “acceptance” region, close to µ0

I If µALT is the true mean, then the sample mean m is sampled
from the distribution centered about µALT

I Key Concept: If µALT is the true mean, m can still fall within
the “acceptance” region defined by the null hypothesis

I A Type II Error occurs when the null is false, but m is in the
“acceptance” region:

The difference from the null value µ0 to the presumed
reality µALT exists, but the hypothesis test does not
detect the difference

I What is the probability that a value of m is in the “acceptance”
region given the value of µALT ?
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5.4c
The Concept of Power
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Power Defined and Computed
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Probability of the Correct Choice: Power
Focus on a specific alternative to the hypothesized value of µ

I Typically prefer to state the probability of making the correct
choice, of rejecting the null hypothesis when it is false

I Power of an Hypothesis Test: Probability of correctly
detecting a real difference from a false null hypothesis

I When the null is false, so that µ is different from µ0,
◦ Either make the right choice, reject the false null, or
◦ Make the wrong choice, do not reject the false null

I Notation: Probability of a Type II Error is β
I The probabilities of making the correct or incorrect choice, here

for µ 6= µ0, sum to 1,
Power + β = 1

or
Power = 1 - β
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Calculate Power and Probability of a Type II Error

Use R as an electronic table
I To use R to calculate Power is to use R as an electronic table

of probabilities – no data file, no data analysis
I Provide a specific sample size, n, and standard deviation, s,

such as from an initial data analysis
I To calculate Power and β, the actual values of the alternative

and hypothesized values of µ per se are not of interest
I Rather, the focus is on the difference or “delta” between the

hypothesized value of µ and the specific proposed alternative
delta = µALT − µ0

I For the same n and s, the power of detecting a real µ of 35
from a hypothesized value of 30 is exactly the same as
detecting a real µ of 105 from a hypothesized value of 100
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R Input: Power for a one-sample t-test

R function power.t.test calculates power
I Suppose for a specific data analysis:

n = 25, s = 10, µ0 = 30 and µALT = 35
I R input:

> power.t.test(n=25, sd=10, delta=5,
type="one.sample")

I Required values:
◦ n: sample size
◦ sd: standard deviation of data
◦ delta: change from µ0 to the alternative value of µ

I Defaults:
◦ alternative="two.sided", i.e., two-tailed test
◦ type="two.sample", i.e., for a mean difference
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R Output: Power for a one-sample t-test
One-sample t-test power analysis

> power.t.test(n=25, sd=10, delta=5,
type="one.sample")

One-sample t test power calculation

n = 25
delta = 5

sd = 10
sig.level = 0.05

power = 0.6697014
alternative = two.sided

I For a sample of size 25 with a standard deviation of 10, and a
hypothesized value of 30, the probability of correctly detecting
a difference when µ = 35 is 0.67, and so β = 1− 0.67 = 0.33
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Probability Distribution that Underlies a Type II Error
Technical Note

I The hypothesis test of the mean follows from the distribution
of tm based on the sample mean, assuming the null
hypothesized value, µ0, is true

I The probability of a Type II Error follows from a non-central
t-distribution, the distribution of the t-statistic, tm, when µ0 is
assumed true but is actually false

I For pedagogical simplicity, the following illustrations are based
on the sample mean, m, and the normal distribution of m
instead of tm and the non-central t-distribution

I The basic concepts remain the same, and numerical
computations only suffer when the sample size, n, is small

I Fortunately, Type II Error calculations with R are based the
correct non-central t-distribution, so actual applications of
these probabilities from R are accurate for all values of n
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Power: An Example Continued
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Illustrate Probability of Type II Error with Graphics

Consider a specific example
I Suppose the hypothesized value is µ0 = 30
I Collecting a sample of size n = 25 yielded a standard deviation

of s = 10, for a standard error of the mean of sm = 2
I Suppose the sample mean m was larger than 30, but close

enough to µ0 = 30 that the null hypothesis was not rejected
I Although no difference from the null was detected, the analyst

wonders if the test might have failed to detect a real difference
with the true value of µ actually larger than 30

I What is the probability of detecting this difference if it actually
exists?

I Power analysis provides the answer
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Probability of a Type II Error
Null hypothesis is µ = 30

25 30 35 40 45 50

Accept μ=30

Any value that falls in the 
“Acceptance” Region leads 
to “accepting” the null 
value of 30

Regardless of the actual 
value of μ

Any value that falls in the 
“Acceptance” Region leads 
to “accepting” the null 
value of 30

Regardless of the actual 
value of μ

I Here the null hypothesized value, µ0, is 30
I The hypothesis test sets up an “acceptance” region around 30
I Whatever the actual value of µ, a m that falls in the
“acceptance” region leads to “accepting” the null
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Probability of a Type II Error

Probability depends on the true value of µ
I So the computation of the probability of a Type II Error, β,

depends on the true value of µ
I Presume the value of the null hypothesis, µ0, is false, so what

is the alternative value of µ, µALT to use for the probability
calculation?

I We do not know the true value of µ, which is the whole point
of statistical inference, to estimate µ

I In absence of the actual value of µ, explore what happens for a
range of potential different alternative values of µ, from values
far away from µ0 to values that are close to µ0

I What are Power and β . . . IF the actual µ = µALT was equal
to a value just one unit above or below µ0, or two units, or . . .
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Probability of a Type II Error
Hypothesize 30; Presume true mean is actually µALT = 40

25 30 35 40 45 50

Accept µ=30

True Mean
µ=40

Beta = 0.002
Power = 0.998

> power.t.test(n=25, sd=10, delta=10, type="one.sample")

I For µALT = 40, m likely varies somewhere between 34 and 46
I Rarely a m may just cross the line into the “acceptance” region,

resulting in a Type II Error
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Probability of a Type II Error
Hypothesize 30; Presume true mean is actually µALT = 38

25 30 35 40 45 50

Accept µ=30

True Mean
µ=38

Beta = 0.03
Power = 0.97

> power.t.test(n=25, sd=10, delta=8, type="one.sample")

I For µALT = 38, m likely varies somewhere between 32 and 44
I Here m occasionally lands in the “acceptance” region, as a

Type II Error has a probability of only 0.03 (blue area)
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Probability of a Type II Error
Hypothesize 30; Presume true mean is actually µALT = 35

25 30 35 40 45 50

Accept µ=30

True Mean
µ=35

Beta = 0.33
Power = 0.67

> power.t.test(n=25, sd=10, delta=5, type="one.sample")

I For µALT = 35, m likely varies somewhere between 29 and 41
I Here m lands in the “acceptance” region with reasonable

frequency, as a Type II Error has probability of 0.330
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Probability of a Type II Error
Hypothesize 30; Presume true mean is actually µALT = 33

25 30 35 40 45 50

Accept µ=30

True Mean
µ=33

Beta = 0.698
Power = 0.302

> power.t.test(n=25, sd=10, delta=3, type="one.sample")

I For µALT = 33, m likely varies somewhere between 27 and 39
I Now m lands in the “acceptance” region more often than not,

as the probability of a Type II Error is 0.698
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Probability of a Type II Error
Hypothesize 30; Presume true mean is actually µ = 31

25 30 35 40 45 50

Accept µ=30

True Mean
µ=31

Beta = 0.931
Power = 0.069

> power.t.test(n=25, sd=10, delta=1, type="one.sample")

I For µALT = 31, m likely varies somewhere between 25 and 37
I Now m lands in the “acceptance” region most of the time, with

a probability of a Type II Error at 0.931
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5.4d
The Power Curve
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Power Over a Range of Alternative Values of µ
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Simultaneously Consider Many Alternative Values of µ
Only one µ0, but many possible alternative values of µ

I Organize this information regarding power for multiple
alternative values of µ into a single graph

I Power curve: Plot the power relative to a specified null value,
µ0, across a range of alternative values of µ, µALT

I By analyzing power over a range of possible values of µ, an
interesting pattern emerges that can provide the analyst much
information for the interpretation of a specific hypothesis test
◦ Values of µ far from µ0 are almost assuredly detected
◦ Values of µ close to µ0 are almost assuredly not detected

I Discover “far from” and “close to” for a specific analysis
I One tradition is to establish a minimum threshold of desirable

power of 0.8 in general, which may be adjusted up or down for
a specific situation
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Power Curve for Previous Example with Sample Size of 25
I lessR ttestPower function provides the power curve

> ttestPower(n=25, s=10, mu=30)

Alternative Values of µ

P
ow

er

20 25 30 35 40

0.
0

0.
4

0.
8

Power Curve for One Sample t−test

n=25, s=10

    PowerfulPowerful    
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Power Curve Interpretation
What ranges of µ have high and low power, respectively?

I Small changes more difficult to detect, so always have low
power against values close to the hypothesized value

I Minimum desired power is usually set at 0.8, here not obtained
until real µ > 36 or µ < 24

I Probability of detecting a real change from 30 is less than 50%
for values of µ all the way up to 34 and down to 26

I So what if the true mean is µ = 33, which management
decides is a sufficiently large increase from µ0 = 30 to indicate
a meaningful, interesting difference from 30?

I If µ = 33, then such a value is too close to the hypothesized
value of 30 to be detected with any reasonable probability in
this analysis, as the power for this value is only 0.302

I The next section shows how to address this issue
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Needed Sample Size for Sufficient Power
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Effect of Sample Size on Power
The more data, the more ability to detect a real difference

I The solution to the problem of trying to detect a smaller
change from the null hypothesized value is the usual solution in
statistical analysis, get more information, that is, more data

I The larger the sample size, n, the smaller the standard error,
sm, so the narrower the curves for the hypothesized and actual
distributions of m

I Narrower curves for the two distributions means less overlap,
which means fewer Type II Errors

I Key Concept: As n gets larger, Power increases, β decreases
I To visualize, compare the Power Curve for n = 100, on the

next figure, with the previous Power Curve for n = 25
I For the larger sample size of n = 100, obtain power of at least

0.8 for a real µ of 33 or larger, or for a real µ of 27 or smaller
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Power Curve for a Sample Size of 100
I Consider a larger sample size, n = 100, a power of 0.8 is

obtained for a real µ ≈ 33 or µ ≈ 27, at µ0 = 30

Alternative Values of µ

P
ow

er

15 20 25 30 35 40 45

0.
0

0.
4

0.
8

Power Curve for One Sample t−test

n=100, s=10
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Power Curve for a Sample Size of 1000
I Consider a dramatically larger sample size, n = 1000, a power

of 0.8 is obtained for a real µ ≈ 31 or µ ≈ 29, at µ0 = 30

Alternative Values of µ

P
ow

er

15 20 25 30 35 40 45

0.
0

0.
4

0.
8

Power Curve for One Sample t−test

n=1000, s=10
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Power Curve for a Sample Size of 10000
I Consider a huge sample size, n = 10000, a power of 0.8 is

obtained for a real µ ≈ 293
4 or µ ≈ 301

4 , at µ0 = 30

Alternative Values of µ

P
ow

er

15 20 25 30 35 40 45

0.
0

0.
4

0.
8

Power Curve for One Sample t−test

n=10000, s=10
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Obtain the Sample Size to Achieve the Needed Power
Set all but one, and then calculate the remaining value

I With the R power.t.test function, had previously set n, s
and delta and then solved for power

I Now consider a related problem in which the information
entered into the power.t.test function is the desired power
of 0.8 and also s and delta, and then solve for n

> power.t.test(power=0.8, sd=10, delta=5,
type="one.sample")

n = 33.36720
...

I For the original sample with a size of n = 25, a power of 0.67
is obtained for a delta of 5

I For a delta of 5, to achieve a power of 0.80, a sample of size
n = 34 is needed
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5.4e
Practical Importance

c© 2018 by David W. Gerbing Power Analysis: Practical Importance 51



Practical Importance
Distinguish the meaningful from the trivial

I Practical importance: The importance of the extent or size
of a deviation from the true value of the population mean, µ,
from the null hypothesized value

I Minimal mean difference (mmd): Smallest deviation from
the null hypothesized value that is of practical importance

I For a hypothesized value of 30, is a difference from
◦ 30 to 32 sufficiently large to achieve practical importance?
◦ 30 to 30.01 too small to be of practical importance?

I Key Concept: The size of mmd follows from the return on
investment given implementation of the policy that resulted in
the change of the observed magnitude

I Ex: Determine the size of the needed improvement following
the re-engineering of a process to justify its cost
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Managerial vs Statistical Decisions

Two levels of decisions
I Key Concept: The ultimate purpose of statistical analysis for

the manager is to facilitate decision making
I Distinguish between the . . .
◦ Statistical decision: A difference from the null detected?
◦ Managerial decision: Follows from a meaningful difference

I The statistical decision may corroborate the managerial
decision, but not necessarily
◦ Statistically significant but meaningless: A trivial difference

is rendered statistically significant by a large sample that
yields an extremely powerful test
◦ Statistically insignificant but meaningful: A perhaps small

but meaningful difference is not detected by a statistical test
with insufficient power → the possibility examined next
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Power Curve with mmd=2

> ttestPower(n=25, s=10, mu=30, mmd=2)

mmd option: Range of meaningful changes from µ0

Alternative Values of μ

Po
we

r

15 20 25 30 35 40 45

0.
0

0.
4

0.
8

Power Curve for One Sample t−test
n=25, s=10

    PowerfulPowerful    

    Meaningful
Trivial

Meaningful
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Analysis of Power Curve with Meaningful Changes

What changes are detected and which are meaningful?

I Remember, the power analysis is only of interest if the null is
not rejected, a result not statistically significant

I To include the minimal mean difference in the analysis of the
power curve, add the mmd option to the lessR ttestPower
function, which then annotates the power curve accordingly

I The resulting power curve contains two different annotations
that delineate two sets of values of µALT , those that are . . .
◦ Powerful: Values likely to be detected, with power > 0.8
◦ Meaningful: Values sufficiently far from µ0

I The purpose of both annotations is to compare meaningfulness
with power
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Analysis of Power Curve with Meaningful Changes
What changes are likely detected and which are meaningful?

I Text output of previous ttestPower analysis includes

Given n1, n2 and s, Power for mmd of 2 is 0.159
Warning: Meaningful differences from 32 to 35.84

have Power < 0.8

I Key Concept: Failure to detect a difference from µ0 does not
imply there is no meaningful difference if some meaningful
differences have low power

I If a result is not significant, then either
◦ There is no difference from the null hypothesis
◦ Or, a meaningful difference exists but was not detected

I To help distinguish between these alternatives, discover if if all
meaningful values of µALT would have been likely detected
with the test
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Follow-up Analysis to the Hypothesis Test

If the hypothesis test fails to reject the null, then . . .
I Look at the meaningful alternatives, particularly the smallest
I Do a power analysis against these meaningful alternatives . . .
◦ If power is low, then maybe a real, meaningful effect exists

despite the failure to achieve significance
◦ If power is high, then not finding a difference from the null

means “no meaningful effect likely exists”
If the hypothesis test rejects the null, then . . .

I Conclude that a difference from the null value has been
detected

I Obtain a confidence interval to estimate the likely value of the
true population value µ to understand the magnitude of the
effect

c© 2018 by David W. Gerbing Power Analysis: Practical Importance 57



5.4f
Comprehensive Strategy for Statistical Inference
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Strategy for Managerial Decisions from Stat Inference

An integrated strategy
I Statistical inference is always in pursuit of unknown population

values, such as the population mean, µ
I Two complementary forms of statistical inference: Confidence

interval and hypothesis test, and related techniques such as
power analysis

I Need an integrated strategy of statistical inference that
provides a guide to form conclusions about µ or other
population values of interest that involves
◦ confidence interval
◦ hypothesis test
◦ power analysis
◦ practical importance
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Strategy for Managerial Decisions from Stat Inference

Reference
Value of 
Interest?

No

DO Con�dence Interval
Estimate true value:
Is estimate precise?

No

DO Needed Sample Size 
Estimate n to get desired 

margin of error

Repeat Analysis

DO Collect More Data 

DO Hypothesis Test
Yes

Reject the Null

A di�erence from the 
null likely exists

CONCLUDE

Do Not Reject the Null

DO Power Analysis

Power against the 
Smallest Meaningful 

Di�erence is High

No meaningful 
di�erence from the null 

likely exists

CONCLUDE

Power against the 
Smallest Meaningful 

Di�erence is Low

Not known if a 
meaningful di�erence 

from the null exists

CONCLUDE

DO Needed Sample Size 
Estimate n to get desired 

power for mmd
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5.4g
Application
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Follow-up Analysis from Hypothesis Test with No Rejection
Consider the previous application of filling cereal boxes

I A previous application provided a hypothesis test of the
average weight of packaged cereal to be 350g

I Traditional Notation: n = 25 m = 350.86 s = 2.66
I Statistical Decision: p-value = 0.119 > α = .05

so do not reject the null hypothesized value of 350g, the
sample mean of 350.86 is close to 350

I No difference in average weight of cereal from 350g detected
I Failing to reject the null hypothesis, the question becomes:

What is the power against meaningful alternatives that
may exist but were not detected?

I Suppose management decides that any change from the target
of 350g is not meaningful if it is 0.5g or less

I That is, mmd=0.5
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Power Curve with mmd=.5

> ttestPower(n=25, s=2.66, mu=350, mmd=.5)

Alternative Values of µ

P
ow

er

347 348 349 350 351 352 353

0.
0

0.
4

0.
8

Power Curve for One Sample t−test

n=25, s=2.66

    PowerfulPowerful    

    Meaningful
Trivial

Meaningful    
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Analysis of Power Curve with Meaningful Changes
What changes are detected and which are meaningful?

I m = 350.86, but not so much larger than µ0 = 350g to reject
µ0 as unreasonable

I Text output of previous ttestPower analysis includes

Given n1, n2 and s, Power for mmd of 0.5 is 0.145
Warning: Meaningful differences from 350.5 to 351.554

have Power < 0.8

I So maybe a meaningful difference exists from the null value of
350g that this hypothesis test failed to detect

I If a more definitive conclusion is desired, then the only
alternative is to gather more data, of which ttestPower
provides the relevant information

Needed n to achieve power=0.8 for mmd of 0.5: n=225
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Managerial Summary

What is important from this analysis for the manager?
I Deviations from the target weight of cereal in the cereal box of

350g in either direction need to be corrected
I Deviations less than 0.5g are deemed to small to provide any

reliable or meaningful corrected action that includes shutting
down the production line to make the adjustment

I So management wishes to detect any deviation of the average
weight from the current production process that is smaller than
349.5g and larger than 350.5g

I With an initial sample size of n = 25, the null hypothesis of a
population mean of 350g was not rejected
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Managerial Conclusion

What is important from this analysis for the manager?
I The failure to reject lead to an analysis of power to determine

if the detection of some meaningful differences from the null
were unlikely

I The primary conclusions are that
◦ Differences less than 351.55g have low power
◦ The minimal value of interest larger than the target of 350g

is 350.5g, which has a power of only 0.145
I To pursue this analysis further would require a considerable

increase of sample size from n = 25 to n = 225 to achieve high
power against against the value of µALT = 350.5g
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