

Chapter 5

Hypotheses Test of the Mean

Section 5.2

Conduct the Hypothesis Test

David W. Gerbing

The School of Business
Portland State University

- **Conduct the Hypothesis Test**
 - Compare Obtained t_m to $t_{\alpha/2}$
 - Compare Obtained p -value to α
 - Application
 - Appendix: Obtain the p -value Directly

5.2a

Compare Obtained t_m to $t_{\alpha/2}$ Criterion

Illustration: t in the Rejection Region

Calculate the t -statistic

- ▶ Suppose a claim, the **null hypothesis**, is that some variable Y has a population mean of 5, $H_0 : \mu = 5$
- ▶ Consider an actual **sample of data** of variable Y for $n = 60$ that yields calculated values of $m = 5.76$ and $s = 2.73$
- ▶ Is $m = 5.76$ so much larger than the reference value of 5 that $\mu = 5$ is unreasonable?
- ▶ To answer, first estimate the **standard error of the mean**

$$s_m = \frac{s}{\sqrt{n}} = \frac{2.73}{\sqrt{60}} = 0.352$$

- ▶ Then obtain the observed **standardized distance** of m from μ_0

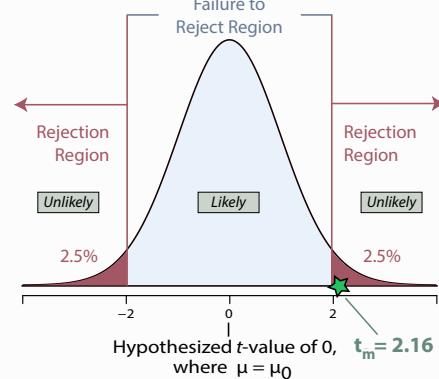
$$t_m = \frac{m - \mu_0}{s_m} = \frac{5.76 - 5}{0.352} = 2.16$$

David W. Gerbing

Hypothesis Test: Compare Obtained t_m to $t_{\alpha/2}$ 2

Illustration: t in the Rejection Region

- ▶ **Criterion:** Start with the **theoretical t -distribution** and $\alpha = 0.05$ criterion without any reference to the data
- ▶ **From the data:** $t_m = 2.16$, so the sample mean is 2.16 estimated standard errors above the hypothesized mean
- ▶ **Evaluate:** compare obtained $t_m = 2.16$ with **upper tail** cutoff $t_{0.025; df=59} = 2.00$

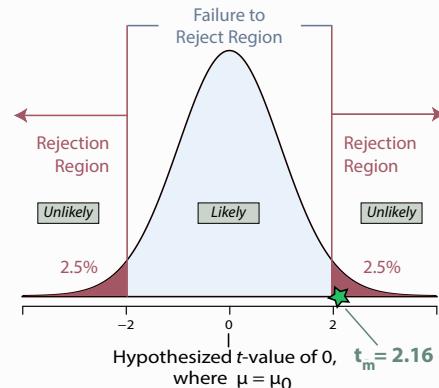


David W. Gerbing

Hypothesis Test: Compare Obtained t_m to $t_{\alpha/2}$ 3

Illustration: t in the Rejection Region

- ▶ For $df = 59$, $t_m = 2.16 > t_{0.025} = 2.00$, so t_m lies in the **upper tail rejection region**
- ▶ **IF** $H_0 : \mu = \mu_0$ is true, **THEN** obtained outcome of t_m is **unlikely**, so **reject** $H_0 : \mu = 5$
- ▶ **Conclude** that $\mu = 5$ is **unreasonable**



David W. Gerbing

Hypothesis Test: Compare Obtained t_m to $t_{\alpha/2}$ 4

Illustration: t NOT in the Rejection Region

Calculate the t -statistic

- ▶ Suppose the claim is the null hypothesis for some variable Y is that its population mean is 5, $H_0 : \mu = 5$
- ▶ Consider an actual **sample of data** of variable Y for $n = 60$ that yields calculated values of $m = 5.37$ and $s = 2.73$
- ▶ Is $m = 5.37$ **so much larger than the reference value** of 5 that $\mu = 5$ is not reasonable?
- ▶ First estimate the **standard error of the mean**

$$s_m = \frac{s}{\sqrt{n}} = \frac{2.73}{\sqrt{60}} = 0.352$$

- ▶ Then obtain the observed **standardized distance** of m from μ_0

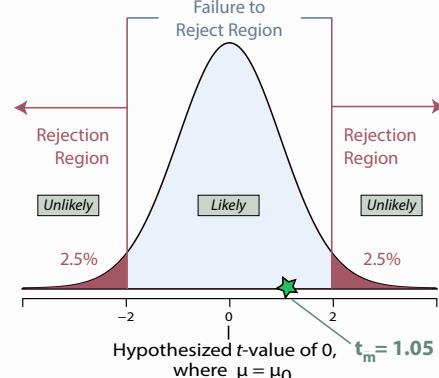
$$t_m = \frac{m - \mu_0}{s_m} = \frac{5.37 - 5}{0.352} = 1.05$$

David W. Gerbing

Hypothesis Test: Compare Obtained t_m to $t_{\alpha/2}$ 5

Illustration: t NOT in the Rejection Region

- ▶ **Criterion:** Start with the **theoretical t -distribution** and $\alpha = 0.05$ criterion without any reference to the data
- ▶ **From the data:** $t_m = 1.05$, so the sample mean is 1.05 estimated standard errors **above** the hypothesized mean
- ▶ **Evaluate:** compare obtained $t_m = 1.05$ with upper tail cutoff $t_{0.025; df=59} = 2.00$

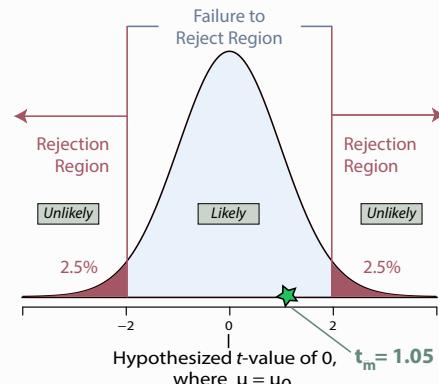


David W. Gerbing

Hypothesis Test: Compare Obtained t_m to $t_{\alpha/2}$ 6

Illustration: t NOT in the Rejection Region

- ▶ For $df = 59$, $t_m = 1.05 < t_{0.025} = 2.00$, so t_m does **NOT** lie in a rejection region
- ▶ **IF** $H_0 : \mu = \mu_0$ is true, **THEN** t_m is reasonably likely, so **do not reject** $H_0 : \mu = 5$
- ▶ **Conclude:** **No difference from** $\mu = 5$ **detected**
- ▶ **Do not conclude** that $\mu = 5$ is the **correct value**



David W. Gerbing

Hypothesis Test: Compare Obtained t_m to $t_{\alpha/2}$ 7

5.2b

Compare Obtained p -value to α Criterion

Assess How Close m is to μ_0 with Probability

IF μ_0 is true, THEN how probable is the sample value t_m ?

- ▶ **p -value:** Given a true null hypothesis, the probability of obtaining a value as far from or farther from the hypothesized value the value of the obtained sample mean
- ▶ Usually either a **large positive** or a **large negative** deviation from the hypothesized value is of interest, so the p -value usually assesses the probability of a value in **either tail**
- ▶ **IF $\mu = \mu_0$, THEN**
 - A **low p -value** indicates an **unlikely** sample mean, so t_m is in the rejection region, which means m is far from μ_0
 - A **high p -value** indicates a **likely** sample mean, so t_m is not in the rejection region, and m is reasonably close to μ_0
- ▶ Prefer more convenient probability expression of the p -value because probabilities are more generally understood than a t -value, and both provide the identical result

The p -value Approach to the Hypothesis Test

Specify what is meant by “likely” and “unlikely”

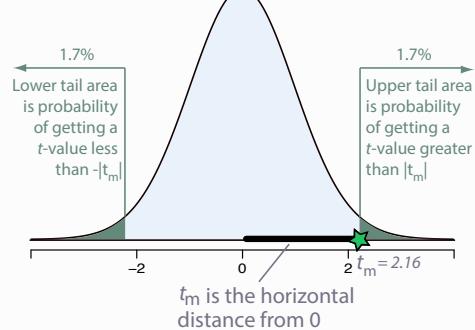
- ▶ Usually the definition of the **threshold for “unlikely”**, called α or α , is set at $\alpha = 0.05$
- ▶ **Compare p -value to α** to see if obtained t_m is unlikely
- ▶ The **approach of comparing t_m to $t_{\alpha/2}$** is more “old school” now that obtaining the p -value is more feasible with computers

Statistical Decision

- ▶ p -value $> \alpha$, then **fail to detect a difference** from μ_0
- ▶ p -value $< \alpha$, then t_m is in the rejection region, so **reject μ_0**

Obtain p -value: Reject H_0

- ▷ Suppose $t_m = 2.16$
- ▷ t_m : Distance of m from μ_0 in terms of s_m
- ▷ For any one obtained $t_m > 0$, there is a corresponding upper-tail area, here 0.017
- ▷ To account for deviations in either direction, also consider corresponding lower-tail area
- ▷ Total area in both tails: p -value = $(2)(.017) = .034$

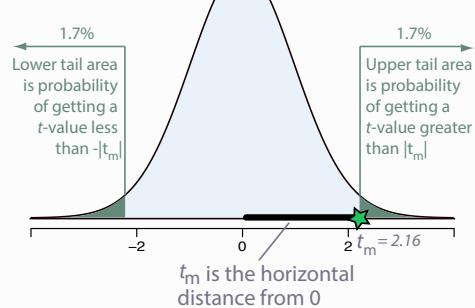


David W. Gerbing

Hypothesis Test: Compare Obtained p -value to α 11

Compare p -value with $\alpha = .05$: Reject H_0

- ▷ p -value = $.034 < \alpha = .05$
- IF μ_0 is true, THEN a m that far from μ_0 in either direction, or farther, has a low probability of occurring, only 0.034
- ▷ A low p -value means that, assuming μ_0 is true, the sample result is UNLIKELY
- ▷ So reject the null hypothesis and conclude that apparently $\mu \neq \mu_0$

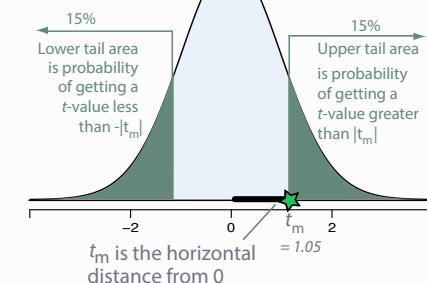


David W. Gerbing

Hypothesis Test: Compare Obtained p -value to α 12

Obtain p -value: Do not Reject H_0

- ▷ Suppose $t_m = 1.05$
- ▷ t_m : Distance of m from μ_0 in terms of s_m
- ▷ For any one $t_m > 0$, there is a corresponding upper-tail area, here 0.15
- ▷ To account for deviations in either direction, also consider corresponding lower-tail area
- ▷ Total area in both tails: p -value = $(2)(.15) = .30$

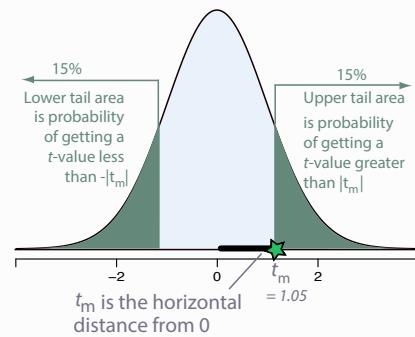


David W. Gerbing

Hypothesis Test: Compare Obtained p -value to α 13

Compare p -value with $\alpha = .05$: Do not Reject H_0

- ▷ p -value = .30 > α = .05
- IF μ_0 is true, THEN a t -value far from μ_0 , or farther, in either direction has a reasonable probability of occurring, 0.30
- ▷ A high p -value means that the sample result is CONSISTENT with the assumption of μ_0
- ▷ So do not reject the null hypothesis and conclude that no difference detected from μ_0



David W. Gerbing

Hypothesis Test: Compare Obtained p -value to α 14

Interpretation of the Hypothesis Test

The statistical decision: Reject or Do not reject

- ▶ Fail to Reject the Null when ...
 - p -value > α : Sample mean is close to μ_0
 - **Conclude:** No difference from μ_0 detected
 - Conclusion of no difference is NOT that μ_0 is true
- ▶ Reject the Null when ...
 - p -value < α : Sample mean far from μ_0 , in rejection region
 - **Conclude:** A difference from the specified null hypothesize value of the mean is detected
 - For purposes of making a decision, simply detecting a difference does not provide any actionable information
 - Instead, what is important is the direction and extent of the difference, best evaluated with a confidence interval to follow-up the hypothesis test

David W. Gerbing

Hypothesis Test: Compare Obtained p -value to α 15

p -value is a Conditional Probability

Distinguish between what we want and what we have

- ▶ **Conditional probability:** The probability of an event only when some other condition is true
- ▶ Notation: $P(A | B)$, read as the probability of event A given condition B
- ▶ A p -value is a conditional probability: p -value = $P(\text{data} | H_0)$
- ▶ The p -value is the probability of obtaining the data, and corresponding sample mean, given that the value of the mean specified by the null hypothesis is true
- ▶ Unfortunately, we actually want to know the probability that the null hypothesis is true given the data, $P(H_0 | \text{data})$
- ▶ ☹ What we want is not what we get
- ▶ And knowing one conditional probability does not inform us as to the value of the other: $P(\text{data} | H_0) \neq P(H_0 | \text{data})$

David W. Gerbing

Hypothesis Test: Compare Obtained p -value to α 16

Hypothesis Tests Never Provide the Probability of the Null

Conclusion of a hypothesis test is only qualitative

- ▶ **Key Concept:** Despite the precise calculation of a *p*-value, an hypothesis test provides a *qualitative result*, reasonable or unreasonable
- ▶ **IF μ_0 is assumed true,**
 - **THEN** when the sample result is unlikely, p -value $< .05$, conclude μ_0 is *unreasonable*
 - **THEN** when the sample result is likely, p -value $> .05$, conclude μ_0 is *reasonable*
- ▶ Computers can precisely calculate the *p*-value to as many decimal digits as desired
- ▶ The problem is that the probability of what we really want, the probability that μ_0 is the true value of μ , is not known, only qualitatively described as reasonable or unreasonable

R: One-sample Hypothesis Test

Analysis provided by lessR function `ttest`, or `tt`

- ▶ Analysis of variable Y from data: `> ttest(Y, mu=value)`
- ▶ **Ex:** To test that the mean weight of cereal in the cereal boxes is the specified 350g for the variable Weight
 - `> ttest(Weight, mu=350)`
- ▶ The output of `ttest` includes the relevant *p*-value
- ▶ The brief version, `tt_brief()`, provides just the descriptive statistics, the hypothesis test and confidence interval
- ▶ The output provides a graph of the smoothed histogram (densities) of the variable of interest
- ▶ Analysis of Y from sample size, mean and standard deviation:
 - `> ttest(n=value, m=value, s=value, mu=value)`

5.2c Application

Assess Average Weight of Boxed Cereal

Claim: Advertised weight in each box is 350 g

- ▶ Inherent process variability ensures that the contents of each box is typically more or less than 350 g
- ▶ But is there a systematic over- or under-fill as the cereal boxes are filled?
- ▶ Decision: On the production line, do we adjust the dial – up or down – to increase or decrease the average amount of cereal placed in each cereal box?

- ▶ Null Hypothesis is $H_0 : \mu = 350$ g
- ▶ Alternative Hypothesis is $H_1 : \mu \neq 350$ g

- ▶ Data: Randomly sample 25 cereal boxes and measure the weight of the cereal in each box

Weight
348.3
346.1
351.3
353.5
349.4
349.6
349.7
346.8
351.2
349.0
353.7
351.7
351.1
351.8
352.8
356.0
349.1
347.5
351.9
355.5
351.8
349.5
355.5
348.2
350.5

<http://lessRstats.com/data/boxweight.csv>

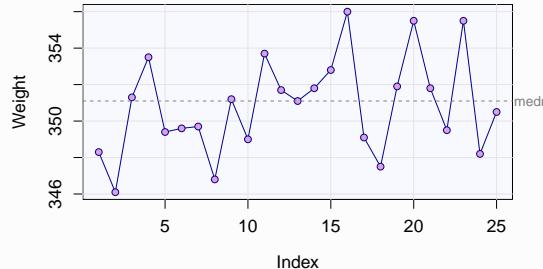
David W. Gerbing

Hypothesis Test: Application 20

Stable Process Assumption of Y

Only meaningful to estimate a stable μ

- ▶ Are all data values of Y, Weight, from the same process?
- ▶ To answer, plot the run chart: > `LineChart(Weight)`



- ▶ Output appears to be random variation, so process stable
- ▶ Conclude: There is a stable μ to estimate

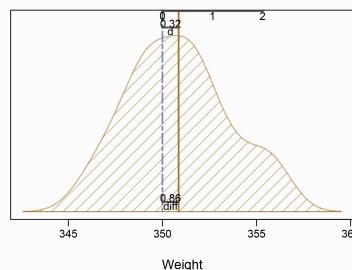
David W. Gerbing

Hypothesis Test: Application 21

Normality Assumption of Sample Mean m

t-distribution probabilities only valid for normal m

- ▶ The distribution over repeated samples of m for n close to 30 is approximately normal unless Y is skewed
- ▶ To verify, examine the graph from the `ttest` function, a smoothed graph (the densities) of the distribution of Y



- ▶ The sample data are approximately normal so m , the mean of Weight, appears normal across multiple, hypothetical samples

David W. Gerbing

Hypothesis Test: Application 22

Excel Template: Descriptive Statistics

	Description	Name	Value	Formula
INPUT: DESCRIPTIVE STATISTICS	count of data mean of data standard dev of data	n mean stdev	25 350.86 2.66	COUNT(data) AVERAGE(data) STDEV(data)
		sterr	0.532	stdev/SQRT(n)

Traditional Notation:

$$n = 25$$

$$m = 350.86$$

$$s = 2.66$$

Same three basic descriptive statistics for calculating the confidence interval are also the basis for the hypothesis test

Basic Question:

Is sample mean of 350.860 g **close** to hypothesized mean of 350 g?

David W. Gerbing

Hypothesis Test: Application 23

Excel Template: Standard Error

	Description	Name	Value	Formula
INPUT: DESCRIPTIVE STATISTICS	count of data mean of data standard dev of data	n mean stdev	25 350.860 2.660	COUNT(data) AVERAGE(data) STDEV(data)
	std error of mean	sterr	0.532	stdev/SQRT(n)

Traditional Notation:

$$s_m = \frac{s}{\sqrt{n}} = \frac{2.66}{\sqrt{25}} = 0.532$$

Same estimated standard error for calculating the confidence interval is also the basis for the hypothesis test

How many **estimated standard errors** separate 350.860 g from hypothesized mean of 350 g?

David W. Gerbing

Hypothesis Test: Application 24

Excel Template: *t*-value

	Description	Name	Value	Formula
INPUT: DESCRIPTIVE STATISTICS	count of data mean of data standard dev of data	n mean stdev	25 350.860 2.660	COUNT(data) AVERAGE(data) STDEV(data)
	std error of mean	sterr	0.532	stdev/SQRT(n)
HYPOTHESIS TEST	hypothesized value difference from null <i>t</i> -value (distance) <i>p</i> -value	mu0 diff t <i>p</i> -value	350 .86 1.617 0.119	mean-mu0 diff/sterr <i>TDIST</i> (ABS(t),n-1,2)

Now specify the value of the hypothesized value, μ_0 , and then obtain the obtained *t*-value, followed by its corresponding *p*-value

$$t_m = \frac{m - \mu_0}{s_m} = \frac{350.86 - 350}{0.532} = \frac{0.860}{0.532} = 1.616$$

which yields a *p*-value = 0.119

David W. Gerbing

Hypothesis Test: Application 25

R: Inference of the Mean, HT and CI, with lessR ttest

```
> tt_brief(Weight, mu=350)
```

```
Weight: n = 25, mean = 350.86, sd = 2.66
```

```
Hypothesized Value H0: mu = 350
```

```
Hypothesis Test of Mean:
```

```
  t-value = 1.62, df = 24, p-value = 0.119
```

```
95% Confidence Interval for Mean: 349.76 to 351.96
```

Or, run the analysis directly from the summary statistics

```
> tt_brief(n=25, m=350.86, s=2.66, mu=350)
```

To obtain more information, run the full version of ttest

```
> ttest(Weight, mu=350)
```

Result

Result of the Analysis

- ▶ **Statistical Result:** $t_m = \frac{m - \mu_0}{s_m} = 1.616$
 - The sample mean $m = 350.86$ g is **1.616 estimated standard errors** above the hypothesized mean μ_0 which is $\mu = 350$ g
 - Deviations from the hypothesized value of 350g in either direction are of interest, so is the distance of 1.616 standard errors or more from $\mu = 350$ g in *either* direction likely?
- ▶ **Statistical Result:** At $t_m = 1.616$, $df = 24$ the **p-value $\approx 12\%$**
 - For a true mean of $\mu = 350$ g, the probability of obtaining a value of m at or more than 0.86 grams on either side of 350g is 12%
 - 12% does **not** indicate a particularly **rare event**

Conclusion

Implications of the statistical decision

- ▶ **Statistical Decision:**

$$p - \text{value} = 0.119 > \alpha = .05$$

so **do not** reject the null hypothesized value of 350 g,
the sample mean of 350.86 is close to 350

- ▶ **Interpretation:** **No difference** in the average weight of the contents of the cereal boxes **detected** from 350 g

- ▶ **Caveat:** **Not rejecting the null hypothesis** of $\mu = 350$ g **does not imply** the true mean is 350 g

- ▶ **Managerial Decision:** **Do not adjust the dial** that controls how much cereal on average is placed in each cereal box

- ▶ **Follow-up Analysis:** When the **null hypothesis is not rejected**, something called **power analysis** should be conducted, explained later

Appendix

Obtain the *p*-value Directly

Obtain the *p*-value

Technology moves on

- ▶ In the “old” days, accurate *p*-values were hard to obtain because a table of *t*-values does not typically provide enough probabilities for each *t*-distribution corresponding to a specific degrees of freedom
- ▶ Today *p*-values are automatically provided by the computer when conducting an hypothesis test, with applications such as R and Excel
- ▶ The *p*-value section of computer output of the hypothesized test is usually considered the most crucial part of the displayed analysis
- ▶ Also can obtain a *p*-value with programs such as R and Excel apart from a specific data analysis, analogous to the “old school” method of looking up a value in a printed *t*-table, shown in the Appendix

R: Manually Obtain a *p*-value

The R *pt* function

- ▶ Use the probability *t*-distribution function, *pt*, which by default provides the cumulative probability, the “lower tail” of the distribution, appropriate for obtained negative values of t_m
- ▶ For the usual test that investigates possibilities in both tails, multiply the obtained tail probability by two to get the probability of a deviation as large or larger in either tail
- ▶ Ex: Obtained $t_m = -1.616$, $df=24$

```
> 2*pt(-1.616, df=24) returns 0.119
```
- ▶ Set *lower.tail=FALSE* to get the upper tail probability, which is usually desired for positive values of t_m
- ▶ Ex: Obtained $t_m = 1.616$, $df=24$

```
> 2*pt(1.616, df=24, lower.tail=FALSE) returns 0.119
```

Excel: Manually Obtain a *p*-value

Use the TDIST function

- ▶ Use the TDISTribution function to get the probability of one or both tails of the specified *t*-distribution

`=TDIST(ABS(t-value), df, number of tails)`

- ▶ Only positive *t*-statistics can be specified, so first call the ABSsolute value function or only enter a positive *t*-value

- ▶ Ex: for $t_m = 1.616$, $df = 24$

`=TDIST(ABS(1.616), 24, 2)` returns 0.119

- ▶ Excel has no one-sample *t*-test function

- ▶ An Excel template for this *t*-test which uses the TDIST function is provided in the following application

Index Subtract 2 from each listed value to get the Slide

For the computer analysis use the
lessR function: ttest, 20
p-value, 11

probability: conditional, 18
R function: pt, 33
statistical decision, 12

► The End