

Chapter 5

Hypotheses Test of the Mean

Section 5.1

Logic of the Hypothesis Test

David W. Gerbing

The School of Business
Portland State University

- Logic of the Hypothesis Test
 - The Hypothesized Value
 - The Obtained t -value
 - The Rejection Region

5.1a

The Hypothesized Value

Two Forms of Statistical Inference

Confidence intervals and hypothesis tests

- ▶ The purpose of statistical inference of the mean is to **estimate the unknown underlying population mean, μ** , of which there are two forms
 - **Confidence interval:** An interval about the sample mean that specifies a **range of plausible values of μ**
 - **Hypothesis test:** Evaluate a **specific value of μ** , or range of values, specified by the analyst *before* the analysis begins
- ▶ **Hypothesis test** for a population mean: Evaluate the **reasonableness of a presumed (hypothesized) value of μ** by how close the sample mean, m , is to the proposed value
- ▶ Use the hypothesis test when there is **particular interest** regarding a **single value or range of values of μ**

Hypothesis Test Begins with the Hypothesized Value

Many analyses focus on a reference value of interest

- ▶ There are many applications in which an **analysis of the mean focuses on a specific numerical value**, such as
 - **Salary:** Do marketing executives in our favorite city make more or less than **\$100,000 salary**, on average?
 - **Sales:** Following a new ad campaign, has average Gross Sales of 10 products for the subsequent quarter increased **over the \$856,000 baseline** of sales over the last several years?
 - **Surveys:** For an item that assesses General Satisfaction of a product, measured on a 7-point scale from Strongly Disagree to Strongly Agree scored from 1 to 7, is the average response in the Agree region, that is, **above a 4.0?**

The Hypothesized Value as the Desired Value

Example of wanting to support the hypothesized value

- ▶ **Hypothesized value:** Population value (or values) **assumed true** for purposes of the analysis, a reference value of interest **not necessarily assumed actually true** in the real world
- ▶ In some situations **the hypothesized value is the desired value**
- ▶ **Example in which the goal is to provide support**
 - Is the **machine that fills the cereal boxes set correctly?**
 - The **weights of the individual cereal boxes generally differ**, so **analyze their mean weight**
 - The **hypothesized population mean weight is the desired value**, $\mu = 350$ g, the weight specified on each cereal box
 - Get a **random sample** of the weights of cereal box contents
 - **Desired outcome:** Obtain a sample mean, m , close to 350 g
 - **Purpose of hypothesis test:** **Evaluate extent of “close to”**

An Hypothesized Value that is Desired to be Rejected

Example of the hypothesized “for purposes of the test” only

- ▶ Unfortunately the phrase “hypothesis test” is a misnomer, a misleading terminology that can obscure understanding
- ▶ In practice, perhaps more often than not, the goal is to *refute* the so called “hypothesized value”, such as a previously established baseline compared against a more recent result
- ▶ Example in which the goal is to *refute*
 - The hypothesized value is the *previous average wait time before your customers* were served, 39.4 sec
 - **Implement** a presumably more efficient service process
 - Now *wish* to detect an improvement, a *smaller average population wait time* than the hypothesized mean of 39.4
 - Collect a *random sample* of wait times with the new process
 - *Desired outcome:* Obtain m considerably below 39.4 sec
 - Purpose of hypothesis test: Evaluate “considerably below”

Impact of Sampling Error

Must consider the consequences of random variation

- ▶ The sample mean, m , varies across repeated random samples
- ▶ **Key Concept:** Because of sampling variability, even if a specified value of the population mean, μ , is true, a corresponding sample mean, m , generally does *not* equal μ
 - Even if the machine that fills the cereal boxes is set correctly, yielding a true process average of $\mu = 350$ g, the mean of a corresponding sample will likely not equal 350 g, $m \neq 350$ g
 - Even if the new service process did not change the average wait time of 39.4 sec, so that it is still *true* that $\mu = 39.4$, for (usually hypothetical) multiple samples *half of all sample means will be below 39.4*
- ▶ As always, sampling fluctuation obscures the underlying reality, the true population value, so an inference procedure such as *hypothesis testing* is required to infer the true underlying value

Three Basic Concepts: Notation

(Actual) Population Mean, μ

- ▶ *Reality*, typically unknown, but *value of primary interest*
- ▶ Ex: *Unknown* to the analyst, true mean is $\mu = 350.8$ g

Sample Mean, m

- ▶ What is *observed* from the collected data, an *estimate* of μ
- ▶ Ex: Sample mean calculated from the data is $m = 350.5$ g

Hypothesized Population Mean, μ_0

- ▶ Presumed value of μ , *assumed true for purposes of the test*
- ▶ Ex: Test the hypothesis that $\mu = 350$ g, so μ_0 is 350 g
- ▶ The *hypothesis for a mean always focuses on a specific value of μ , a constant μ_0* , such as 350 g or 39.4 secs or 52%

Null and Alternative Hypotheses

Hypotheses are always about unknown population values

- ▶ **Null hypothesis:** Value(s) of the population mean hypothesized assumed true for purposes of the test
- ▶ Following is the general form of the null hypothesis when only one specific hypothesized value, μ_0 , a specific number such as 350 or 39.4, is presumed true for purposes of the test

$$H_0 : \mu = \mu_0$$

- ▶ **Alternative hypothesis:** Values of the population mean when the hypothesized value is not true, i.e., rejected

$$H_1 : \mu \neq \mu_0$$

- ▶ According to this alternative hypothesis, any value of μ larger than or smaller than the hypothesized value μ_0 invalidates the null hypothesis

5.1b

The Obtained *t*-value

Need for the Hypothesis Test

Must consider the consequences of random variation

- ▶ **Key Concept:** The hypothesis test provides evidence regarding if the sample mean, m , is sufficiently close or far away from the hypothesized value of μ , μ_0 , to either render the hypothesized value reasonable or not
- ▶ For example, is
 - $m = 350.3$ close enough to 350 to render $\mu = 350$ reasonable?
 - $m = 36.8$ so much smaller than 39.4 to indicate a likely decrease from $\mu = 39.4$?
- ▶ Just knowing the separation between sample and hypothesized values of the mean is not enough to answer these questions, which can be formally assessed with the hypothesis test
- ▶ There needs to be some scale, some way to evaluate the size of the distance $m - \mu_0$

Given μ_0 , What is an Unreasonable Sample Outcome?

Evaluate the separation between observed and hypothesized

- ▶ The issue is that the sample mean, m , randomly fluctuates from sample to sample, so the analyst must account for this variation in the assessment of any one m as it relates to μ_0
- ▶ If μ_0 is correct, the question to ask: What range does m typically vary around μ_0 over many, many samples?
- ▶ **Key Concept:** The logic of the hypothesis test assumes that the null hypothesized value, μ_0 , is correct, and then assesses the size of the separation of m and μ_0 over many, many hypothetical repeated samples of data
- ▶ Assess the size of $m - \mu_0$, in terms of the standard error, which reflects the amount of variation of m over repeated samples
- ▶ **Test statistic:** Number of standard errors that separate the sample and hypothesized values

General Form of the Hypothesis Test

Standardize the distance between observed and hypothesized

- ▶ **Obtained *t*-value:** The test statistic for the evaluation of the hypothesized value of a mean is the standardized distance that separates m from μ_0

$$\text{obtained } t\text{-value} : t_m = \frac{m - \mu_0}{s_m}$$

- ▶ t_m : The estimated standard errors that separate the obtained sample mean, m , from the hypothesized mean, μ_0 ¹
- ▶ To evaluate the size of the obtained $m - \mu_0$, compare the one calculated test statistic, t_m , against the hypothetical distribution of what would happen over many, many such t_m -values calculated over repeated sampling

¹In the very unlikely event that the population standard error σ_m is known, the test statistic would be the corresponding *z*-value: $z_m = (m - \mu_0)/\sigma_m$

Distribution of *t*, from Mathematics, not Data

Evaluate a specific result against the *t*-distribution

- ▶ Need to obtain the probability of getting a specific m assuming the truth of the null hypothesis (regardless if it is actually thought or desired to be true)
- ▶ ***t*-distribution:** The mathematically derived distribution of the *t*-value over many, many hypothetical samples IF μ_0 is the true value of the population mean, μ
- ▶ **Degrees of freedom:** The specific *t*-distribution depends on the degrees of freedom, $df = n - 1$, where n is sample size
- ▶ A *t*-distribution is determined by mathematics, not data
- ▶ A *t*-distribution requires a set of assumptions necessary for its mathematical derivation
 - Each data value Y_i is independently sampled from a population of the same μ and σ
 - The sample mean, m , is normally distributed

5.1c The Rejection Region

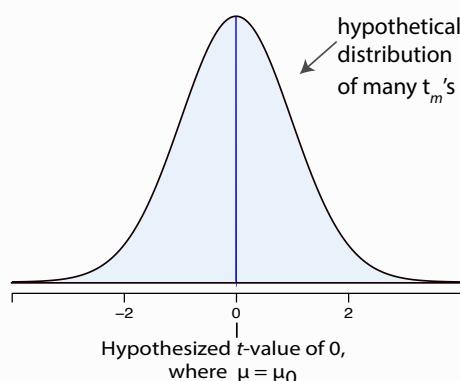
Assume the Null Hypothesis

Entire logic and all conclusions depend on assuming the null

- The version of the **null hypothesis** presented here is that the true population mean, μ , is the **constant μ_0** , which is always specified as a specific value such as 39.4 for a specific context
- **Key Concept:** IF the null hypothesis is true, THEN did the analysis provide expected or unexpected results?
- For hypothesis tests, **all** conclusions are **conditional**, given the truth of the reference value, μ_0 :
 - IF $H_0 : \mu = \mu_0$ is true, THEN conclude ...
 - If μ_0 is the true value of μ , the hypothetical distribution of
 - the sample mean, m , centers over μ_0
 - the corresponding transformation of m to the **t-value**,
 $t_m = (m - \mu_0) / s_m$, centers over 0

t-Distribution Assuming Null Hypothesis $\mu = \mu_0$

- For a population with $\mu = \mu_0$, **hypothetically** take very many samples, each of size n
- For each sample, calculate m and s_m , and then t_m :
$$t_m = \frac{m - \mu_0}{s_m}$$
- The result is **an entire distribution of t-values**
- When $\mu = \mu_0$, this **mathematically defined distribution of t_m** centers on $t = 0$



The Rejection Region

What happens when m is far from μ ?

- ▶ **Key Concept:** Basis of the test is to compare the one *t*-statistic *calculated from the data*, t_m , to the entire set of outcomes given the mathematically defined distribution of t_m over many hypothetical samples
- ▶ **Rejection Region:** Tail areas of the *t*-distribution that represent unlikely events assuming a true value of $\mu = \mu_0$
- ▶ When t_m falls in the rejection region, m is far from the assumed true population mean $\mu = \mu_0$, so consider the assumption of a true μ_0 unreasonable and **reject the null hypothesis**

David W. Gerbing

Hypothesis Test: The Rejection Region 17

The $\alpha = 0.05$ Rejection Region

Define “unlikely” as a (conditional) probability of 5% or less

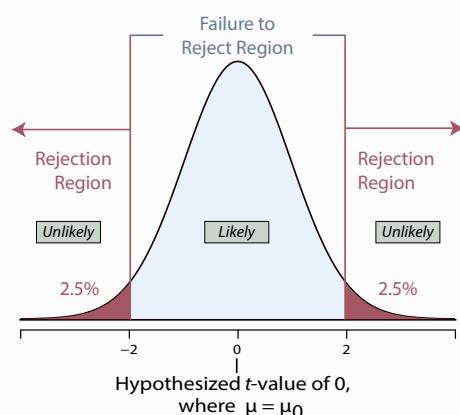
- ▶ **α (alpha):** Specified before data analysis, the probability level that defines an event as unlikely
- ▶ Usually set to $\alpha = 0.05$ or 5%, which corresponds to a 95% range of sampling variation
- ▶ Usually willing to interpret either a positive or a negative deviation from μ_0 , in which case **define the rejection region with 2.5% in the upper tail and 2.5% in the lower tail**
- ▶ **Cutoff** or critical value: Value of a distribution that cuts off a specified tail area, such as for specifying the rejection region
 - for $\alpha = .05$: $-t_{.025}$ and $t_{.025}$
 - in general: $-t_{\alpha/2}$ and $t_{\alpha/2}$
- ▶ The specific value of $t_{.025}$ for a given analysis depends on the specific *t*-distribution as indicated by $df = n - 1$, the degrees of freedom, but is usually approximately equal to 2

David W. Gerbing

Hypothesis Test: The Rejection Region 18

Ex: Two-Tailed $\alpha = 0.05$ Rejection Region, $df = 59$

- ▷ Suppose $n = 60$, then define the tails according to $\alpha = 0.05$ for $df = 59$ with $t_{.025} = 2.00$ and $-t_{.025} = -2.00$
- ▷ **IF** the hypothesized value is true, **THEN** a value of t_m in either tail of the *t*-distribution is *unlikely*
- ▷ **IF** $H_0 : \mu = \mu_0$ is true, and $t_m < -2.00$ or $t_m > 2.00$, **THEN** reject the value of μ_0 as *unlikely*



David W. Gerbing

Hypothesis Test: The Rejection Region 19

How far is m from μ_0 ?

Bases of test is the t -distribution

- ▶ Use the mathematically defined distribution of t to calculate the cutoff or critical values that define the rejection region, such as $-t_{.025}$ and $t_{.025}$
- ▶ Calculate the t -value obtained from the data, t_m , to see how many estimated standard errors the sample mean, m , is from μ_0

Large distance between actual and hypothesized values ...

- ▶ Yields a large value of t_m , in the rejection region
- ▶ Renders hypothesized value unreasonable

Small distance between actual and hypothesized values ...

- ▶ Yields a small value of t_m , not in the rejection region
- ▶ Demonstrates data consistent with hypothesized value

Index Subtract 2 from each listed value to get the Slide

alpha, α , 20
critical value, 20
cutoff value, 20
degrees of freedom, 15
hypothesis test, 4
hypothesis: alternative, 10
hypothesis: null, 10
hypothesized value, 6
hypothesized value: refute, 7

hypothesized value: support, 6
mean: hypothesized value, 9
mean: population, 9
mean: sample, 9
rejection region, 19
 t -distribution, 15
 t -value, 14
test statistic, 13

▶ The End