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Distribution of the Sample Mean m
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David W. Gerbing m as a Variable: Distribution of the Sample Mean m 1



The Sample Mean m as a Variable
Consider variation across samples

I Here we focus on the population mean for the variable of
interest, denoted as µ, and its relation to the sample mean, m

I Only one m is typically observed, but each random sample
generally would have a different value of m

I For multiple samples, interpret m as a variable with its own
mean, standard deviation and shape

I Because only one m is typically observed, the distribution of m
over many samples is a mathematical abstraction

I Fortunately, there is an insight that allows this abstraction to
become practical to understand the variability of m

I Key Concept: The mean, standard deviation and shape of m
over many, usually hypothetical, samples can be estimated with
information from only a single sample
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Variability of the Distribution of the Sample Mean

Standard Error – a Key Component of Inferential Statistics
I As discussed, the variability of many m’s over many samples

indicates how close any one m is likely to be to µ
I As usual, assess variability with the standard deviation, here

applied to the statistic m defined as a variable
I Standard Error of a statistic: The standard deviation of the

statistic across (usually hypothetical) multiple samples
I The standard error is a standard deviation, but applied to the

variability of a statistic over (usually hypothetical) samples
I The reference to the “standard deviation” of something is

usually intended to apply to the variability of the data values
I The phrase “standard error” applies to the standard deviation

of a corresponding statistic
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Actual Standard Error σm
Information about Many Samples Deduced from One Sample

I Denote the population standard deviation of m, its standard
error defined over all possible samples, with σm

I This standard error is described with a simple expression that
relates to the standard deviation of the data values

I Actual (population) standard error of m: σm = σ√n
I The standard deviation of the sample means of all possible

samples is the standard deviation of all possible data values
divided by the square root of the size of each sample

I This discussion of the population value σm is theoretical as the
population standard deviation, σ, on which it depends, is
typically not known

I This discussion, however, provides the logical basis for what
occurs with actual data analysis
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Meaning of the Standard Error σm
The standard error is the key to statistical inference

I Statistical inference involves the consideration of the standard
deviations of two different variables
◦ σ: Stnd dev of the population of all potential data values
◦ σm: The usually hypothetical standard deviation of the

sample mean, m, over all possible samples
I A crucial relationship follows: σm = σ√n < σ

I That is, the sample mean varies less than the data (and
potential data from the entire population)

I The mean is a centering process, such that the extreme large
values in a sample tend to cancel out the extreme small values
in the same sample

I The result is that the sample mean fluctuates more closely
around the population mean than do individual data values
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Shape of the Distribution of the Sample Mean m

More explanation in the appendix
I Central Limit Theorem: m is at least approximately normal

except for small samples from non-normal populations of data
I A “small” sample size usually means around n = 30, though a

larger sample may be needed for a skewed distribution of data
values to ensure the normality of m

I Key Concept: For a normally distributed m, use normal curve
probabilities to calculate the range of variation of m

I Before beginning an inferential analysis of µ: Verify that m is
normally distributed, so that normal probabilities can be used
for inference
◦ If the sample is larger than 30 or so, then assume m normal
◦ If the sample size is much less than 30, inspect a histogram

of the data to at least ascertain that skewness is not an issue
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Mean of the Distribution of the Sample Mean m

The mean of the means
I In terms of notation, µ is the population mean of the data, and
µm is the population mean of the distribution of all possible
sample means

I There is only one logical value of the mean of the sample
means, µm, and that is the mean of the data, µ

I Population mean of m: The mean of all possible sample means
is the same mean of all the data values, µm = µ

I Accordingly, only the expression µ is used from here on
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z-value: How Far is an Obtained m from µ?
To begin with a theoretical discussion, presume σ Known

I Because of sampling variation, each given m is some distance
from the target, the true, population value, µ

I Express the usually normal m in terms of zm, the standardized
version of m, the universal metric for a normal distribution,
which specifies how many standard errors separate m and µ

I Standardized sample mean: zm = m − µ
σm

I zm expresses how many standard errors, the standard deviation
of m over repeated samples, separate m from µ

I µm and σm are constant for all samples, so the variation of zm
over many samples depends only on the variation of m, so . . .

I Key Concept: Given a normally distributed zm, normal curve
probabilities describe the extent of sampling variation
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Probability Intervals
What range contains most of the zm values?

I To express the variation of m over the usually hypothetical
multiple samples, obtain the range of these normally distributed
zm distances

I Key Question: For the many, many hypothetical values of m,
how far can a given m be from its target, µ?

I Theoretically, no limit for either + or − values as a normal
curve never touches the horizontal axis, so choose “most”

I Usually specify most as the range of 95% of the values
I Probability Interval: Range about µ for which a randomly

selected m is likely to fall within, at a specified probability
I Cutoff (critical) Value: A value of a distribution that isolates

the upper or lower tail of the distribution, which sets the
bounds of a probability interval
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95% Range of Variation of m: .975 Quantile, z.025 = 1.96

95%

2.5% 2.5%

Probability Interval for m

0-1.96 1.96

μ μ + 1.96 σμ - 1.96 σ

Zm

m
mm

Figure: Probability interval for 95% of the values of any normal distribution,
including for m, which fall within 1.96 standard deviations (errors)
of the mean, µ
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Illustration: 95% Probability Interval of m
Population values: µ = 100, σ = 28 Sample size: n = 90

I n > 30, so distribution of m is normal regardless of the
distribution of the population of the data values

I Apply normal curve probabilities to the distribution of m, so
95% of all values of m are within 1.96 standard errors of µ

I Population standard error

σm = σ√n = 28√
90

= 28
9.49 = 2.95, and (1.96)(2.95) = 5.78

I Now go 1.96 standard errors up and down from µ

I 95% range of variation of m, the probability interval
LowerBound: µ− (1.96)(σm) = 100− 5.78 = 94.22

UpperBound: µ+ (1.96)(σm) = 100 + 5.78 = 105.78
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Illustration: Probability Interval of m (continued)

Cannot specify the value of
m in advance of actually
drawing the random sample
from the population
However, can specify the
probability interval
For m calculated from a
sample of size n = 90 from
the population of interest,
with µ = 100 and σ = 28:
The probability is 95% that
any one m will lie between
94.22 and 105.78

95%

2.5% 2.5%

0-1.96 1.96

100 105.7894.22

Probability Interval for m

Zm

m

Figure: A 95% probability interval for the
sample mean, m, for a specific pop-
ulation with µ = 100 and σ = 28
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Illustration: Probability Interval via Simulation
Draw some samples from this population

I In this example, for a population of any shape in which
µ = 100 and σ = 28, and a sample of size n = 90, 95% of the
m′s vary about µ from 94.22 to 105.78

I To further illustrate, simulate the drawing of 8 samples, each of
size n = 90 from the corresponding (normal) population

> simMeans(ns=8, n=90, mu=100, sigma=28)

1 2 3 4 5 6 7 8
m’s: 94.7 98.4 98.5 99.4 99.5 100.8 102.4 102.5

I In this particular simulation, all 8 values of m were within the
95% probability interval

I In general, about 5% of the values of m will be outside of the
bounds of the probability interval
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4.2b
Logic of the Confidence Interval
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From probability interval to confidence interval

The basis of inference
I As discussed, the smaller the range of variability of the sample

mean, m, over usually hypothetical multiple samples, the more
likely that any one m is close to µ

I Define this range of variability about µ by the probability
interval of m at a given level of probability, such as 95%

I This probability interval becomes the basis for the confidence
interval, both of which are of the same width but centered over
different values

I In actual data analysis, the confidence interval estimates an
unknown value of µ
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From Probability to Inferential Statistics
Deduction and induction (inference) compared

I Key Concept: The purpose of statistical inference is to
estimate the value of a population characteristic for a variable
of interest, such as its population mean µ
◦ Last section focused on deduction to understand the extent

of random fluctuation about a known value of µ
◦ Here turn the situation around to induction, inference

Logic Direction Purpose
Deduction from a model of

the population to the
data

deduce probabilities of
data values from known
population values

Induction from data to a model
of the population

infer unknown popula-
tion values from data
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Presenting the Confidence Interval
Basic definitions

I Confidence Level: Specified percentage of values that defines
the typical range of variation of the statistic of interest over
repeated samples about the corresponding population value

I Most widely used confidence level is 95%, a “nice” number
that gets “most” of the values

I Confidence interval for the population mean: Range of
values that likely contains the population mean, µ, at a
specified confidence level

I The confidence interval for the mean specifies the range of
plausible values of the constant population mean, µ

I The sample mean generally does not equal the population
mean, m 6= µ

◦ Just knowing m by itself does not inform us as to µ
◦ So construct an interval around m that likely contains µ
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Logic of the Confidence Interval

. The probability interval
around the true mean µ
contains 95% of all m’s

. Get one sample, so one m,
here a little less than µ

. Key Concept: If the
interval constructed about
µ contains m, then an
interval of the same width
about m contains µ

. The interval about m is
the confidence interval, in
practice constructed
without knowledge of µ

μ
Probability Interval

hypothetical
distribution
of many m’s

m the one 
obtained m
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From Probability Interval to Confidence Interval
The interval centered over the sample value m

I As seen, the range of variation of the sample statistic m is the
key to constructing the confidence interval

I The remarkable Central Limit Theorem specifies that the
sample mean m is typically normally distributed over multiple
samples, so normal curve probabilities provide a specified range

I Once the size of the range is known, the confidence interval is
the centering of this range over the sample value m

I 95% confidence interval calculated with knowledge of the
population standard deviation, σ: m ± (1.96)(σm)

I Although a true statement, the problem of employing this
expression in practice is that if µ is not known, then almost
always neither is σ, in which case σm cannot be calculated

I In the analysis of data, typically replace σ with its sample
estimate, s, discussed next
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Appendix
Shape of the Distribution of the Sample Mean

The Central Limit Theorem
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Show the Shape of the Distribution of the Sample Mean
Use computer simulation to illustrate the distribution of m

I lessR function simCLT(): To investigate if m is normal for a
given population and sample size, simulate its distribution

I To run a simulation, specify the shape of the population of all
of the data with the dist parameter

I Required: Four possible values of dist:
"normal", "uniform", "antinormal", "lognormal"

I Required: ns, number of samples
n, size of each sample

I For example, to calculate m from each of 1000 samples, each
with two data values, from a uniform distribution:

> simCLT(ns=1000, n=2, dist="uniform")
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Central Limit Theorem: Normal Data

. The normal population, from
which the data are sampled

. Take many, many different
samples, each sample of the
smallest possible size, n = 2

. The many, many means of each of
these samples for n = 2 has a
distribution: m is also normal

. If the sample size is n = 5 for
each of the many, many samples,
m is also normal

. m also normal for many, many
samples of n = 30 and larger

Population 
of  Y

m for n=2

m for n=5

m for n=30
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Example of All Possible Sample Means of Size 2
Uniform distribution, 5 equally probable values: 0, 1, 2, 3, 4

I There are only 25 possible samples of size 2

Sum Mean Possible Samples Count Prob
0 0.0 0,0 1 1/25=0.04
1 0.5 0,1 1,0 2 2/25=0.08
2 1.0 0,2 1,1 2,0 3 3/25=0.12
3 1.5 0,3 1,2 2,1 3,0 4 4/25=0.16
4 2.0 0,4 1,3 2,2 3,1 4,0 5 5/25=0.20
5 2.5 1,4 2,3 3,2 4,1 4 4/25=0.16
6 3.0 2,4 3,3 4,2 3 3/25=0.12
7 3.5 3,4, 4,3 2 2/25=0.08
8 4.0 4,4 1 1/25=0.04

Total 25 1.00

I More ways to get m = 2 than m = 0 or m = 4, so values of m
tend to converge toward µ = 2
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Central Limit Theorem: Uniform Data

. The uniform population Y, from
which the data are sampled, small,
medium and large values of Y
equally likely

. Take many, many different
samples of Y, each sample of the
smallest possible size, n = 2

. The distribution of the sample
means for n = 2 is almost normal

. If the sample size is n = 5 for
each of the many, many samples,
m is approximately normal

. m also normal for many, many
samples of n = 30 and larger

Population 
of  Y

m for n=2

m for n=5

m for n=30
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Central Limit Theorem: “Anti-Normal” Data

. The population Y from which the
data are sampled, with values in
the middle less likely than tail
values

. Take many, many different
samples of Y, each sample of the
smallest possible size, n = 2

. The distribution of the sample
means for n = 2 is almost normal

. If the sample size is n = 5 for
each of the many, many samples,
m is approximately normal

. m also normal for many, many
samples of n = 30 and larger

Population 
of  Y

m for n=2

m for n=5

m for n=30
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Central Limit Theorem: Skewed Data

. A skewed population Y from
which the data are sampled

. Take many, many different
samples of Y, each sample of the
smallest possible size, n = 2

. The distribution of the many,
many means of each of these
samples is also skewed

. If n = 5 distribution of many m’s
still retains some skew

. m also normal for many, many
samples of n = 30 and larger

Population 
of  Y

m for n=2

m for n=5

m for n=30
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Central Limit Theorem: Summary

The sample mean m is . . .
. exactly normal when the
population of Y is normal
for any sample size n from
2 onward

. approximately normal for a
symmetric population of Y
except for very small
sample sizes n less than 5

. approximately normal for
even a skewed population
of Y when the sample size
n is at least 30

Population 
of  Y

m for n=2

m for n=5

m for n=30

m not normal

Conclusion: The sample mean m follows
a normal distribution except when the
sample size is small and the population of
the data is not normal, particularly when
skewed
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CLT: Conclusion and Practical Consequences
Rules to establish normality of the sample mean, m

I m must be at least approximately normal to apply normal (or
related) distribution probabilities for the confidence interval

I IF sample size n > 30, then the sample mean, m, is at least
approximately normally distributed unless the data are sampled
from a severely skewed population

I Generally, and always with smaller sample sizes, evaluate the
shape of the population distribution of Y with an analysis of
the sample data
◦ IF the population for the sample data is normal, the

population distribution of m is exactly normal
◦ IF the population for the sample data is not skewed, n can

be quite small and m will be at least approximately normal
◦ IF the population is skewed, then n > 30 or more are needed

for m to be approximately normal
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I The End
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standard error, 5
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