

Chapter 4

Confidence Interval of the Mean

Section 4.2

Conceptual Basis of the Confidence Interval

David W. Gerbing

The School of Business
Portland State University

- Conceptual Basis of the Confidence Interval
 - Distribution of the Sample Mean m
 - Logic of the Confidence Interval
 - Appendix: Shape of the Distribution of the Sample Mean

4.2a

Distribution of the Sample Mean m

The z -distribution of the Sample Mean

The Sample Mean m as a Variable

Consider variation across samples

- Here we focus on the **population mean** for the variable of interest, denoted as μ , and its **relation to the sample mean**, m
- Only one m is typically observed, but each random sample generally would have a **different value of m**
- For multiple samples, interpret m as a **variable** with its own **mean, standard deviation and shape**
- Because only one m is typically observed, the distribution of m over many samples is a **mathematical abstraction**
- Fortunately, there is an insight that allows this abstraction to become **practical** to understand the **variability of m**
- **Key Concept:** The mean, standard deviation and shape of m over many, usually hypothetical, samples can be **estimated** with information from only a **single sample**

Variability of the Distribution of the Sample Mean

Standard Error – a Key Component of Inferential Statistics

- As discussed, the **variability** of many m 's over many samples indicates **how close** any **one m** is likely to be to μ
- As usual, assess variability with the **standard deviation**, here applied to the statistic m defined as a **variable**
- **Standard Error** of a statistic: The standard deviation of the **statistic** across (usually hypothetical) multiple samples
- The **standard error** is a **standard deviation**, but applied to the **variability of a statistic** over (usually hypothetical) samples
- The reference to the "standard deviation" of something is usually intended to apply to the **variability of the data values**
- The phrase "standard error" applies to the **standard deviation of a corresponding statistic**

Actual Standard Error σ_m

Information about Many Samples Deduced from One Sample

- Denote the population standard deviation of m , its **standard error** defined over all possible samples, with σ_m
- This **standard error** is described with a **simple expression** that relates to the standard deviation of the data values
- **Actual (population) standard error of m :** $\sigma_m = \frac{\sigma}{\sqrt{n}}$
- The **standard deviation of the sample means of all possible samples** is the standard deviation of all possible data values divided by the square root of the size of each sample
- This discussion of the population value σ_m is theoretical as the **population standard deviation, σ , on which it depends, is typically not known**
- This discussion, however, provides the **logical basis for what occurs with actual data analysis**

Meaning of the Standard Error σ_m

The standard error is the key to statistical inference

- Statistical inference involves the consideration of the **standard deviations of two different variables**
 - σ : Stnd dev of the population of all potential data values
 - σ_m : The usually hypothetical standard deviation of the sample mean, m , over all possible samples
- A crucial relationship follows: $\sigma_m = \frac{\sigma}{\sqrt{n}} < \sigma$
- That is, the **sample mean** varies less than the data (and potential data from the entire population)
- The **mean is a centering process**, such that the extreme large values in a sample tend to cancel out the extreme small values in the same sample
- The result is that the **sample mean** fluctuates more closely **around the population mean** than do individual data values

David W. Gerbing

m as a Variable: Distribution of the Sample Mean *m* 5

Shape of the Distribution of the Sample Mean *m*

More explanation in the appendix

- **Central Limit Theorem:** m is at least approximately normal except for small samples from non-normal populations of data
- A “small” sample size usually means around $n = 30$, though a larger sample may be needed for a skewed distribution of data values to ensure the normality of m
- **Key Concept:** For a normally distributed m , use **normal curve probabilities** to calculate **the range of variation of m**
- Before beginning an inferential analysis of μ : Verify that **m is normally distributed**, so that normal probabilities can be used for inference
 - If the sample is **larger than 30** or so, then **assume m normal**
 - If the sample size is **much less than 30**, inspect a **histogram** of the data to at least ascertain that skewness is not an issue

David W. Gerbing

m as a Variable: Distribution of the Sample Mean *m* 6

Mean of the Distribution of the Sample Mean *m*

The mean of the means

- In terms of notation, μ is the population mean of the data, and μ_m is the population mean of the distribution of all possible sample means
- There is only **one logical value of the mean of the sample means**, μ_m , and that is the mean of the data, μ
- **Population mean of m :** The mean of all possible sample means is the same mean of all the data values, $\mu_m = \mu$
- Accordingly, **only the expression μ is used from here on**

David W. Gerbing

m as a Variable: Distribution of the Sample Mean *m* 7

z-value: How Far is an Obtained m from μ ?

To begin with a theoretical discussion, presume σ Known

- ▶ Because of sampling variation, each given m is some distance from the target, the true, population value, μ
- ▶ Express the usually normal m in terms of z_m , the standardized version of m , the universal metric for a normal distribution, which specifies how many standard errors separate m and μ
- ▶ **Standardized sample mean:** $z_m = \frac{m - \mu}{\sigma_m}$
- ▶ z_m expresses how many standard errors, the standard deviation of m over repeated samples, separate m from μ
- ▶ μ_m and σ_m are constant for all samples, so the variation of z_m over many samples depends only on the variation of m , so ...
- ▶ **Key Concept:** Given a normally distributed z_m , normal curve probabilities describe the extent of sampling variation

Probability Intervals

What range contains most of the z_m values?

- ▶ To express the variation of m over the usually hypothetical multiple samples, obtain the range of these normally distributed z_m distances
- ▶ **Key Question:** For the many, many hypothetical values of m , how far can a given m be from its target, μ ?
- ▶ Theoretically, no limit for either + or - values as a normal curve never touches the horizontal axis, so choose "most"
- ▶ Usually specify most as the range of 95% of the values
- ▶ **Probability Interval:** Range about μ for which a randomly selected m is likely to fall within, at a specified probability
- ▶ **Cutoff (critical) Value:** A value of a distribution that isolates the upper or lower tail of the distribution, which sets the bounds of a probability interval

95% Range of Variation of m : .975 Quantile, $z_{.025} = 1.96$

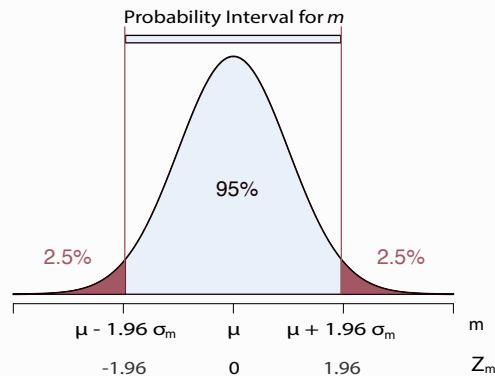


Figure: Probability interval for 95% of the values of any normal distribution, including for m , which fall within 1.96 standard deviations (errors) of the mean, μ

Illustration: 95% Probability Interval of m

Population values: $\mu = 100$, $\sigma = 28$ Sample size: $n = 90$

- $n > 30$, so distribution of m is normal regardless of the distribution of the population of the data values
- Apply **normal curve** probabilities to the distribution of m , so 95% of all values of m are within 1.96 standard errors of μ
- Population standard error

$$\sigma_m = \frac{\sigma}{\sqrt{n}} = \frac{28}{\sqrt{90}} = \frac{28}{9.49} = 2.95, \text{ and } (1.96)(2.95) = 5.78$$
- Now go 1.96 standard errors up and down from μ
- 95% range of variation of m , the **probability interval**
LowerBound: $\mu - (1.96)(\sigma_m) = 100 - 5.78 = 94.22$
UpperBound: $\mu + (1.96)(\sigma_m) = 100 + 5.78 = 105.78$

David W. Gerbing

m as a Variable: Distribution of the Sample Mean m 11

Illustration: Probability Interval of m (continued)

Cannot specify the value of m in advance of actually drawing the random sample from the population

However, can specify the probability interval

For m calculated from a sample of size $n = 90$ from the population of interest, with $\mu = 100$ and $\sigma = 28$:

The probability is 95% that any one m will lie between 94.22 and 105.78

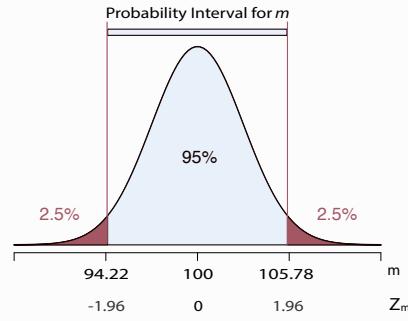


Figure: A 95% probability interval for the sample mean, m , for a specific population with $\mu = 100$ and $\sigma = 28$

David W. Gerbing

m as a Variable: Distribution of the Sample Mean m 12

Illustration: Probability Interval via Simulation

Draw some samples from this population

- In this example, for a population of any shape in which $\mu = 100$ and $\sigma = 28$, and a sample of size $n = 90$, 95% of the m 's vary about μ from 94.22 to 105.78
- To further illustrate, simulate the drawing of 8 samples, each of size $n = 90$ from the corresponding (normal) population

```
> simMeans(ns=8, n=90, mu=100, sigma=28)
```

1	2	3	4	5	6	7	8
m 's: 94.7	98.4	98.5	99.4	99.5	100.8	102.4	102.5

- In this particular simulation, all 8 values of m were within the 95% probability interval
- In general, about 5% of the values of m will be outside of the bounds of the probability interval

David W. Gerbing

m as a Variable: Distribution of the Sample Mean m 13

4.2b Logic of the Confidence Interval

From probability interval to confidence interval

The basis of inference

- As discussed, the **smaller the range of variability of the sample mean, m** , over usually hypothetical multiple samples, the **more likely that any one m is close to μ**
- Define this range of variability about μ by the **probability interval** of m at a given level of probability, such as 95%
- This **probability interval becomes the basis for the confidence interval**, both of which are of the same width but centered over different values
- In actual data analysis, the **confidence interval estimates an unknown value of μ**

From Probability to Inferential Statistics

Deduction and induction (inference) compared

- **Key Concept:** The purpose of statistical inference is to **estimate the value of a population characteristic for a variable of interest**, such as its population mean μ
 - Last section focused on *deduction* to understand the extent of **random fluctuation** about a **known value of μ**
 - Here turn the situation around to *induction*, **inference**

Logic	Direction	Purpose
Deduction	from a model of the population to the data	<i>deduce</i> probabilities of data values from known population values
Induction	from data to a model of the population	<i>infer</i> unknown population values from data

Presenting the Confidence Interval

Basic definitions

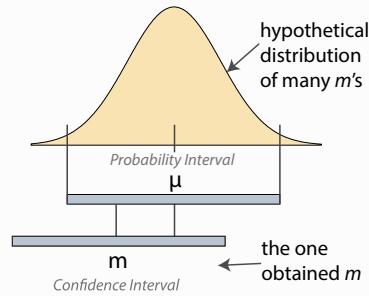
- **Confidence Level:** Specified percentage of values that defines the typical range of variation of the statistic of interest over repeated samples about the corresponding population value
- Most widely used confidence level is 95%, a “nice” number that gets “most” of the values
- **Confidence interval** for the population mean: Range of values that likely contains the population mean, μ , at a specified confidence level
- The confidence interval for the mean specifies the range of plausible values of the constant population mean, μ
- The sample mean generally does not equal the population mean, $m \neq \mu$
 - Just knowing m by itself does not inform us as to μ
 - So construct an interval around m that likely contains μ

David W. Gerbing

m as a Variable: Logic of the Confidence Interval 17

Logic of the Confidence Interval

- The probability interval around the true mean μ contains 95% of all m 's
- Get one sample, so one m , here a little less than μ
- **Key Concept:** If the interval constructed about μ contains m , then an interval of the same width about m contains μ
- The interval about m is the confidence interval, in practice constructed without knowledge of μ



David W. Gerbing

m as a Variable: Logic of the Confidence Interval 18

From Probability Interval to Confidence Interval

The interval centered over the sample value m

- As seen, the range of variation of the sample statistic m is the key to constructing the confidence interval
- The remarkable Central Limit Theorem specifies that the sample mean m is typically normally distributed over multiple samples, so normal curve probabilities provide a specified range
- Once the size of the range is known, the confidence interval is the centering of this range over the sample value m
- **95% confidence interval** calculated with knowledge of the population standard deviation, σ : $m \pm (1.96)(\sigma_m)$
- Although a true statement, the problem of employing this expression in practice is that if μ is not known, then almost always neither is σ , in which case σ_m cannot be calculated
- In the analysis of data, typically replace σ with its sample estimate, s , discussed next

David W. Gerbing

m as a Variable: Logic of the Confidence Interval 19

Appendix

Shape of the Distribution of the Sample Mean

The Central Limit Theorem

David W. Gerbing

m as a Variable: Appendix: Shape of the Distribution of the Sample Mean 20

Show the Shape of the Distribution of the Sample Mean

Use computer simulation to illustrate the distribution of *m*

- ▶ **lessR** function `simCLT()`: To investigate if *m* is normal for a given population and sample size, simulate its distribution
- ▶ To run a simulation, specify the shape of the population of all of the data with the `dist` parameter
- ▶ *Required*: Four possible values of `dist`:
`"normal", "uniform", "antinormal", "lognormal"`
- ▶ *Required*: `ns`, number of samples
`n`, size of each sample
- ▶ For example, to calculate *m* from each of 1000 samples, each with two data values, from a uniform distribution:

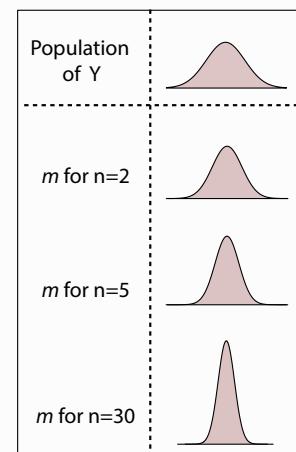
```
> simCLT(ns=1000, n=2, dist="uniform")
```

David W. Gerbing

m as a Variable: Appendix: Shape of the Distribution of the Sample Mean 21

Central Limit Theorem: Normal Data

- ▷ The **normal population**, from which the data are sampled
- ▷ Take many, many different samples, each sample of the smallest possible size, $n = 2$
- ▷ The many, many means of each of these samples for $n = 2$ has a distribution: *m* is also normal
- ▷ If the sample size is $n = 5$ for each of the many, many samples, *m* is also normal
- ▷ *m* also normal for many, many samples of $n = 30$ and larger



David W. Gerbing

m as a Variable: Appendix: Shape of the Distribution of the Sample Mean 22

Example of All Possible Sample Means of Size 2

Uniform distribution, 5 equally probable values: 0, 1, 2, 3, 4

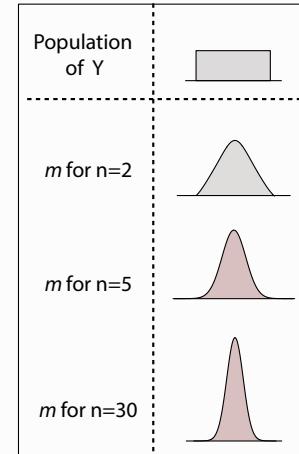
- There are only 25 possible samples of size 2

Sum	Mean	Possible Samples	Count	Prob
0	0.0	0,0	1	1/25=0.04
1	0.5	0,1 1,0	2	2/25=0.08
2	1.0	0,2 1,1 2,0	3	3/25=0.12
3	1.5	0,3 1,2 2,1 3,0	4	4/25=0.16
4	2.0	0,4 1,3 2,2 3,1 4,0	5	5/25=0.20
5	2.5	1,4 2,3 3,2 4,1	4	4/25=0.16
6	3.0	2,4 3,3 4,2	3	3/25=0.12
7	3.5	3,4, 4,3	2	2/25=0.08
8	4.0	4,4	1	1/25=0.04
Total			25	1.00

- More ways to get $m = 2$ than $m = 0$ or $m = 4$, so values of m tend to converge toward $\mu = 2$

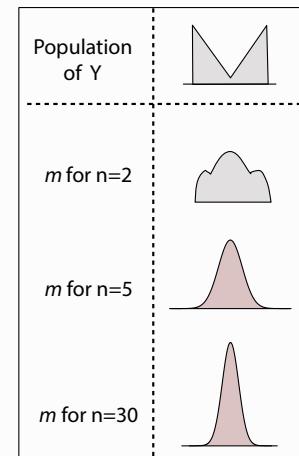
Central Limit Theorem: Uniform Data

- The uniform population Y , from which the data are sampled, small, medium and large values of Y equally likely
- Take many, many different samples of Y , each sample of the smallest possible size, $n = 2$
- The distribution of the sample means for $n = 2$ is almost normal
- If the sample size is $n = 5$ for each of the many, many samples, m is approximately normal
- m also normal for many, many samples of $n = 30$ and larger



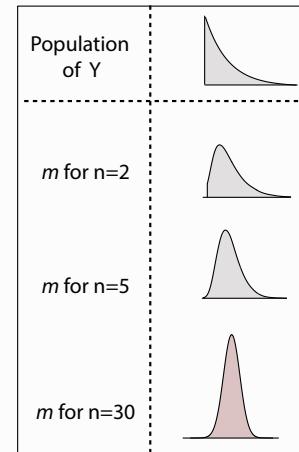
Central Limit Theorem: "Anti-Normal" Data

- The population Y from which the data are sampled, with values in the middle less likely than tail values
- Take many, many different samples of Y , each sample of the smallest possible size, $n = 2$
- The distribution of the sample means for $n = 2$ is almost normal
- If the sample size is $n = 5$ for each of the many, many samples, m is approximately normal
- m also normal for many, many samples of $n = 30$ and larger



Central Limit Theorem: Skewed Data

- ▷ A skewed population Y from which the data are sampled
- ▷ Take many, many different samples of Y , each sample of the smallest possible size, $n = 2$
- ▷ The distribution of the many, many means of each of these samples is also **skewed**
- ▷ If $n = 5$ distribution of many m 's still retains some skew
- ▷ m also **normal** for many, many samples of $n = 30$ and larger



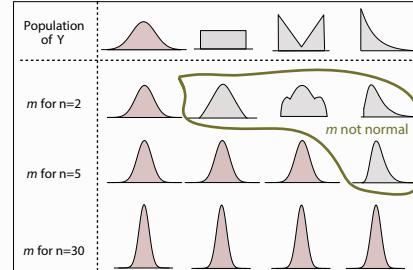
David W. Gerbing

m as a Variable: Appendix: Shape of the Distribution of the Sample Mean 26

Central Limit Theorem: Summary

The sample mean m is ...

- ▷ **exactly normal** when the population of Y is normal for any sample size n from 2 onward
- ▷ **approximately normal** for a symmetric population of Y **except** for very small sample sizes n less than 5
- ▷ **approximately normal** for even a **skewed population of Y** when the sample size n is at least 30



Conclusion: The sample mean m follows a **normal distribution** **except** when the sample size is small and the population of the data is not normal, particularly when skewed

David W. Gerbing

m as a Variable: Appendix: Shape of the Distribution of the Sample Mean 27

CLT: Conclusion and Practical Consequences

Rules to establish normality of the sample mean, m

- ▶ m must be at least **approximately normal** to apply normal (or related) distribution probabilities for the confidence interval
- ▶ IF sample size $n > 30$, then the sample mean, m , is at least **approximately normally distributed** **unless** the data are sampled from a severely skewed population
- ▶ Generally, and always with smaller sample sizes, **evaluate the shape of the population distribution of Y** with an analysis of the sample data
 - IF the population for the sample data is normal, the population distribution of m is exactly normal
 - IF the population for the sample data is not skewed, n can be **quite small** and m will be at least approximately normal
 - IF the population is **skewed**, then $n > 30$ or more are needed for m to be approximately normal

David W. Gerbing

m as a Variable: Appendix: Shape of the Distribution of the Sample Mean 28

► The End

Index Subtract 2 from each listed value to get the Slide

central limit theorem, 8, 29, 30	induction, 18
confidence interval: definition, 19	inference, 18
confidence interval: logic, 20	probability interval, 11
confidence level, 19	standard error, 5
critical value, 11	standard error of the sample mean: population, 6
cutoff value, 11	standardized sample mean, 10
deduction, 18	