

Chapter 4

Confidence Interval of the Mean

Section 4.1

The Confidence of an Estimate

David W. Gerbing

The School of Business
Portland State University

- The Confidence of an Estimate

Why Do We Care about the Confidence Interval?

For an obtained m , always construct the confidence interval

- ▶ How much **information** does an analysis convey regarding μ , the population mean desired as a basis for decision making?
- ▶ **Key Concept:** The estimate m provides **useful information** for decision making only if there is **confidence** that m is close to μ
- ▶ For example, **evaluate the cost** of a specific procedure to accomplish some task of interest over multiple occurrences
- ▶ Obtain a **sample mean** of $m = \$894$, which, without assessing confidence, yields a **data summary of unknown quality**
 - If the value of μ is likely within the interval $\$894 \pm \539 , the confidence interval, then there is **no actionable information**
 - In contrast, if the value of μ is likely within $\$894 \pm \5.39 , then this same sample mean provides **much information**
- ▶ Always **include a confidence interval with a sample estimate**, such as m , to indicate how close m is likely to μ

4.1

The Confidence of an Estimate

How Close is a Sample Value to the True Value?

David W. Gerbing

Estimate μ : 2

How Close is One Estimate to the True Value?

Use multiple values of a statistic to assess confidence

- ▶ Usually observe a **single sample**
- ▶ **Sampling variation:** The value of a statistic **varies** from one sample to another (usually hypothetical) sample
- ▶ **Key Concept:** A statistic calculated from the **one** obtained sample, such as m , is **useful** for decision making only if it is **close** to its true corresponding population value, such as μ
 - Suppose a **sample** from a **population of interest** of size $n = 10$ reveals $m = 21.4$
 - We know that μ is **probably not** 150 or -450.3
- ▶ Although μ could be practically anything, it is **likely** close to m and values of 150 or -450.3 are not close to $m = 21.4$
- ▶ The question of interest: **How close?**

David W. Gerbing

Estimate μ : 3

The Confidence Interval

Estimate the unknown value μ

- ▶ Just knowing the value of a **single m** does not provide enough information to know **how close** that m is to μ
- ▶ What we need instead is a **range of values** from which to better evaluate the true value of μ
- ▶ This **range of values that likely contains μ** is a primary concept to be applied in the analysis of **any** sample mean, m
- ▶ **Confidence Interval:** A **range of values** that likely contains the population value at a specified level of confidence
- ▶ How do we **obtain this confidence interval** to estimate μ ?
- ▶ **Key Concept:** Obtain the **confidence interval of μ** from the **range of variation of the usually hypothetical values of many m 's**, each m calculated from a different sample

David W. Gerbing

Estimate μ : 4

Simulate Drawing Multiple Samples

The computer provides the data as if we have multiple samples

- **Key Question:** How does the knowledge of m over multiple samples provide useful information to estimate the unknown μ ?
- Computer simulation allows us to directly explore what happens if we would actually have multiple random samples

- **lessR** function `simMeans()`: Simulate multiple samples from the same normal population and calculate m for each sample
 - *Required:* `ns`, number of samples
`n`, size of each sample
 - *Default:* `mu=0`, population mean
`sigma=1`, population standard deviation
 - *Optional:* see `?simMeans`, e.g., `pause=TRUE`

```
> simMeans(ns=8, n=10, mu=21, sigma=9)
```

David W. Gerbing

Estimate μ : 5

Example 1: Multiple Values of m to Estimate μ

m 's from 8 Different Samples, $n=10$ per Sample

- Take 8 samples, each of size $n = 10$, from the same normal population $\mu = 21$ and $\sigma = 9$, and calculate m for each sample

	1	2	3	4	5	6	7	8
#1:	15.8	17.4	20.3	20.5	21.5	22.1	23.2	25.0

- The range of variation of the obtained m 's extends from 15.8 all the way to 25.0, so what is μ ?
- To start, μ is probably not around 150, or -10, but rather ...
 μ is likely within the range of variation of the m 's, somewhere between around 17 to 23
- **Key Concept:** As later shown in more detail, the range of variation of m across repeated samples provides the information needed to construct the confidence interval to estimate μ

David W. Gerbing

Estimate μ : 6

Example 2: Multiple Values of m to Estimate μ

m 's from Eight Different Samples, $n=1000$ per Sample

- Suppose another 8 samples were taken from the same normal population $\mu = 21$ and $\sigma = 9$, but now each of size $n = 1000$

```
> simMeans(ns=8, n=1000, mu=21, sigma=9)
```

	1	2	3	4	5	6	7	8
#2:	20.6	20.8	20.8	21.0	21.2	21.2	21.3	21.5

- What is our best estimate of μ from this information?
 μ is likely within the range of variation of the m 's, somewhere between around 20.8 only to 21.3
- A smaller interval, here at $n = 1000$ for each sample, is obtained compared to the previous example at $n = 10$
- **Key Concept:** As shown, an m from a sample of larger size tends to provide a more precise estimate of μ

David W. Gerbing

Estimate μ : 7

Applying the Information from Multiple Values of m

Goal is to evaluate confidence of a single sample mean m

- ▶ After the sampling variability of m has been established, suppose measurements of some variable Y for a new, *single sample* yield $m = 21.4$
- ▶ How much confidence that $m = 21.4$ is *close* to unknown μ ?
- ▶ **Key Concept:** The less variable are *all* the m 's, the more confidence that *any one* m is closer to μ
 - Example #1: If m typically varies 4 units, from 15.8 to 25.0, $m = 21.4$ is likely within *two or more units* of μ
 - Example #2: If m typically varies 1 unit, from 20.8 to 21.8, $m = 21.4$ is likely within *only a half a unit* of μ
- ▶ A method is needed to *assess the variability of the sample means over repeated samples*, the m 's, presumably without actually having to obtain these additional samples

David W. Gerbing

Estimate μ : 8

▶ The End

Index Subtract 2 from each listed value to get the Slide #

confidence interval, 6