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The Confidence of an Estimate

Why Do We Care about the Confidence Interval?
For an obtained m, always construct the confidence interval

I How much information does an analysis convey regarding µ,
the population mean desired as a basis for decision making?

I Key Concept: The estimate m provides useful information for
decision making only if there is confidence that m is close to µ

I For example, evaluate the cost of a specific procedure to
accomplish some task of interest over multiple occurrences

I Obtain a sample mean of m = $894, which, without assessing
confidence, yields a data summary of unknown quality
◦ If the value of µ is likely within the interval $894 ± $539, the

confidence interval, then there is no actionable information
◦ In contrast, if the value of µ is likely within $894 ± $5.39,

then this same sample mean provides much information
I Always include a confidence interval with a sample estimate,

such as m, to indicate how close m is likely to µ
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4.1
The Confidence of an Estimate

How Close is a Sample Value to the True Value?
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How Close is One Estimate to the True Value?

Use multiple values of a statistic to assess confidence
I Usually observe a single sample
I Sampling variation: The value of a statistic varies from one

sample to another (usually hypothetical) sample
I Key Concept: A statistic calculated from the one obtained

sample, such as m, is useful for decision making only if it is
close to its true corresponding population value, such as µ
◦ Suppose a sample from a population of interest of size

n = 10 reveals m = 21.4
◦ We know that µ is probably not 150 or −450.3

I Although µ could be practically anything, it is likely close to m
and values of 150 or −450.3 are not close to m = 21.4

I The question of interest: How close?
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The Confidence Interval

Estimate the unknown value µ

I Just knowing the value of a single m does not provide enough
information to know how close that m is to µ

I What we need instead is a range of values from which to better
evaluate the true value of µ

I This range of values that likely contains µ is a primary concept
to be applied in the analysis of any sample mean, m

I Confidence Interval: A range of values that likely contains
the population value at a specified level of confidence

I How do we obtain this confidence interval to estimate µ?
I Key Concept: Obtain the confidence interval of µ from the

range of variation of the usually hypothetical values of many
m’s, each m calculated from a different sample
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Simulate Drawing Multiple Samples
The computer provides the data as if we have multiple samples

I Key Question: How does the knowledge of m over multiple
samples provide useful information to estimate the unknown µ?

I Computer simulation allows us to directly explore what
happens if we would actually have multiple random samples

I lessR function simMeans(): Simulate multiple samples from
the same normal population and calculate m for each sample
◦ Required: ns, number of samples

n, size of each sample
◦ Default: mu=0, population mean

sigma=1, population standard deviation
◦ Optional: see ?simMeans, e.g., pause=TRUE

> simMeans(ns=8, n=10, mu=21, sigma=9)
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Example 1: Multiple Values of m to Estimate µ

m’s from 8 Different Samples, n=10 per Sample
I Take 8 samples, each of size n = 10, from the same normal

population µ = 21 and σ = 9, and calculate m for each sample
1 2 3 4 5 6 7 8

#1: 15.8 17.4 20.3 20.5 21.5 22.1 23.2 25.0

I The range of variation of the obtained m’s extends from 15.8
all the way to 25.0, so what is µ?

I To start, µ is probably not around 150, or -10, but rather . . .
µ is likely within the range of variation of the m’s,
somewhere between around 17 to 23

I Key Concept: As later shown in more detail, the range of
variation of m across repeated samples provides the information
needed to construct the confidence interval to estimate µ
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Example 2: Multiple Values of m to Estimate µ

m’s from Eight Different Samples, n=1000 per Sample
I Suppose another 8 samples were taken from the same normal

population µ = 21 and σ = 9, but now each of size n = 1000
> simMeans(ns=8, n=1000, mu=21, sigma=9)

1 2 3 4 5 6 7 8
#2: 20.6 20.8 20.8 21.0 21.2 21.2 21.3 21.5

I What is our best estimate of µ from this information?
µ is likely within the range of variation of the m’s,
somewhere between around 20.8 only to 21.3

I A smaller interval, here at n = 1000 for each sample, is
obtained compared to the previous example at n = 10

I Key Concept: As shown, an m from a sample of larger size
tends to provide a more precise estimate of µ
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Applying the Information from Multiple Values of m
Goal is to evaluate confidence of a single sample mean m

I After the sampling variability of m has been established,
suppose measurements of some variable Y for a new, single
sample yield m = 21.4

I How much confidence that m = 21.4 is close to unknown µ?
I Key Concept: The less variable are all the m’s, the more

confidence that any one m is closer to µ
◦ Example #1: If m typically varies 4 units, from 15.8 to 25.0,

m = 21.4 is likely within two or more units of µ
◦ Example #2: If m typically varies 1 unit, from 20.8 to 21.8,

m = 21.4 is likely within only a half a unit of µ
I A method is needed to assess the variability of the sample

means over repeated samples, the m’s, presumably without
actually having to obtain these additional samples

David W. Gerbing Estimate µ: 8

I The End

Index Subtract 2 from each listed value to get the Slide #

confidence interval, 6


