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3.2a
The Normal Curve
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Descriptions of Hypothetical Populations

Build a model of reality for a continuous variable
▶ Mathematicians have constructed probability distributions of

continuous variables from equations that can
◦ Meaningfully describe aspects of reality
◦ Become the basis for the analyses of inferential statistics

▶ Normal curve: The mathematically defined bell-shaped
graphical representation of the family of normal distributions1

▶ The population parameters of a specific normal curve are its
◦ Population mean, µ (mu): location of the center
◦ Population standard deviation, σ (sigma): dispersion about

the center

1A normal curve approximates a “smoothed out” binomial distribution. A
normal distribution is the limit of a corresponding binomial distribution as the
number of trials increases indefinitely.

David W. Gerbing Uncover Pattern: The Normal Curve 2



Normal Curve Attributes: Illustration

Two Normal Curves

−5 0 5 10μ=−2
σ = 0.75

μ=3
σ=1.5

Figure: Two normal curves, with different values of µ and σ

▶ The green normal curve (on the right) is centered over µ = 3
and the blue normal curve is centered over µ = −2

▶ The green normal curve, with σ = 1.5, is wider than the blue
normal curve, with σ = 0.75
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Relation of the Normal Curve to Data

The ideal versus the observed
▶ Key Concept: The shape of a histogram of data sampled from

a normal population only approximates the shape of a normal
curve

▶ The quality of the approximation depends on
◦ The bin widths of a histogram can be no smaller than the

unit of measurement, which is necessarily larger than the
abstraction of a mathematical point of zero width

◦ Sampling error: Attributes of a sample, such as its shape, do
not perfectly match the corresponding characteristic of the
population from which the sample was drawn

▶ Next illustrate this approximation of data to its underlying
perfect form by using the computer to generate simulated
samples of data from a known, specified normal distribution

David W. Gerbing Uncover Pattern: The Normal Curve 4



Simulated Samples from a Normal Distribution

“Make data”
▶ Monte Carlo Simulation: A random sample of data

generated by the computer according to a specified probability
distribution, a population, such as the normal distribution

▶ Monte Carlo data can be used to
◦ illustrate known statistical principles
◦ discover how a statistic performs in specific situations

▶ Why simulate samples of data? Why is simulation important?
▶ The answer is that every single data analysis is of data sampled

from at least one population
▶ Key Concept: Understanding how the sample of data relates

to the population from which it is sampled is a central pursuit
of the entire enterprise of data analysis

▶ Here examine a consequence of sample size
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Simulated Samples from a Normal Distribution

R can “Make data”
▶ To simulate n normal data values with R and then store the

results in a vector, here named Y, use the rnorm function
> Y <- rnorm(n,mean,sd)

▶ The specified values of mean and sd set the corresponding
population values of a specific normal distribution, µ and σ

▶ To list the generated values, enter the vector name: > Y
▶ Can analyze, such as with the following call to Histogram()

with density=TRUE that generates the following figures
> Histogram(Y, density=TRUE)
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Histogram #1 of Data from Normal Population, n = 10

> Y <- rnorm(n=10, mean=50, sd=10)

Y

0 20 40 60 80 100

▶ This histogram of 10 random data values from a normal
population only roughly approximates a normal distribution
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Histogram #2 of Data from Normal Population, n = 10

> Y <- rnorm(n=10, mean=50, sd=10)

Y

0 20 40 60 80 100

▶ This histogram of 10 different random data values from a
normal population only vaguely resembles the previous
distribution
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Histogram of Data from Normal Population, n = 100

> Y <- rnorm(n=100, mean=50, sd=10)

Y

0 20 40 60 80 100

▶ This histogram of 100 random data values from a normal
population only roughly approximates a normal distribution
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Histogram of Data from Normal Population, n = 1000

> Y <- rnorm(n=1000, mean=50, sd=10)

Y

0 20 40 60 80 100

▶ This histogram of 1000 random data values from a normal
population is a reasonable approximation of a normal
distribution
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Histogram of Data from Normal Population, n = 100, 000

> Y <- rnorm(n=100000, mean=50, sd=10)

Y

0 20 40 60 80 100

▶ This histogram of 100,000 random data values from a normal
population is an excellent approximation of a normal curve, a
better normal shape and smaller bins for a smoother curve
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Normal Population and Corresponding Samples

Larger samples provide more information
▶ A distribution of sample values, even when from a normal

population, never exactly conform to a perfect normal curve
▶ For small samples from a normal population, do not expect to

see a shape even close to normality
▶ Only the distribution of values in very large samples, typically

well beyond the sample size encountered in practice, closely
approximate normality
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3.2b
Standard Scores
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Expression for the Normal Curve
A mathematical abstraction
▶ The formula for a normal distribution, applied to the values of

Y, generates a perfectly smooth bell-shaped curve described by
f(Y), the height of the curve above each value of Y

▶ A specific normal curve also depends on the values of the
population mean, µ, and the population standard deviation, σ

Formula for a normal curve: f (Y ) = 1
σ

√
2π

e− (Y −µ)2

2σ2

▶ π and e are mathematical constants, and µ and σ are constant
for a specific curve, so, the only place Y appears in the
expression is as a squared mean deviation score, (Y − µ)2

▶ Key Concept: This connection between the normal curve and
the squared deviation score, and consequently the standard
deviation, is central to statistical theory and analysis
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Standard Deviation and the Normal Curve

Yμ + 1σ μ + 2σμ - 1σμ - 2σ μ 

This value is one 
standard deviation 
above the mean

This value is one-half 
standard deviation 
below the mean

Z−4 −2 0 2 41−1 3−3

For the normal distribution, the standard deviation becomes the
natural scale for assessing how far a value is from the mean
z-value or standardized value: Number of standard deviations
value Yi is from its mean, regardless of the distribution, here
illustrated for the normal distribution
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z-value, An Example of Standardization
How many standard deviations is a value from its mean?
▶ To express the distance of the i th data value from its mean in

terms of standard deviations,

population: zi = Yi − µ

σ
sample: zi = Yi − m

s
▶ Standardized values are unitless, regardless if the original

measures of Y are in dollars or kilograms, the corresponding
z-values are expressed in terms of standard deviations

▶ Key Concept: Each individual value from any distribution for
generic variable Y can be rescaled to a z-value, that is,
standardized, providing two measurement scales, Y and Z

▶ Standardized normal distribution: A normal distribution
expressed in the scale of standard scores, z-scores

▶ The concept of standardization applies to any distribution, but
the standardized normal distribution is particularly useful
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Illustration: Standard Scores
Compare test scores from two different tests
▶ Each of two groups of 18 newly hired employees were

administered a different performance evaluation test, each test
with a different number of items and standard deviation
◦ Scores on the 1st test, Variable YA, ranged from 54 to a

perfect score of 60, with m = 56 and s = 1.782
◦ Scores on the 2nd test, Variable YB, ranged from 23 to a

perfect score of 80, with the same m = 56, but s = 16.606
▶ Data:

https://web.pdx.edu/~gerbing/data/TestScores.csv
▶ How can scores be compared across the two tests?
▶ Get standardized values, z-values, with the R scale function
▶ To work within the d data frame, create the variable of

z-values, here called YA.z, with lessR function Transform
> d <- Transform(YA.z = scale(YA))
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Illustration: Standard Scores
1st set of test scores, Variable YA

▶ The first, and highest, score is Y1 = 60, with
a corresponding z-score of

z1 = Y1 − m
s = 60 − 56

1.782 = 2.24

▶ The test score of 60 is 2.24 standard
deviations above the mean

▶ Similarly, the lowest score, Y18, is 1.12
standard deviations below the mean

▶ Everyone did well in absolute scores, with
scores ranging from 90% to 100%

▶ However, for the z-scores, the lowest scores of
90% correct were over a full standard
deviation below the mean

YA YA.z
1 60 2.24
2 59 1.68
3 58 1.12
4 57 0.56
5 57 0.56
6 57 0.56
7 56 0.00
8 56 0.00
9 56 0.00
10 56 0.00
11 56 0.00
12 55 -0.56
13 55 -0.56
14 54 -1.12
15 54 -1.12
16 54 -1.12
17 54 -1.12
18 54 -1.12
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Illustration: Standard Scores
2nd set of test scores, Variable YB

▶ These test scores are quite variable, with two
people getting perfect scores of 80 and the
lowest performer only achieving 23 out of 80
items, for 28.75%

▶ Even though the low scores were dramatically
low, even the lowest score is less than two
standard deviations below the mean

▶ The absolute scores in the two distributions
exhibited two different patterns, one in which
everyone did well vs one with considerably
more variability

▶ Yet the ranges of z-scores are comparable in
the two distributions

YB YB.z
1 80 1.45
2 80 1.45
3 78 1.32
4 74 1.08
5 69 0.78
6 65 0.54
7 62 0.36
8 60 0.24
9 55 -0.06
10 54 -0.12
11 52 -0.24
12 52 -0.24
13 47 -0.54
14 45 -0.66
15 43 -0.78
16 36 -1.20
17 33 -1.39
18 23 -1.99

David W. Gerbing Uncover Pattern: Standard Scores 19



Illustration: Conclusion
Absolute vs relative performance
▶ A value can be presented in its original units of measurement,

Yi , or, in terms of the standardized or z-value, Zi
▶ Absolute position: Assessment of the position of one value in

a distribution of values in terms of its magnitude, irrespective
of the other values within the distribution

▶ Assess the absolute position with the original measurement, Y,
or perhaps, if an evaluative test, expressed as the percentage
correct

▶ Relative position: Assessment of the position of one value in
a distribution of values compared to the position of the other
values within the distribution

▶ Key Concept: The z-value indicates the relative position of
the corresponding data value of variable Y within the
distribution
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3.2c
Normal Curve Probabilities
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Concept of a Normal Curve Probability

Mathematical abstraction versus actual measurements
▶ The normal distribution is commonly encountered, both directly

and indirectly, so an understanding of the probabilities that
specific values occur is a task that underlies much data analysis

▶ A perfect normal distribution does not consist of actual
measurements, but instead is defined as a mathematical
abstraction of the values of a continuous variable

▶ The probability of any specific abstract value is zero because
the width of any point on the real number line is 0

▶ Key Concept: A probability for a distribution defined on a
continuous variable, such as the normal curve, only applies to
an interval of values

▶ In graphic form, the probability corresponds to the area under
the curve for the specified interval
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Normal Curve Probability

Definition and examples
▶ Normal curve probability: The probability that a randomly

selected value from a normal distribution is within a specified
range of values
◦ Ex: Probability, for the normal distribution in which µ = 50

and σ = 10, that a randomly selected value is between 50
and 60, that is, P(50 < Y < 60)

◦ Ex: Probability that an applicant’s score on the GMAT is
larger than the informal cutoff of 650 used by many top
graduate programs, or, P(Y > 650), relative to an approx-
imately normal distribution of GMAT values with µ = 525
and σ = 100

▶ Key Concept: Normal curve probabilities are directly related
to the standard deviation of the specific normal curve of
interest and the associated z-scores
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Standard Deviation, Probability and the Normal Curve

Yμ + 1σ μ + 2σμ - 1σμ - 2σ μ 

−4 −2 0 2 4 Z1−1 3−3

For a normal distribution, a standardized value, a z-value, relates to
the probability of the occurrence of a value within a given range of
values
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Standard Deviation, Probability and the Normal Curve

Yμ + 1σ μ + 2σμ - 1σμ - 2σ μ 

−4 −2 0 2 4 Z1−1 3−3

68.3%

More than 68% of all values in a normal distribution, more than 2/3,
fall within 1 standard deviation about the mean

So over 68% of all values in a standardized normal distribution of
z-values fall between -1 and 1
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Standard Deviation, Probability and the Normal Curve

Yμ + 1σ μ + 2σμ - 1σμ - 2σ μ 

−4 −2 0 2 4 Z1−1 3−3

95.4%95.5%

More than 95% of all values in a normal distribution fall within 2
standard deviations about the mean

So over 95% of all values in a standardized normal distribution of
z-values fall between -2 and 2
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Normal Curve Probability
▶ Use the lessR prob_norm() function to obtain a normal

curve probability and the accompanying graph
> prob_norm(lo=1, hi=2), with default µ = 0, σ = 1
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Figure: Illustrated probability of a randomly sampled value between 1 and
2 for the normal distribution with µ = 0 and σ = 1
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Normal Curve Tail Probability
▶ For a normal curve tail probability with prob_norm(), specify

just a lo or hi value, here for P(Y > 650) on the GMAT
> prob_norm(lo=650, mu=525, sigma=100)
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Figure: Illustrated tail probability that about 10.5% of GMAT total scores
are greater than 650, with µ = 525 and σ = 100
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The Normal Curve: Tail Probabilities

“Normal” means close to the middle
range of z-
values

% values WITHIN
this range

% values OUTSIDE
this range

-1 and 1 68.2689492137% 31.7310507863%
-2 and 2 95.4499736104% 04.5500263896%
-3 and 3 99.7300203937% 00.2699796063%
-4 and 4 99.9936657516% 00.0063342484%
-5 and 5 99.9999426697% 00.0000573303%
-6 and 6 99.9999998027% 00.0000001973%
-7 and 7 99.9999999997% 00.0000000003%
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The Normal Curve: Tail Probabilities
“Normal” means close to the middle
▶ Almost 1/3 of normally distributed values are outside of 1

standard deviation around the mean
▶ Less than 5% of normally distributed values are further than 2

standard deviations from the mean
▶ Less than 0.27% of normally distributed values are further than

3 standard deviations from the mean, becoming rare
▶ Less than 1 per ten thousand of normally distributed values are

further than 4 standard deviations from the mean
▶ Less than 1 per million of normally distributed values are

further than 5 standard deviations from the mean
▶ Less than 2 per billion of normally distributed values are further

than 6 standard deviations from the mean
▶ Less than 3 per trillion of normally distributed values are

further than 7 standard deviations from the mean
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Normal Distribution Quantiles
What values about µ contain 95% of the distribution?

▶ kth Quantile: Value
greater than k% of
distribution

▶ So kth quantile also
cuts off 1 − k%
above the value

▶ z.025 refers to the
quantile that cuts off
the top 2.5% of the
distribution

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

z

97.5% 2.5%

1.96

Figure: The .975 quantile, z.025 = 1.96, cuts
off bottom 97.5% of the standard nor-
mal distribution, and top 2.5%.

▶ Key Concept: 95% of the values from a normal distribution of
Y are within 1.96 standard deviations of the mean of Y, that is,
between z.025 = 1.96 and −z.025 = −1.96
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3.2d
General Density Curves
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Move Beyond the Arbitrary Histogram

Histograms are pre-computer technology
▶ A histogram is the traditional analysis since the 19th century

for graphing the distribution of a continuous variable
▶ Unfortunately, as we have seen, a histogram suffers from two

artifacts: bin width and bin shift
▶ An even more basic issue is that a histogram groups data into

bins, yet the distribution that characterizes the values of a
continuous variable, such as the normal curve, is realized by a
continuous variable that graphs as a smooth curve

▶ The underlying smooth curve, in many situations, is a normal
curve, but many other possibilities also exist

▶ Key Concept: With modern software, move beyond the
artifacts and approximations of a histogram by also obtaining
the estimated underlying smooth distribution curve
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Smooth Curve Estimated from the Data

▶ A plot of smooth, idealized distribution, a smoothed-out
histogram, is called a density curve

▶ Qualitative interpretation of density: Identify the overall
shape of the underlying continuous distribution

▶ For example, for a normal distribution, identify
◦ The mode, the value with the largest density, which for a

small range of values about that value, corresponds to the
most frequently occurring values

◦ The tails, which contain the values that rarely occur
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Qualitative Interpretation of Densities

Understand the general characteristics of the distribution
▶ Consider again the distribution of Pymt, the Monthly

Mortgage Payment, and the plot of the corresponding 14 data
values
> d <-

Read("https:
//web.pdx.edu/~gerbing/data/mortgage.csv")

▶ To plot the smoothed, density curve, use the lessR parameter
density set to TRUE.

▶ By default, the plot is of the estimated generalized smooth
curve. Add type="both" to also plot the estimated normal
curve, both superimposed over a histogram of the data.
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Smooth Curve Estimated from the Data

> X(Pymt, type="density")

1000 1500 2000 2500

Pymt
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Density Function Options

Obtain explicit control of aspects of the graph
▶ The X() options bin_start and bin_width to specify the

bins of the histogram also apply to type="density"
▶ Control the smoothness of the generalized curve with the

bandwidth parameter, bw
▶ From the output:

Density bandwidth for general curve: 138.5702
For a smoother curve, increase bandwidth with option: bw
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Smooth Curve Estimated from the Data with Options
> X(Pymt, bw=250, type="density")

Pymt

500 1000 1500 2000 2500 3000
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Index Subtract 2 from each listed value to get the Slide #



▶ The End
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