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3.1a
Samples vs Populations
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Problem: All the Data of Interest are Not Available

Analysis is only of some of the observations of interest
I For a study of the number of employees who call in sick on a

Friday before a holiday Monday, the data may not exist for
many years in the past, and regardless, cannot yet exist for
future such Fridays

I A study of the blood chemistry of those who have Type II
Diabetes cannot examine all people who have had, who do
have, and who will have Type II Diabetes

I The length of time to complete a specific procedure is of
interest, but the times of past procedures may not have been
recorded, and cannot have been recorded for future instances of
the procedure
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Populations and Samples
Want the entire population, but typically only get one sample

I Population: Set of all existing or potential observations
I The entire population is generally not available
I Sample: A subset of the population, the data for a specific

analysis
I Key Concept: To collect data, randomly gather a subset of

the population, and generalize results to the entire population

Figure: A population defined by a process that generates the data val-
ues, and a sample from the process, where each dot represents
a single observation
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The Population is of Primary Interest
Generalize beyond the usual one sample of data

I The population contains the desired information
◦ May consist of a usually large number of fixed elements in a

given location at a given time, such as all registered voters
◦ More generally, consists of outcomes of a process ongoing

over time, in which case the population and its associated
values such as its mean are hypothetical

I Population Value: True value based on the entire population,
such as the population mean

I A population value is not known directly because all the values
of the population are not known

I Key Concept: A population value is an abstraction,
considered real, but not observed, with an unknown value

I Key Concept: Estimate a population value from sample data
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Descriptive Statistics
Analysis of the data from samples

I Descriptive statistics: Summarize and display aspects of the
sample data drawn from the larger population

I Descriptive statistics are also referred to as summary statistics
I All of the statistics discussed until this point are descriptive

statistics, calculated directly from data
◦ Mean and standard deviation
◦ Median, range, IQR, quartiles and quantiles

I Key Concept: Calculate the value of a descriptive statistic
from sample data
◦ Ex: Calculate the median of the class midterm
◦ Ex: Calculate the mean ship time from a supplier

I The estimation of unknown population values follows from the
calculation of the relevant descriptive statistics
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Random Samples

Obtaining the sample
I How are the elements in the sample selected from the larger

population?
I Random Sample: A sample in which every value of the

population has an equal probability of selection
I To select a random sample requires access to randomly

generated numbers, today usually accomplished with a
computer application such as R (next slide) or Excel

I A random sample is difficult to implement completely, but the
essence of randomness is essential to properly generalizing
results to the population
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Generate a Random Sample
The computer provides the random selection

I Use the R function sample to select a sample from a larger
set of values
◦ Specify the source of these values, numerical or not, and

the number of values in the sample, the sample size
◦ By default, replace=FALSE, so sampling is done without

replacement, each value in the population can appear only
once in the resulting sample

I From the first 100 integers, randomly sample 8 integers
> sample(1:100, size=8)

I Read Employee data into data frame d, draw a sample of 3
people from d based on the row names of d

> d <- Read("Employee")
> sample(row.names(d), size=3)
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The Sampling Frame

Sampling frame vs. Population of interest
I Distinguish between what is wanted vs what is obtained
I Sampling Frame: The actual population from which the

sample is drawn, distinguished from the desired population
I Key Concept: The results of an analysis can only be properly

generalized to the sampling frame
I The sampling frame determines the scope of generalization of

results, not the desired population of interest per se
I The sampling frame should be the population of interest, but

sometimes the population actually sampled is not the
population that was desired
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Generalizing Results from a Sample
An example

I Suppose a researcher conducts a market research survey
I Define the population of interest as all city residents, then

◦ Draw a random sample of people listed in the phone book
◦ Collect data by calling the people from 9am to 5pm

I The results of this analysis can only be properly generalized to
people . . .
◦ with a phone
◦ with a listed phone number in the phone book
◦ who answer all phone calls
◦ are available during the daytime hours

I The sampling frame is not the population of interest, all city
residents, so these survey results cannot be properly generalized
to all city residents
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3.1b
Sampling Fluctuations
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Sampling Fluctuations
The sample is only the starting point of statistical analysis

I Statistics such as the sample mean, m, provide a summary of
this distribution of values

I The specific values in a sample differ from sample to sample
I Accordingly, the value of a sample statistic of interest, such as

m, arbitrarily varies from sample to sample
I Each sample outcome, such as m, is an arbitrary result, which

only hints at the true, underlying population value
I Key Concept: Typically, only one sample is taken and so only

one m is observed, but the following reality is the basic
motivating concern addressed by statistical inference

IF many samples were taken, then a different value of m
WOULD BE observed for each sample
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Sampling Fluctuations with a Sample Size of n = 10

To illustrate, flip a fair coin 10 times
I Encode the outcome of each flip as

a value of the variable Y
I Score each Head as Y=1 and each

Tail as Y=0
I Calculate the sample mean

m =
∑ Yi

n

Now get 1 sample
of 10 coin flips!

Figure: Get 5 heads.

Result

m = 0 + 0 + 1 + 1 + 0 + 1 + 1 + 0 + 0 + 1
10 = .5
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Gather Another Sample of Size n = 10

Flip same fair coin another 10 times
I Again, score Y=1 for a Head and

Y=0 for a Tail
I Again, calculate m for n = 10

Now get 1 sample
of 10 coin flips!

Figure: Get 6 heads.

Result

m = 1 + 1 + 1 + 0 + 0 + 1 + 1 + 0 + 1 + 0
10 = .6

I One sample of ten flips yields m = .5 and another sample
yields m = .6
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Outcomes of Repeated Samples from Same Population
Variation of sampling results applies to all sample data

I Mean length of time to complete a procedure
◦ Sample 1: m = 14.53 minutes
◦ Sample 2: m = 13.68 minutes

I Key Concept: The value of a statistic, such as the sample
mean, m, randomly varies from sample to sample

Why? Sampling variation of a statistic results from
random variation of the data values from random
sample to random sample

I A descriptive statistic only describes a sample, but is limited in
its generality to describe the corresponding population

I The focus of statistical analysis is on the stable population
values
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3.1c
Better Estimates from More Information

The Law of Large Numbers
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Population Mean µ is an Abstraction
Calculate sample data values, estimate population values

I To understand reality, management wants to know the value of
the population mean, µ
◦ The difficulty is that µ is an abstraction, a hypothetical,

never directly calculated
◦ To estimate the unknown requires information from which to

provide the basis for the estimate
I Only one kind of information is considered in traditional

statistical analysis
I Classical or frequentist model of statistics1: Obtain

knowledge of a population value, such as µ, only from data
I Key Concept: More data, all randomly sampled from the

same process – generally provides better estimation
1The primary competing model is the Bayesian model, in which other types

of information are also considered in the estimation of a population value
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Illustrate the Benefit of Larger Samples
Plot a mean to compare over many sample sizes

I Consider a coin flip in which the truth is that the coin is fair
◦ Collect the data: Flip a coin a specified number of times and

record if a Head or a Tail after each flip
◦ Create a variable Y to indicate the number of Heads obtained
◦ Score each Head as Y=1 and each Tail as Y=0
◦ Over the entire population, one-half of all flips result in a 1

and one-half of all flips result in a 0
◦ Compute the true value: µ = 1

2(1) + 1
2(0) = 0.5

◦ Key Concept: Can data analysis reveal this reality of a fair
coin?

I Running Mean: Re-calculate the sample mean, m, after each
new data value is collected

I Resulting plot of the running mean shows the value of the
sample mean, m, as the sample size increases
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Simulate Repeated Coin Flips
The computer provides the data as if we have many coin flips

I Key Concept: How close is m, based on data, to the truth of
µ = 0.5 as the sample size increases?

I Although in practice: Only one sample with one sample size . . .
I Computer simulation allows us to explore what happens for

different sample sizes, here different numbers of coin flips
I Obtain a different result each time the simulation is run

I lessR function simFlips plots the running mean as sample
size increases as if repeated coin flips with the same coin

◦ Required: n, maximum sample size, the number of flips
◦ Default: prob=.5, probability of a Head, coin is fair
◦ Optional: ?simFlips, e.g., pause=TRUE for each flip

> simFlips(n=10)
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m estimates µ from 1 to 10 Coin Flips
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Sample Mean after 10 Coin Flips: 0.4

 µ=0.5

 4 Heads

 6 Tails

Estimate for µ = 0.5: After 10 coin flips,

m =
∑ Yi

n = Number of Heads
Number of Flips = 4

10 = 0.4
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m estimates µ from 1 to 250 Coin Flips
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Sample Mean after 250 Coin Flips: 0.468

 µ=0.5

 117 Heads

 133 Tails

m is relatively unstable for the first 50 or so coin flips . . .
and then the estimate nicely settles down after 200 or so flips
Estimate for µ = 0.5: After 250 coin flips,

m =
∑ Yi

n = Number of Heads
Number of Flips = 117

250 = 0.468
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m estimates µ from 1 to 10000 Coin Flips

Even after 10000 coin flips . . .
the true value of µ is not attained, but a closer estimate resulted
Estimate for µ = 0.5: After 10000 coin flips,

m =
∑ Yi

n = Number of Heads
Number of Flips = 5112

10000 = 0.511
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More Information, Better Estimation

How close is the estimate to the actual population value?
I Key Concept: Generalize information obtained from a sample,

such as the sample mean, to the population as a whole
I Sample all data values from the same population so that a

common µ and σ underlie each data value Yi
I Law of Large Numbers: The larger the random sample of

data values all from the same population, the closer the
estimate tends to be to the underlying population value
◦ This result of large samples is only a tendency
◦ There is no guarantee that a statistic from any one larger

sample yields a closer estimate to the population value
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Appendix:
Probability Distributions
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Purpose of Statistical Inference

Need a method to estimate an unknown value
I Central Purpose of Statistical Analysis: Analyze data to

better understand reality in terms of the underlying population
values as a basis for making business decisions

I For the typical data analysis scenario, the population values
such as µ are not known, but instead estimated from the data

I Key Concept: The development of how to estimate
population values from the data begins with understanding the
type of samples found from known population values

I The statistical principles illustrated with coin flipping are
◦ the same core principles involved with the application of

statistical inference to business applications
◦ easier to visualize in the more sterile and some ways simpler

context of coin flipping
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Consider a Model of Flipping a Fair Coin
With a model of reality, can calculate the population mean

I Consider a model of reality: Flipping a fair coin
I Let the variable Y represent the outcomes of the coin flips,

with a Head scored as Y=1 and a Tail scored as Y=0
I Now consider the complete, hypothetical population of all the

data, all possible fair coin flips
I In the population, exactly 1

2 of the values of Y are Y=1 and
exactly 1

2 are Y=0
I Because the probabilities of the data outcomes are known, here

we can calculate the value of µ as a weighted mean
µ = 1

2(1) + 1
2(0) = .5

I For a fair coin, the value of this abstraction µ is known
I µ = .5 is the underlying reality with the presumption of a fair

coin, manifested in the data with values of either 0 or 1
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Heads or Tails?

Evaluate the fairness of the coin when µ is not known
I The decision maker realizes that in a particular context, such

as when gambling, that the coin may or may not be fair
I To illustrate the need for inference, consider a situation in

which the decision maker places a single bet, investment, on a
Head or a Tail

I To provide a basis for making the investment, the decision
maker wishes to assess as to whether a coin is either fair, or
biased toward landing on either a Head or a Tail

I That is, if a Head is scored a 1 and a Tail a 0, the decision
maker wishes to know if
◦ µ = .5, so no basis for a bet on either Head or Tail
◦ µ > .5, so bet on a Head
◦ µ < .5, so bet on a Tail
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Heads or Tails?

Evaluate the fairness of the coin
I This situation illustrates several aspects of the real world

application of statistical inference
◦ The outcome is unknown and so an investment is a bet

against a future reality
◦ The rational decision for a bet on the outcome is based on

the value of the µ, the population mean
◦ The true value of µ is unknown
◦ Estimate, that is, infer, µ from the data
◦ Only one decision/investment will occur
◦ Even if the coin is biased towards a Head, so that the best

decision is to bet on a Head, the outcome could still be a
Tail, what might be referred to as "bad luck"
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Probability
To assess fairness, gather a sample, here 10 coin flips

I To assess reality, begin with a model of reality, here a fair coin
I IF µ = .5, THEN how many Heads will result?
I Because of sampling fluctuations, for any one sample

◦ There is no specific answer, so could obtain 5 Heads or 4
Heads or 6 Heads or anywhere from 0 to 10 Heads

◦ Can only know generally how many Heads will result
I Probability: A number from 0 to 1, inclusive, that indicates

how likely it is that a specified event will occur
◦ 0 indicates certainty that the event will not occur
◦ 1 indicates certainty that the event will occur
◦ .5 indicates that the likelihood the event will occur is the

same as it will not occur
◦ Intermediate values are scaled accordingly
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Probability Distributions
Assessing probability over all possibilities

I With only two outcomes, Heads or Tails, scored as 0 and 1
respectively, the population mean µ is also the population
proportion, specified by the Greek letter π, which rhymes with
“pie”, and spelled as “pi”

I Coin flipping probabilities are expressed here by x , the number
of obtained Heads over the n = 10 trials (coin flips), with the
probability of each outcome, here π = 0.5, the same for each
trial

I Binomial Probability: Probability of achieving a specified
outcome x times from one of two possibilities over n
independent trials, each such outcome with probability π
◦ Each trial results in one of only two outcomes
◦ The word “independent” means that the outcome of one

trial has no influence on the outcome of any other trial
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Logic of Binomial Probabilities
What is the probability of 5 Heads on 10 tosses (trials)

I Probability of one Head or one Tail for this fair coin is
P(H) = P(T) = 0.5

I Each trial is independent, so for a pattern of two flips, such as
HT or TT, the probability of any one pattern is the product of
the individual probabilities for each trial, (.5)(.5) = .52

I Similarly, the probability of any one pattern of H’s and T’s for
10 flips, such as HTTHHTHTHT, is .510

I The probability of all patterns of 5 H’s and 5 T’s is the
probability for any one pattern, .510, multiplied by the total
combination of the number of all possible patterns such as
HHHHHTTTTT, HTHTHTHTHT, THHTTTHTHH, etc

I There is a formula for calculating the number of such
combinations, but it is tedious, and, fortunately, can use the
computer for these computations
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Obtain Binomial Probability Distribution
The distribution of probabilities for all possibilities

I To obtain the specific binomial probability for five Heads out
of ten flips with a fair coin, set x=5, n=10 and pi=.5 in
◦ R: > dbinom(x,n,pi)
◦ Excel: =BINOMDIST(x,n,pi,FALSE)

I Now consider the probability for each possible number of
Heads, such as over 10 coin flips with a fair coin

I Probability Distribution: Probability of each possible
outcome from a specified procedure

I To calculate all 11 binomial probabilities at once, specify a list
of integers from 0 to 10 with 0:10, then plot

> x <- 0:10
> probs <- dbinom(x,10,0.5)
> Plot(x, probs, col.area="lightsteelblue2")
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Binomial Probability Distribution for a Fair Coin
I Probability of 5 Heads on 10 flips of a fair coin is just 0.246
I Probability of 4 Heads is not much lower, 0.205

Binomial Distribution of Heads for 10 Coin Flips, µ = 0.5
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Other Possibility is that the Coin is Biased

Consider a bias towards Tails
I Now consider a model of reality in which the coin is biased,

with a probability of a Head on each trial of only 0.4, π = 0.4
I However, the person placing the bet does not know the true

state of reality, so he or she must do what all of us must do
when we wish to understand some aspect of reality without
direct knowledge of that reality

Estimate the value of the population parameter from sample
data

I To illustrate one of the issues with this estimation, consider the
corresponding probability distribution for the biased coin with
π = 0.4
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Binomial Probability Distribution for Biased Coin
I Probability of 4 Heads for π = .4 is 0.251
I Probability of 5 Heads on 10 flips of this coin is 0.201

Binomial Distribution of Heads for 10 Coin Flips, µ = 0.4
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Dilemma Posed by Sampling Error
Sampling error blurs our view of the underlying reality

I Key Concept: The existence of sampling error, the random
fluctuations of sample results from sample to sample, means
that what we observe does not unequivocally reveal the truth

I The most often result for a fair coin is that 0.5 of the flips
result in a Head, and so also 0.5 for a Tail, however . . .
◦ If the coin is fair, π = 0.5, then there is about a 1 in 5

chance of getting only 4 Heads
◦ If the coin is biased towards Tails, π = 0.4, then there is

about a 1 in 5 chance of getting 5 Heads
I The difficulty is if our data is 5 Heads or 4 Heads, in either

case it is reasonable that π = 0.5 or π = 0.4 or . . .
I Estimation of a population value can be difficult because a

sample result is consistent with multiple possibilities
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Index Subtract 2 from each listed value to get the Slide #

classical model, 18
Excel function: binomdist, 33
law of large numbers, 24
population, 5
population value, 6
probability, 30
probability: binomial, 31
probability: distribution, 33
R function: dbinom, 33

R function: sample, 9
R option: replace, 9
running mean, 19
sample, 5
sample: random, 8
sampling frame, 10
sampling variability, 16
statistics: descriptive, 7

I The End


