

Expression for the Sample Standard Deviation

Understanding and computing

- ▶ **Sample standard deviation:** Square root of the average squared deviation score based on degrees of freedom $n - 1$

$$\frac{\sum (Y_i - m)^2}{n - 1}$$

data value

deviation from mean

squared deviation from mean

sum of squared deviations from mean

average of squared deviations from mean based on df

square root of average of squared deviations based on df

Expression for the Sample Standard Deviation

Understanding and computing

- ▶ **Sample standard deviation:** Square root of the average squared deviation score based on degrees of freedom $n - 1$

$$\frac{\sum (Y_i - m)^2}{n - 1}$$

data value

deviation from mean

squared deviation from mean

sum of squared deviations from mean

average of squared deviations from mean based on df

square root of average of squared deviations based on df

Expression for the Sample Standard Deviation

Understanding and computing

- ▶ **Sample standard deviation:** Square root of the average squared deviation score based on degrees of freedom $n - 1$

$$\frac{\sum (Y_i - m)^2}{n - 1}$$

data value

deviation from mean

squared deviation from mean

sum of squared deviations from mean

average of squared deviations from mean based on df

square root of average of squared deviations based on df

Expression for the Sample Standard Deviation

Understanding and computing

- ▶ **Sample standard deviation:** Square root of the average squared deviation score based on degrees of freedom $n - 1$

$$\frac{\sum (Y_i - m)^2}{n - 1}$$

data value
deviation from mean
squared deviation from mean

sum of squared deviations from mean
average of squared deviations from mean based on df
square root of average of squared deviations based on df

Expression for the Sample Standard Deviation

Understanding and computing

- ▶ **Sample standard deviation:** Square root of the average squared deviation score based on degrees of freedom $n - 1$

$$\frac{\sum (Y_i - m)^2}{n - 1}$$

data value
deviation from mean
squared deviation from mean
sum of squared deviations from mean
average of squared deviations from mean based on df
square root of average of squared deviations based on df

Expression for the Sample Standard Deviation

Understanding and computing

- ▶ **Sample standard deviation:** Square root of the average squared deviation score based on degrees of freedom $n - 1$

$$\frac{\sum (Y_i - m)^2}{n - 1}$$

data value

deviation from mean

squared deviation from mean

sum of squared deviations from mean

average of squared deviations from mean based on *df*

square root of average of squared deviations based on *df*

Expression for the Sample Standard Deviation

Understanding and computing

- ▶ **Sample standard deviation:** Square root of the average squared deviation score based on degrees of freedom $n - 1$

$$s = \sqrt{\frac{\sum(Y_i - m)^2}{n - 1}}$$

data value

deviation from mean

squared deviation from mean

sum of squared deviations from mean

average of squared deviations from mean based on *df*

square root of average of squared deviations based on *df*

Expression for the Sample Standard Deviation

Understanding and computing

- ▶ **Sample standard deviation:** Square root of the average squared deviation score based on degrees of freedom $n - 1$

$$s = \sqrt{\frac{\sum(Y_i - m)^2}{n - 1}}$$

data value

deviation from mean

squared deviation from mean

sum of squared deviations from mean

average of squared deviations from mean based on df

square root of average of squared deviations based on df