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Chapter 4

Confidence Interval of the Mean

4.1 The Basics

Managers should base their decisions from data analysis using estimated, stable
population values that persist into the future. This chapter introduces statistical
inference, the estimation of these population values. The focus here is the estimation
of the population mean, pu.

4.1.1 Why Do We Care?

Management decisions impact the future. A sample statistic, unfortunately, depends
not only upon a stable, underlying value of interest, but also upon inherently
unstable sample values influenced by random error. Obtain the best forecast of
future values of a variable from knowledge of the true underlying reality, the relevant
stable population value for the variable of interest. The difficulty is that population
values are abstractions, which cannot be observed or directly measured. Fortunately,
the past provides the information from which to estimate a population value to
forecast the future.

This understanding of reality begins with the data summaries provided by descriptive

statistics. Previous chapters demonstrated how to describe and summarize the data.

Here our focus shifts to inferential statistics — from merely summarizing data, such as
the sample mean, to estimating the true reality that underlies the entire population
from which the data were sampled, such as the population mean. We bring a fresh
point of view to the same data. We now infer the unknown value of the population
mean, i, common not only to all the data values of a variable in the sample but
to all the past, present, and future values for the process that generates the data
values.

The estimate of the population mean, i, begins with the sample of data and its mean,
m. The problem is that a sample mean generally does not equal the corresponding
population mean. More useful is the knowledge of how close the estimate is likely
to be to the corresponding population value. A useful form of the estimate specifies
a range of values that likely contains the true population mean.

For example, consider the clean-up cost for a surgical procedure at a given hospital.
The procedure has been implemented many times, and each time the cost assessed.

7

statistical
inference:
Estimation of a
population value
from analysis of data
sampled from that
population.

descriptive
statistics:
Summaries of sample
data.

key concept: The
estimate m from the
data provides useful
information for
decision making only
if there is confidence
that m is close to pu.



confidence
interval: A range of
values that likely
contains the
population value.

confidence level:
Degree of confidence,
such as 95%, that
the interval contains
the population value
of interest.

key concept: Begin
data analysis with
descriptive statistics,
end with inferential
statistics.

78 CHAPTER 4. CONFIDENCE INTERVAL OF THE MEAN

Suppose the sample mean of the cost of these procedures is m = $2984. Without
assessing confidence, this sample statistic yields a data summary of unknown quality
in relation to the true mean, . Only by an improbable coincidence would p exactly
equal m = $2984. So reframe the question. How close is m likely to be to u?

Consider statistical inference in the form of the confidence interval. This form of an
estimate of u replaces the corresponding statistic, here the sample mean, m, with a
range of values about the sample statistic, the confidence interval. The width of the
confidence interval depends, in part, on the chosen confidence level, the degree of
confidence that the interval contains the population value. This number is usually
close to 100%, such as the commonly chosen confidence level of 95%.

If the value of p is likely within the interval $2984 + $845, the confidence interval,
then there is no actionable information. In contrast, if the value of y is likely
within $2984 + $8.45, then this same sample mean within this much smaller interval
provides much information. Always provide a confidence interval instead of a sample
estimate by itself. That is, always follow the analysis of descriptive statistics with
the analysis of inferential statistics.

4.1.2 Brief Application

Consider again the cost of the clean-up of a type of surgery. The cleanup costs of 100
different procedures conducted at the same hospital are the data values for a single
variable called CleanUp. Find the data on the web in a file named SurgeryCost.csv.

http://lessRstats.com/data/SurgeryCost.csv

The data table contains one column of the 100 data values listed underneath the
variable name CleanUp. Figure lists the first few and last few lines of the data
file. Examine the full data file by pointing a web browser to its URL (web address).

CleanUp
3071.71
2994.08
2922.17
3063.56
3075.34
3087.72

Listing 4.1: First and last data values for the variable CleanUp in the data file
SurgeryCost.csv.

To analyze the data with R, first read the data from the web file SurgeryCost.csv
into a data table within R called d. Use the lessR function Read () to read the data
into the R data table, called a data frame.
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d <- Read("http://lessRstats.com/data/SurgeryCost.csv")

The <- indicates to place that data values read from the file directly into the R
data table called d.

Obtain the confidence interval of the mean for the variable named CleanUp with the
lessR function ttest (), abbreviated tt (). As with other 1lessR analysis functions,
by default the analysis presumes the data values for the variables of interest are in
the d data table. For simplicity, invoke the brief version of the ttest () analysis
with tt_brief () to calculate the confidence interval from the data values.

tt_brief (CleanUp)

The primary output of tt_brief (), shown in Listing includes the summary
statistics in the first line and the 95% confidence interval in the last line.

CleanUp: n.miss = 0, n = 100, mean = 2984.170, sd = 42.590

95% Confidence Interval for Mean: 2975.719 to 2992.621

\
Margin of Error for 95, Confidence Level: 8.451 ‘
|

Listing 4.2: Primary output of tt_brief () for the analysis of the CleanUp data.

The output in Listing [4.2] for the variable CleanUp provides the sample size, sample

mean, and sample standard deviation as n = 100, m = $2984.17 and s = $42.59.

The data values are not available in some situations, but the summary statistics are
known from some previous analysis. In this situation, obtain the identical output
from the following function call to ttest () that references the summary statistics,
but not the data values.

tt_brief (n=100, m=2984.17, s=42.59)

Regardless of whether the analysis was obtained directly from the data values or
the resulting summary statistics of the data, the computation of the margin of error
for this 95% confidence interval yields $8.45. The corresponding confidence interval
is m + the margin of error. Specify the confidence interval by its endpoints, its
lower and upper bounds.

Lower Bound: $2984.170 — $8.451 = $2975.72
Upper Bound: $2984.170 + $8.451 = $2992.62

Interpret the margin of error and associated confidence interval in the context of the
chosen level of confidence, here the default value of 95%. Section illustrates
the computation of this margin of error and confidence interval.

Interpret the confidence interval as follows.

With 95% confidence, the true average cost of the surgery clean-up
for this hospital is somewhere between $2976 and $2993.
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repeated samples will
contain the
corresponding
population value.

Confidence Level,

Section p-

80 CHAPTER 4. CONFIDENCE INTERVAL OF THE MEAN

Purpose Interpretation

State the Confidence Level With 95% confidence
Unknown population mean p the true average

Variable of interest cost of the surgery clean-up
Population where sample is obtained —for this hospital

CI is a range, not a single value is somewhere between
Lower and Upper bounds of CI $2976 and $2993.

Table 4.1: Template for the interpretation of a confidence interval.

The template in Table [I.I] shows how to construct this interpretation.

The primary technical term in the interpretation of the confidence interval is the
phrase “95% confidence”. What does this phrase mean? As is true of all inferential
concepts derived from classical statistics, the concept derives meaning over usually
hypothetical repeated sampling of samples of the same size from the same population.
Of course, in practice, only one sample is typically observed. Still, formulas from the
mathematicians allow us to proceed as if we had multiple samples from information
derived only from a single sample.

The issue is that each random sample from the same population yields a different
sample mean and margin of error, so each random sample yields a different confidence
interval. There is nothing special about the specific lower and upper bounds $2975.72
and $2992.62 of this one obtained confidence interval from this one sample of data.
Another random sample of data would result in a different confidence interval, with
different lower and upper bounds and even a different width. Instead, to assert
“95% confidence” means that for every 100 samples obtained and 100 corresponding
unique confidence intervals computed, on average, 95 of the intervals will contain
the unknown value of p, and 5 will not.

The true value of u, here the population mean for the process of post-surgery
clean-up, may or may not be in any one confidence interval calculated from sample
data. With the 95% confidence interval we are 95% confident that this one obtained
confidence interval, here $2975.72 to $2992.62, does contain the true mean. Still, as
with the outcome of any random process, we never know for sure.

As we see, unfortunately, the desired population value is not guaranteed to lie
within the interval. For a given set of a variable’s data values, the only way to be
more confident that the confidence interval contains the desired population value
is to construct a wider interval. A confidence interval at a 99% confidence level
provides more confidence that the population value lies within the interval than does
a 95% level, but unfortunately only at the expense of a wider interval. For most
applications, 95% represents a reasonable trade-off between precision and amount
of confidence.
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4.2 Conceptual Basis of the Confidence Interval

The confidence interval as a primary form of statistical inference is a concept central
to data analysis. What are the underlying concepts and the motivations upon which
the confidence interval is based? The basis for the confidence interval is explored
next.

4.2.1 The Sample Mean, m, as a Variable

We begin with an analysis of a population with reasonably well understood charac-
teristics, such as for the variable Height of adult USA women. The values of height
conform to an approximate normally distribution. The population mean is about
@ = 65.5 in, the population standard deviation is about ¢ = 2.5 in. Figure
illustrates this normal distribution of heights, demarcated in units of the standard
deviation of 2.5.

[ I T T T T T T |
5565 58.0 605 63.0 655 68.0 705 73.0 755

Figure 4.1: Distribution of all values from a normal population with a mean of y = 65.5
and a standard deviation of o = 2.5.

What are the characteristics of a random sample of data drawn from this population?
Every random sample yields different values, but the type of data values likely to
be observed in such a sample are constrained by the population mean and standard
deviation. Figure shows that the most frequently occurring heights are close
to the value of the population mean, 65.5 in. Further, not many values are more
than three standard deviations or (3)(2.5) = 7.5 inches from the mean. That is,
relatively few women are taller than 73 in or shorter than than 58 in.

To obtain a sample of randomly drawn data values from this population, suppose
the height of each of the millions of American women was written on a small piece
of paper and all these pieces of paper placed in a very large bag. Then shuffle the
contents of the bag and, say, blindly pull 10 of these pieces of paper from the bag.
The result is a random sample of n = 10 of the measurements of Height, amenable
for data analysis.

Fortunately, we can emulate this sampling procedure with the computer, which can
simulate the effect of drawing a random sample. We can invoke a function that will
return results as if we had actually had the heights of all adult American women
and then generate a random sample of a specified size from that population. One
way to accomplish this task is with the lessR function simMeans(). Specify the
number of samples with parameter ns, the size of each sample with n, and the
population values with mu and sigma.
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simMeans(ns=2, n=10, mu=65.5, sigma=2.5)

The output of the first sample of 10 random data values follows in Listing

\

‘Sample Mean SD 1 2 3 4 5 6 7 8 9 10
‘ 1 64.6 1.1 65.4 66.0 62.5 65.8 64.3 63.6 65.4 64.7 64.5 64.2
\

Listing 4.3: First set of 10 simulated data values for women’s height.

The mean for this sample is m = 64.6, a little under the true value of u = 65.5. But
what if we were in the typical data analysis situation and did not already know the
value of u? What if all that we knew regarding women’s heights was limited to
these 10 data values and corresponding statistics such as m = 64.5. What would we
estimate as the value of y from this information? Although p could be practically
anything, the sample value m is likely close to its corresponding population value,
. How close? Unfortunately, just to know the value of m for a single sample for a
variable does not provide enough information to know how close any one value of m
likely is to the unknown value of .

The analysis of the data values of a variable typically is based on only a single
sample. The logic of statistical inference, however, follows from what occurs over
multiple samples of the same size, n, all drawn from the same population of values
for the variable. Because the sampling process is random, every new sample yields
a new set of data values and thus a new value of the sample mean, m. This variation
of the value of m from sample to sample is an example of sampling variation.

To illustrate sampling variation, find the second random sample drawn from the
population of women’s heights with the simMeans () function in Listing which
yields a different set of data values.

\
| Sample Mean SD 1 2 3 4 5 6 7 8 9 10
\ 2 65.2 3.1 67.8 65.2 65.8 59.2 65.9 67.8 69.1 63.6 61.1 66.9
\

Listing 4.4: Second set of 10 simulated data values for women’s height.

For this second sample, the value of the sample mean is m = 65.2, a value not
equal to the true population mean of p = 65.5, nor the value of the first sample
mean, m = 64.6. This conceptual insight is the abstraction that provides the
central framework for statistical inference. The values of the variable m vary across
repeated, albeit usually hypothetical, samples, each of size n. To estimate the
constant value of p requires the analysis of two variables: the sampled variable of
interest, generically referred to as Y, and m, defined over multiple samples of the
population from which the actual sample was drawn.

Fortunately, mathematicians have developed expressions that use information ob-
tained from only one sample of data values to estimate what would occur regarding
this sampling variation if we had multiple samples. We analyze a single sample
of data, but the conceptual framework that underlies this analysis describes an
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indefinitely large set of similar randomly obtained samples. Such are the wonders of
mathematics.

4.2.2 The Standard Error

As discussed, a statistic calculated from what is usually one obtained sample, such
as the sample mean, m, is useful for decision making only if it is close to its true
corresponding population value, here . Yet m varies from sample to sample, so
how to evaluate if the one observed m is likely close to u? A key realization is that
the smaller the range of variability of m from sample to sample, the more likely
that any one m is close to pu.

Consider again the sample of the variable Height, of which 10 values yielded m = 64.6.

How to estimate the value of  from the data? Hypothetically, consider an additional
7 samples, each also of n = 10. From these eight samples, obtain eight different

values of m, which suppose range from a minimum of 64.1 to a maximum of 65.2.

Given this information, what is the value of u?

One answer is that the exact value of p cannot be known from the 8 different
obtained values of m. A more useful answer is that the extent of the sampling
variability of m provides a guide as to the value of y, which is likely somewhere
between the minimum and maximum obtained values of m, here between 64.1 and
65.2. This range of values of m is an informal example of a confidence interval,
which likely contains the unknown value of p.

In contrast, consider a highly variable set of m’s over multiple samples from a
population. Suppose the values of m range from 30 all the way to 100. In this
situation, all we would know is that the true mean, pu, is likely to be somewhere
between 30 and 100. In this situation, knowing any one m provides little confidence
as to the value of u.

The variability of many m’s over many samples indicates how close any one m is
likely to be to u. The less variability the better the quality of our estimation in
general. To obtain the confidence interval to estimate i, we need a method to assess
the variability of the sample means, the m’s over repeated samples. Presumably,
we would know this range of variation without actually having to obtain these
additional samples.

As with any variable, m has a population mean and standard deviation. Assess the
variability of m over multiple samples with its standard deviation, what is called
the standard error of the sample mean. The standard error is a standard deviation
of a statistic over (usually hypothetical) samples. The reference to the “standard
deviation” of a variable usually references the variability of the data values.

Mathematicians have discovered the relationship that allows the computation of
the mean’s standard error without having to gather multiple samples. We begin

with the expression for the standard error expressed in terms of population values.

Denote the population standard deviation of m, its standard error defined over all
possible samples of size n, with o,,.
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Express this standard error with a simple expression in terms of the standard
deviation of the values of this population and the size of each sample, n, randomly
sampled from this population.

Actual (population) standard error of m: -2

Om = NG
The population standard deviation, o, is the standard deviation of the Y, the
population from which the data sample was obtained. This population standard
deviation is typically unknown, so the o,, cannot be directly computed. This
discussion, however, provides the logical basis for what occurs with actual data
analysis.

Both variables, the variable of interest such as Height, generically referred to as Y,
and the sample mean, m, of the data values of the variable of interest, have the
same population mean, p. That is, the population mean of the values for Y is the
same as the mean of the means of all the samples from the population of Y. The
distributions of Y, and of m defined over repeated samples of Y, are centered over
the same value, .

Distinguish the distributions of the two variables Y and m by their variabilities. The
standard deviation of m is the standard deviation of the values of the population
from which the data values were sampled, divided by the square root of the sample
size of all the samples, n. Because n is a positive number, the sample mean, m,
varies less than the values of the variable Y from which it is computed. The standard
deviation of the sample mean, m, its standard error, is smaller than the standard
deviation of the data from which the mean is computed.

That the standard error is smaller than the standard deviation is clear from the
formula, but why is this? The process of computing the mean is a centering process:
The large values in a sample tend to cancel out the small values in the same sample.
A sample of Heights, for example, may have some large Heights and some small
Heights, but when averaged the large and small values cancel each other out in
the computation of the mean. The result is that the sample mean fluctuates more
closely around the population mean p than do individual data values.

4.2.3 The Probability Interval

If the values of Y in the population are normally distributed, then so is the cor-
responding (usually hypothetical) distribution of the sample mean, m, for any
sample size. But there is more. Mathematicians have discovered a remarkable
result: Regardless of how the original variable Y is distributed, normal or not, for
an adequate sample size, n, the corresponding variable m is at least approximately
normally distributed. This result applies the central limit theorem (CLT), explored
in more detail in the appendix. An “adequate” sample size usually means at least
n = 30, and even less if the distribution of the variable Y is not skewed.

As we have learned, the probabilities for a specified range of a normally distributed
variable follow from the value of the variable’s standard deviation. And we also
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know, at least theoretically, the standard deviation of m, its standard error, given
the standard deviation of the values of the population from which the data were
sampled and the size of the corresponding sample. The result is that normal curve
probabilities, in conjunction with the standard error of m, permit us to calculate
the range of variation of m.

The practical implication of the Central Limit Theorem is that before conducting
an inferential analysis to estimate u, first verify that m is (at least approximately)
normally distributed, so that normal probabilities apply to the distribution of m.

For Data Analysis: Apply the Central Limit Theorem

e If the sample size, n, is larger than 30 or so, then assume m is normal.

e If the sample size, n, is much less than 30, inspect a histogram of the
data to ascertain that skewness is not too severe.

Obtain the range of the sampling variability of m from the knowledge of its presumed
normality and standard error, its standard deviation. We know that 95% of all the
values of a normal distribution lie within 1.96 standard deviations of its population
mean. That is, 95% of all z-values of the normally distributed variable, here m,
are between —1.96 and 1.96.

m— i

z-value of the sample mean: z,, =

Om
The cutoff value of 1.96 cuts off the upper 2.5% of the standardized values of a
normally distributed variable, and —1.96 cuts off the bottom 2.5% of the values,
leaving 95% of the values in between. Denote these cutoff values accordingly as
20.25 and —zg.25. Define this 95% range of variability about u between —zg .25 and

2p.25 as the 95% probability interval of the standardized value of m, as illustrated
in Figure

hypothetical
distribution
of many z,,’s
|
Probability Interval
0
-Z,,,=-1.96 z,.=1.96

Figure 4.2: Theoretical 95% probability interval that contains 95% of all possible stan-
dardized sample means, z,,, calculated for samples each of size n for the
variable of interest.

Instead of standardized values, express the probability interval with the units used
to measure the variable of interest. Instead of the distribution of the standardized
means about 0, express the probability interval in terms of the distribution of the
means in their unit of measurement, centered about p, as shown in Figure [4.3]
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hypothetical
distribution
of many m’s
|
Probability Interval
u
-(1.96) o, (1.96) o,

Figure 4.3: Theoretical 95% probability interval that contains 95% of all possible sample
means, m, for the variable of interest, calculated for samples each of size n.

The 95% probability interval is 1.960 on either side of u. This probability interval
becomes the basis for the confidence interval. Both intervals are of the same width
but centered over different values.

4.2.4 The Confidence Interval from the Probability Interval

The calculation of a probability interval presumes that the value of u is already
known, from which the known range of variation of m is then calculated for a
specified percentage of its values, such as 95%. Here our primary concern, however,
is applying statistical inference in the form of a confidence interval to estimate the
unknown value of the population mean pu.

The logic of the 95% confidence interval follows from the probability interval around
the true mean p that contains 95% of all m’s, as illustrated in Figure Against
the backdrop of what happens hypothetically over the means from the repeated
samples, get one actual sample of data values for the variable Y and then compute
m from these data values. Suppose the value of m from the sample obtained shown
in Figure [4.4] happens to be a little less than u.

hypothetical
distribution
of many m’s
|
Probability Interval
u
m | the one
obtained m

Figure 4.4: One observed value of the sample mean, m, from the one actual sample.

The confidence interval is the transfer of the probability interval centered over u
to an interval of the same width centered over m. The key insight is that if the
interval constructed about p contains m, then an interval of the same width about
m contains u, as shown in Figure [£.5]
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hypothetical
distribution
of many m's
|
Probability Interval
u
m ! theone
obtained m

Confidence Interval

Figure 4.5: The 95% confidence interval for this sample derived from the 95% probability
interval.

The interval about m in Figure is the confidence interval, in practice constructed
without knowledge of u. The analysis of this one sample of data provides the value
of the sample mean, m, and the estimated range of sampling variation of m over
many hypothetical samples based on the standard error of m. The application of
the Central Limit Theorem ensures that m is approximately normally distributed,
except in small samples from skewed populations.

Figure provides the perspective of the data analyst, who does not know the value
of u. The analyst does not know if the one observed m is larger than or smaller
than the value of the unknown p, nor how much larger or smaller.

m
Confidence Interval

]

the one
obtained m

Figure 4.6: The 95% confidence interval 1.960 on either side of m.

The expression of the 95% confidence interval in terms of the population standard
error follows.

Theoretical 95% Confidence Interval: m + (1.96)(0y,), where oy, = 7

Vn
The problem of applying this expression for the confidence interval in practice is
that if the population mean, u, is not known, then neither is the standard deviation,
o. Without o, the population standard error of the mean, o,,, cannot be calculated.
That is why this calculation is labeled “theoretical”. How to compute the confidence
interval in practice is explained next.
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4.3 Construct the Confidence Interval

4.3.1 The t-distribution and Estimated Standard Error

To infer the value of u from data, modify the theoretical expression for the standard
error of the mean. Replace the actual but unknown standard deviation, o, with its
estimate from a single sample from that population, the standard deviation of the
sample data, s.

s
Vn
Replacing o with s in the expression for the standard error results in the estimated
standard error, s,,, used in place of the true but unknown actual standard error,
Om-

Estimated (sample) standard error of m: s, =

The estimation of o, with s,, introduces a new statistic in the analysis of the vari-
ation of the sample mean, m, expressed in terms of standardized values, applicable
to any unit of measurement. When using s in place of o, instead of a z-value we
have a t-value, the number of estimated standard errors that separate a value of m
from pu.

m —
t-value of the sample mean: t,, = a

Sm
A t-value is a standardized value that closely resembles a z-value, but the substitution
of s for o, and thus s, for o,,, does change its distribution.

The 95% probability interval for z,, ranges from —z g5 = —1.96 to zp05 = 1.96,
but what about the corresponding interval for t,,7 To establish the probability
interval for a distribution of values of ¢,,, consider many, many (usually hypothetical)
samples all of the same size n from the same population with known mean u. For
each sample calculate both m and s, where m is presumed normally distributed,
and then t,,.

To what extent does a distribution of ¢-values correspond to a normal distribution?
The distribution of ¢, is also a bell-shaped curve, but the additional source of
variability in each calculation implies that a distribution of t¢,, is wider, more
variable than the normal distribution of z,,, which uses the fixed population value
o in place of the corresponding data estimate s.

The distinction between the two families of distributions is the price to pay for
needing two estimates from a sample to calculate t,,, m and s, instead of only the
one estimate for z,,, m. Without knowledge of the population standard deviation,
o, the corresponding confidence interval is wider than if its value was known. In
applications, however, if the population mean, y, is not known, then neither is the
population standard deviation, o.

Denote the cutoff values for the resulting distribution of ¢,,, such as for the range
of variation for the 95% probability interval, as —t 25 and ¢ g25. The 95% range
of variation of t,, is larger than the corresponding range of variation with normal
curve probabilities, so ¢ g25 > 2,025 = 1.96. How much larger are the ¢-distribution
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cutoffs, such as t g5 than the corresponding standardized normal curve values, such
as 20257

The mathematicians have done the hard work by providing formulas for the exact
cutoffs needed to define the range of variation of the t-statistic, which are provided
by computer applications such as R and Excel. Another consideration is that there
is a different distribution of t-values for each sample size n. The estimate of o
tends to improve as n, or more specifically, the degrees of freedom, n — 1, for the
calculation of s, increases. So as n — 1 increases, the variability of the estimate
s decreases, yielding a distribution of ¢,, closer to the distribution of the normal
distribution z,,.

Each t-distribution yields its own specific cutoff values. The lessR function
prob_tcut () illustrates the relationship between the ¢ and z distributions for
any normally distributed variable.

lessR function prob_tcut (): t-distribution probabilities.
Required: df, degrees of freedom, n — 1
Default: alpha=0.05 for a 95% probability interval

A sample of size n = 11 implies a degrees of freedom of df = n — 1 = 10. Figure [1.7]
shows a t-distribution slight wider than the normal distribution of z values, with a
corresponding cutoff of £ go5 = 2.228.

prob_tcut (df=10)

0.4+ — 212;1111
0.3
0.2 2.228
0.1 \
0.0 [SSS
4 2 0 2 4

Standard Errors from Zero

Figure 4.7: t-distribution, df = 10, tgo5 = 2.228, and 95% probability interval.

For large sample sizes, the corresponding t-cutoff for the 95% range of sampling
variability becomes close to the normal cutoff of 1.96. Consider n = 201, that
is, df = n —1 = 200, which yields tg95 = 1.972 according to Figure [4.8] The
t-distribution curve almost overlaps the corresponding z-distribution curve.
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prob_tcut (df=200)

0.4+ oo
0.3
0.2 -1.972 1.972
0.1
00 > |8
- 2 0 2 s

Standard Errors from Zero
Figure 4.8: t-distribution, df = 200, t.go5 = 1.972, and 95% probability interval.

Table summarizes the relation of ¢t-cutoffs to the normal cutoff for the range of
sampling variation defined by the 95% probability interval.

df 3 5 10 15 20 30 60 100 200 1000  normal
tozs 3.182 2570 2228 2.131 2.086 2.042 2.000 1.984 1.972 1.962 1.960

Table 4.2: t-cutoffs for the 95% range of variation, which illustrate the penalty compared
to the 1.96 reference value when computing the confidence interval from s
instead of o.

t.o25: About 2, a

little higher for For the 95% range of variation, ¢ g25 > 2,025 = 1.96, but as Table shows, except
n < 60, and no lower for very small sample sizes, a good approximation is ¢ go5 ~ 2. The 95% probability

than z.025 = 1.96. interval based on zg 925 provides the actual range of variation of m. Our knowledge

of this range, however, is based on the larger £y.g25, which yields larger probability
intervals.

4.3.2 Computation

process mean,

Section 2:3] p. 7] Only analysis of a process mean provides useful results to the decision maker.
stable process Calculate the process mean from data values all generated by the same, unitary
Section 23] p. @ process, what is called a stable process. If possible, if the data are ordered by the
um chart time of their collection, evaluate the stability of the process with a run chart or
Section p. [ control chart before estimating the mean of that process. As previously discussed,
control chart the data values from a stable process for a variable exhibit random variation about
Section [3:3.1} p. the mean absent any delineated structure or trend.

The confidence interval is the probability interval centered over the sample mean,
m. Because o is unknown, construct the confidence interval from the t-distribution.
The construction of the confidence interval proceeds from the sample summary
statistics: n, m and s.

The confidence interval is the sample mean + the margin of error. The t-statistic
indicates how much the standardized mean calculated from the estimated standard

David W. Gerbing



4.8. CONSTRUCT THE CONFIDENCE INTERVAL 91

error varies. The margin of error expresses our knowledge of how much the corre-
sponding m varies (realizing that m actually varies less, based on the population
value of o,,,, but this value cannot be directly accessed).

The margin of error, F, for a 95% confidence interval, is t go5 ~ 2 standard errors.
Obtain the relevant t-distribution cutoff to calculate the margin of error for the
confidence interval.

Margin of error: E = (t.925)(Sm)

The lower bound of the interval is m — E and the upper bound is m + E.

| f ]
m-t .S, m m+t,.S,

Figure 4.9: The 95% confidence interval.

To illustrate, consider the previous example of the clean up costs after surgery.
Begin with the descriptive statistics.

Data Summary: n = 100, m = $2984.17, s = $42.59

From this sample information, and knowledge of the corresponding ¢-cutoff, compute
the confidence interval.

s 42.59
Estimated standard error: s,, = — = —— = $4.259
oy /100
t_og5-Cllt0ff. df =100—-1= 99, t.025 =1.984

Margin of Error: E = (tg25)(sm) = 1.984(4.259) = $8.451

The confidence interval is the sample mean, m, plus and minus the corresponding
margin of error.

Confidence interval:
Lower Bound: m — E = 2984.17 — 8.451 = $2975.719 days
Upper Bound: m + E = 2984.17 + 8.451 = $2992.621 days

The 95% confidence interval of clean up costs ranges from $2975.72 to $2992.62.

4.3.3 Meaning

As we have seen, according to the classical (frequentist) model of statistics, the
meaning of an inferential analysis follows from the results of many, many, usually
hypothetical, samples. The value of the population mean, p, is some specific value,
some constant such as 21 or —4.97. The sample mean varies from sample to sample,
so the location of each interval varies. The sample standard deviation varies from
sample to sample, so the width of each interval varies. Accordingly, the estimate
of u, the confidence interval, randomly varies from sample to sample. In practice,
only one sample and one corresponding confidence interval is observed. Without
additional information there is no way to know if that one confidence interval does,
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or does not, contain .

Computer simulation easily allows us to explore the results from multiple samples.
To obtain many confidence intervals of the mean from repeated sampling of simulated
data, all from the same normal population, use the lessR function simCImean().
This function is pedagogical. It illustrates the meaning of a statistical concept, and
is not used for data analysis per se.

lessR function simCImean(): Generate multiple confidence intervals

Required: ns, number of samples; n, size of each sample
Default: mu=0, population mean
sigma=1, population standard deviation

The following function call to simCiMean() generates 50 samples, each of size n = 10
from a normal population with u = 65.5 and o = 2.5. These characteristics describe
the distribution of adult USA women’s heights.

simCImean(ns=50, n=10, mu=65.5, sigma=2.5)

The output appears in Figure [4.10]

68

66

5 I

© l
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©
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Figure 4.10: 50 random confidence intervals from 50 random samples, p = 65.5, o0 = 2.5.

For these particular 50 random samples, each of size n = 10, 4 of the 95% confidence
intervals, or 8%, do not contain u. For each sample, m, and also s and so s,,, differ,
so both the center and width of each confidence interval also differ. In actual data
analysis, only one of these confidence intervals is observed, without knowledge of p.

Note that the confidence level of 95% has a different meaning than does the concept
of probability, which refers to future, random events. Stated another way, the
probability that any one random 95% confidence interval to be sampled will contain
1 is 95%. However, after the data have been gathered and the one specific confidence
interval has been obtained, then either y lies in the obtained interval or it does not.
After computing the confidence interval, the concept of probability does not apply.
Instead, properly expressed results in terms of the 95% confidence level.

An application of the confidence interval follows.
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4.4 Application

4.4.1 Background

Context. Management has set the criterion that the average supplier ship time
should be no more than 7.5 days from the generation of the electronic purchase
order. Assess past conformance to this criterion by analyzing past delivery times.
Management, however, makes decisions regarding the future. The past can guide
the future, but what occurs in the future is of primary importance. Hence the need
for statistical inference.

The expression of this criterion for the average ship time is a specification of the
value of the underlying population mean: p < 7.5. If the same process continues
into the future, then the ship times are random deviations about the process mean.
The forecast for future ship times is the estimate of u, which should be less than
7.5 days.

Analytic technique. Estimate the supplier’s population mean ship time from last
year’s shipments with a 95% confidence interval, presuming the underlying assump-
tions of this procedure are satisfied. If 7.5 is less than all the values of the confidence
interval, then the true mean is likely larger than 7.5 and we conclude that the
criterion would be satisfied. If 7.5 is greater than all the values of the confidence
interval, then the true mean is likely less than 7.5, and we conclude that the criterion
is not satisfied. If 7.5 lies within the confidence interval, then it is a plausible value,
but then so also would values less than 7.5 and greater than 7.5. If 7.5 is within the
interval, the results are equivocal.

Data. The 15 ship times for the past 12 months for a supplier are available on the
web, in the file called shiptime.csv. The variable of interest is Time. Read the data
into an R data table (data frame) with the lessR function Read ().

d <- Read("http://lessRstats.com/data/shiptime.csv")

4.4.2 Assumptions

Process stability. The first task in the analysis is to evaluate process stability, if

possible. The primary issue here is that all the sampled data should be from the
same population with mean p. Including data from different shipping procedures
with different values of y would diminish the forecasting accuracy of future events
from the current process.

To evaluate the stability of the process, examine the data for the 15 sequentially
ordered shipments with the run chart with the lessR function Plot (). Set the run
parameter to TRUE to indicate a run chart plot.

Plot(Time, run=TRUE, xlab="Shipment")

The line chart appears in Figure
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medn

Time

Shipment

Figure 4.11: Run chart of the 15 ship Time data values.

Over time, the plot shows no pronounced pattern for the 15 ship times, just apparent
random variation about a stable mean with about the same level of variation across
all the ordered data values.Conclude stability of p and o for all sampled values.
That is, assume that the same fulfillment process generates all 15 data values, and
so becomes suitable for forecasting future performance of that process. Only values
generated by the process projected into the future are eligible for inclusion in the
analysis of the process mean.

Normality. The sample size, n = 15, is less than 30, so evaluate the histogram of
the data values for normality of the data. According to the central limit theorem, if
the data indicate approximate normality, or at least not much skewness, the sample
mean, m, is at least approximately normally distributed regardless of the sample
size, n. The histogram of ship Time, adjusted for the bin shift artifact by moving
the start point from the default of 5.0 to 4.5, is shown in Figure [£.12]

Histogram(Time, bin_start=4.5)
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Figure 4.12: Histogram of 15 ship Time values with the bins starting at 4.5.

This histogram of the same data is “more normal”, and so provides support for
a normal corresponding sample mean, m. A sample size of n = 15 is small, and
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most samples of that size from a normal population are not going to exhibit perfect
normality.

4.4.3 Computation

Excel. An Excel worksheet for the computations for the confidence interval of
the mean is also available for download. (This worksheet also provides for other
calculations, the hypothesis test and needed sample size, discussed later.)

http://lessRstats.com/excel/MeanInference.xls

One possibility is to compute the descriptive statistics — sample size, mean and
standard deviation — in this worksheet. There is a range of values all in one column
named data. The Excel functions COUNT (), AVERAGE() and STDEV () provide these
three summary statistics, from the data range of values. Redefine this range for a
new set of data, or just enter the cell range in directly in the respective function
calls. Or, if already available, just enter the sample values directly into these three
cells. Also specify the confidence level. For the given df = n — 1, the Excel TINV()
function for t-inverse provides the corresponding ¢ cutoff values.

Description Name Value Formula
INPUT: count of data n 15|COUNT(data)
DESCRIPTIVE mean of data mean B.087|AVERAGE(data)
STATISTICS standard dev of data stdev 1.587|STDEV(data)
est stnd error of mean  (sterr 0.410|stdev/SQRT(n)
CONFIDENCE confidence level level 0.95
INTERVAL t cutoff value tout 2.145|TINV(1-level,n-1)
margin of error E 0.879|sterr*tcut
lower bound LB 7.21|mean-E
upper bound uB 8.97 |mean+E
HYPOTHESIS hypothesized value mu0 7.5
TEST difference from null diff 0.587 |mean-mu0
t statistic t 1.431|diff/sterr
p-value, two-tailed pvalue 0.174| TDIST(ABS(t),n-1,2)

R. With R, calculate the confidence interval of the mean from data or summary
statistics with the lessR function ttest (), or use the simpler version tt_brief ().
The output appears in Listing

ttest(Time) or ttest(n=15, m=8.09, s=1.59)

4.4.4 Results

Interpretation. The interpretation of the confidence interval is straightforward:
With 95% confidence, the true average shipping time for this supplier is somewhere
between 7% and 9 days. Rounding the results provides an interpretation more easily
understood without any meaningful sacrifice of precision.

Note that the interpretation is not a simple verbal restatement of the lower and upper
bounds of the interval: The 95% confidence interval for average ship time is 7.21 to
8.97 days. This statement is not an interpretation because it presumes the intended
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n = 15, mean = 8.09, sd = 1.59

t-cutoff: tcut = 2.145
Standard Error of Mean: SE = 0.41

Margin of Error for 95) Confidence Level: 0.88
95%, Confidence Interval for Mean: 7.21 to 8.97

Listing 4.5: Output of ttest().

audience understands the meaning of the technical phrase “95% confidence interval”.
An effective interpretation conveys the meaning of the results to a non-technical
audience, free of all jargon.

Conclusion. Our conclusion begins with the descriptive statistics, but the primary
result is the conclusion of the inferential analysis. In terms of the data summary,
average delivery time of last year’s 15 deliveries was 8.09 days, yet management
will only accept an average of 7.5 days. For the inferential analysis, the confidence
interval, an average actual delivery time as low as 7.21 days is plausible. The data
analysis does not definitively answer if the goal of an average of 7.5 days has been
achieved by that supplier for last year’s shipments.

Decision. From this analysis the managerial decision, the purpose of the analysis,
follows. Before finding another supplier, provide more opportunity to demonstrate
a sufficiently small delivery time, either with more data or analysis and potential
improvement of the supplier’s internal shipping process.

4.5 Confidence Level and Margin of Error

4.5.1 Confidence Level

The previous examples of confidence intervals had confidence levels of 95%. Yet
the 95% level is only one of many possible confidence levels, albeit perhaps the
most widely encountered level. Set the confidence level according to the range of
variation defined by the ¢-cutoff value. For a given t-distribution, each t-cutoff
value corresponds to a different range of sampling variation, such as perhaps the
other relatively common confidence levels of for 90% and 99%. Consider first the
corresponding z-cutoff values, which set the baseline for the slightly larger ¢-cutoffs.
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Figure 4.13: Normal Distribution: 90% Range of Variation, within 1.64 standard errors
of the population mean, p

90% of the values of any normal distribution, including for m, fall within 1.64
standard deviations of the mean, p.

Figure 4.14: Normal Distribution: 99% Range of Variation, within 2.58 standard errors
of the population mean, p.

99% of the values of any normal distribution, such as for a normally distributed m,
fall within 2.58 standard deviations of the mean, p.

Use the corresponding t-cutoff to set the confidence level. Each t-cutoff is a little
larger than the corresponding z-cutoff, as shown in Table

Level Interval t-cutoff

90% m =+ t‘05(8m) tos > 1.65
95% m =+ t,025(8m) t.o25 > 1.96
99% m + t.005(5m) t.oos > 2.57

Table 4.3: Relationship of the t-cutoff to the confidence level.

How to choose among the different confidence levels when constructing a confidence
interval? The ideal confidence interval achieves two desirable goals.

Ideal Confidence Interval

e High level of confidence of containing .

e Narrow margin of error, F.

Unfortunately, for the same data set, satisfy one goal only at the expense of the
other. Consider first the pursuit of a high level of confidence.
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Purpose Description

Goal High confidence the CI contains unknown g

Action To increase probability of containing the unknown value of u, move
the confidence level from 95% to 99%

Result Larger confidence level results in wider interval, and so a larger
margin of error

Table 4.4: Relationship of the ¢t-cutoff to the confidence level.

Or, pursue the other desirable characteristic of a confidence interval.

Purpose Description

Goal Low margin of error, i.e., precision

Action To decrease size of confidence interval, decrease confidence level
from 95% to 90%

Result Narrower interval yields a lower probability that the interval actu-
ally contains p

Table 4.5: Relationship of the t-cutoff to the confidence level.

Recalculating a confidence interval to obtain either more confidence or a narrower
interval results in a less desirable value of the other characteristic. This trade off
between competing goals implies that the chosen confidence level is to some extent
arbitrary. Each choice of confidence level provides the same amount of information,
balancing the margin of error against the confidence level. So usually choose 95%,
which is both a high level of confidence and a “nice” number, divisible by 5, that
still gets most of the values.

The lessR function ttest() or its simpler version tt_brief() calculates the
confidence interval with a default confidence level of 95%. To explicitly specify the
confidence level, use the conf_level parameter, such as with the following function
calls.

ttest (Y, conf_level=.90)
ttest(Y, conf_level=.99)

Here the different confidence intervals are calculated for the variable Y. Note that
the confidence level is specified with a proportion, such as 0.90, and not a percentage,
such as 90.

Table [4.6] organizes the output from these analyses, plus the original analysis with
the 95% level of confidence. Consider the previous application that analyzed the
95% confidence interval for the average ship time of a supplier. The data summary
is n = 15, m = 8.087 days, s = 1.587 days.

The narrowest width, of 1.44 days, comes with the least confidence, .90. Moving
the confidence level up to .99 increases the confidence interval’s width all the way
to 2.44 days.

David W. Gerbing



4.5. CONFIDENCE LEVEL AND MARGIN OF ERROR 99

Level tgs LB UB  Width
.90 1.761 7.36 881 1.44
.95 2145 721 897 1.76
99 2977 687 931 244

Table 4.6: Width of the confidence interval and confidence level.

4.5.2 Choose the Needed Sample Size

Distinguish between the extent of the margin of error that you obtained and what
you want. What you have is F, the obtained margin of error obtained with the
sample of size of n. What you want is Fgegired, the margin of error desired, which
may require an increase of the current sample size, n, to the larger value npeceded-

How large a sample is needed to obtain the smaller margin of error that is desired?
As always in life, including statistics, there are no guarantees. The goal is to have
a very high probability that when the new confidence interval is calculated from
the larger sample, the desired margin of error will be obtained. Calculate the
needed larger sample size, Needed, SO that the new 95% confidence interval has a
.90 probability of obtaining the desired margin of error, Egegired-

The procedure is to move from the initial sample to the larger sample to obtain a
diminished margin of error.

1. Specify the desired margin of error (precision), Fgesired-

2. Obtain initial data sample, n.

3. Calculate margin of error, E, then the confidence interval.

4. If Eyesireq < F, calculate n,eeded-

5. Gather new data for larger sample.

6. Re-calculate the margin of error, E, and the confidence interval.

The end result is a larger sample with a lower margin of error.

Calculate the needed sample size with a two-step procedure. First calculate the
preliminary estimate of sample size, ns from the initial sample. With the sample
standard deviation, s, apply the following expression.

Second, calculate the actual estimate of sample size, Nyeeqeq. The issue here is that
the sample standard deviation, s, may underestimate o, so revise ns upward for a
given probabilityﬂ of obtaining Egegireq With a 95% level of confidence.

.70 probability: npeeded = 1.054n4 4+ 4.532

.90 probability: npeeded = 1.132n5 4+ 7.368 > Most often used
.99 probability: npeeded = 1.242n4 4+ 10.889

IThese coefficients are derived from analysis of a paper by Kupper and Hafner in the American
Statistician, 43(2):101-105, 1989.
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The adjustment explicitly accounts for the variability of the standard deviation
estimate, s, across repeated samples. In practice, the standard error of the sample
standard deviation is quite large in small samples. So by chance the one obtained
sample standard deviation, s, may be a very large underestimate of the true
population standard deviation, . The result would be a value of estimated sample
size that would be too small to obtain the desired margin of error with any reasonable
probability. Without this adjustment the actual probability of getting the desired
margin of error is quite a bit less than .90.

To specify the needed sample size invoke the parameter Edesired for the lessR
function that calculates the confidence interval of the mean, ttest (). Here consider
a value of Fiegireq = 0.5.

ttest(Time, Edesired=0.5)

This example provides the 95% confidence interval for the variable Time as well as
the needed sample size for a desired margin of error of 0.5.

4.5.3 Application

Reconsidering Ship Times. The previous application of a confidence interval CI of
the ship time of a supplier estimated the population mean ship time to be between
7.21 to 8.97 days with 95% confidence. Unfortunately, this interval is deemed too
large, achieving an obtained margin of error, E, of only 0.879 days. This result is
equivocal regarding the criterion that the true mean ship time be less than 7.5 days.
Perhaps the criterion was not reached such that the true mean is larger than 7.5
days, yet 7.5 is within the interval and so is plausible.

This confidence interval for ship time involved only the 15 last shipments from that
company. Unfortunately, management deemed the precision of estimation as not
sufficiently precise. Instead, management specifies a maximum desired margin of
error of only one-half day. How many shipments need be sampled to reach a .90
probability of obtaining a margin of error of half a day or less at the 95% confidence
level?

Excel. The previously introduced Excel worksheet for calculating a confidence
interval also contains the calculations for the needed sample size. Begin with
the summary statistics as previously entered. From the initial sample of n = 15
shipments, s = 1.587, with Fgegireq specified as 0.5.

Description Name Value Formula
INPUT: count of data n 15 |COUNT(data)
DESCRIPTIVE mean of data mean 8.087 | AVERAGE(data)
STATISTICS standard dev of data stdev 1.587 | STDEV(data)

The task is to obtain the 0.9 probability of getting desired margin of error of 0.5
days.
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Description Name Value Formula

SAMPLE SIZE desired precision Edesire 0.5
z cutoff for 95% CI zout 1.960|NORMINV(0.975,0,1)
initial sample size ns 38.70|((zcut*stdev)/Edesire)"2
needed sample size needed 51.18|1.132"ns+7.368
sample size rounded up |size 52| CEILING(needed,1)

The calculated needed sample size is 52.

R. Specify the value of Fjegireq the option Edesired for the 1essR function ttest ().

ttest(Time, Edesired=0.5)

The output for the needed sample size appears in Listing [4.6]

Desired Margin of Error: 0.50

For the following sample size there is a 0.9 probability of obtaining
the desired margin of error for the resulting 95) confidence interval.

Needed sample size: 52

Additional data values needed: 37

Listing 4.6: Needed sample size analysis.
Calculations. Step 1: Initial sample size.

. [(2025)(5)}2 _ [(1.962)(1.587)]2 3569
desired D

Step 2: Upward adjust the initial estimate to obtain the actual estimated sample
size.
Nneeded = 1.132n5 + 7.368

= 1.132(38.69) + 7.368
=b51.17.

Now round up, 51.17 to Nyeeded = 52. From the initial sample of 15, 52 — 15 = 37
additional values need to be obtained to achieve a sample size of 52.

Conclusion. Collect information on 52 shipments instead of 15, so 37 more shipments
are needed. There is a .90 probability that when the revised 95% confidence interval
is calculated over all 52 shipments, the resulting margin of error will be 0.5 or less.

The problem with this result is that 52 shipments are not available. And, even
if data from several years past were available, the longer the time past since the
data were collected, the more likely that the underlying process has changed. Data
collected from a different shipping process are invalid for estimating the current
population mean shipping time, p, the estimate projected into the future as a
forecast subsequent ship times. This analysis simply is not definitive.
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4.6 Summary

A set of population values, such as the population mean, y characterizes various
aspects of any process. These population values cannot be directly observed due to
the obfuscation of the accompanying sampling error when a sample of data values
are obtained to measure these characteristics. To estimate the unobservable value
of u, construct and interpret a confidence interval. This estimate of p is given with
a specified margin of error.

The estimate of p begins with the sample mean, m. The problem is that the
presence of this inevitable sampling error implies that each sample from the same
population yields a different sample mean, m. As such, m itself is a variable, and
its distribution over usually hypothetical multiple samples is the key information
needed to estimate u. The extent of the fluctuation of the m over many samples is
the basis for the confidence interval.

Describe the fluctuation of m across samples by its standard deviation, called
the standard error of the mean, given by a simple formula that applies to any
distribution.

o
Om = —F=

Vn
The standard deviation of the population from which the sample was obtained is o,
and the standard deviation of all possible values of m is o,,.

To describe the distribution of a variable, here m, describe its shape and mean
in addition to its standard deviation. The Central Limit Theorem shows that,
except for very small samples from nonnormal populations, the distribution of m is
approximately normal. Further, the population mean of the variable m equals the
population mean of the original variable Y, . Accordingly, the confidence interval
that likely contains p is based on normal curve probabilities, such as that 95% of all
the values of a normal distribution are within 1.96 standard deviations of its mean.

In practice both the population values p and o are usually not known, so estimate
the standard error of the mean with the sample standard deviation, s.

S

sm—\/ﬁ

Using an estimated standard error to estimate an unknown p introduces another
source of error: both m and s vary from sample to sample. When using s,,, the
family of t¢-distributions provides the cutoff values that define a given range of
variation of m, such as ¢ go5 for the 95% range of sampling variation. There is a
separate t-distribution for each degree of freedom, where, df =n — 1.

Construct the 95% confidence interval around the sample mean by moving ¢ go5 ~ 2
estimated standard errors on either side of the sample mean, m. The true population
mean, 4, is contained within this interval at a level of 95% confidence. That is, 95% of
all confidence intervals constructed about all samples contain p. The interpretation
of the 95%confidence interval follows this template: With 95% confidence, the true
average is between [b and ub. Here [b is the lower bound of the confidence
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interval and ub is the upper bound. Calculate the sample size needed to achieve a
desired margin of error for the estimate of u so that the width of the confidence
interval is small enough to be useful.

Concepts

central limit theorem

confidence interval

confidence level

cutoff value

estimated standard error of the sample mean
maximum error

sampling distribution of the mean

sampling error

standard error of the mean

t-value
lessR Instructions

ttest(Y) or tt(Y): confidence interval for variable Y

tt_brief(Y): briefer analysis for variable Y
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Appendix: Distribution of the Sample Mean

Show the Shape of the Distribution of the Sample Mean. Use computer simulation
to illustrate the distribution of m.

lessR function simCLT

To investigate if m is normal for a given population and sample size, simulate
its specified distribution.

Required: ns, number of samples
n, size of each sample
Required: dist: "normal", "uniform", "antinormal", or "lognormal"

For example, to calculate m from each of 1000 samples, each with two data
values, from a uniform distribution:

> simCLT (ns=1000, n=2, dist="uniform")

Central Limit Theorem: Normal Data. The normal population, from which the
data are sampled. Take many, many different samples, each sample of the smallest
possible size, n = 2. The many, many means of each of these samples for m is also
normal If the sample size is m is also normal. n = 30 and larger

Population m for n=2 m for n=5 m for n=30

A A

Example of All Possible Sample Means of Size 2. Uniform distribution, 5 equally
probable values: 0, 1, 2, 3, 4. There are only 25 possible samples of size 2. There

Sum Mean | Possible Samples Count Prob
0 0.0 |00 1 1/25=0.04
1 0.5 |0,11,0 2 2/25=0.08
2 1.0 | 021,120 3 3/25=0.12
3 1.5 [0,31,22,13,0 4 4/25=0.16
4 20 0413223140 5  5/25=0.20
5 25 | 1,42,33,24,1 4 4/25=0.16
6 3.0 |243342 3 3/25=0.12
7 3.5 |34,4,3 2 2/25=0.08
8 4.0 4.4 1 1/25=0.04

Total 25 1.00

are more ways to get m = 2 than m = 0 or m = 4, so values of m tend to converge
toward p = 2.
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Central Limit Theorem: Uniform Data. The small, medium and large values of Y
equally likely Take many, many different samples of Y, each sample of the smallest
possible size, n = 2 The distribution of the sample means for n = 2 is almost normal
If the sample size is m is approximately normal n = 30 and larger.

PopL;IaYtion m for n=2 m for n=5 m for n=30
0

- A A A

Central Limit Theorem: “Anti-Normal” Data. The population values in the middle
less likely than tail values Take many, many different samples of Y, each sample of
the smallest possible size, n = 2 The distribution of the sample means for n = 2 is
almost normal If the sample size is m is approximately normal n = 30 and larger.

Popl;li(tion m for n=2 m for n=5 m for n=30
0

M/\AA

Central Limit Theorem: Skewed Data. A skewed population Y from which the data
are sampled. Take many, many different samples of Y, each sample of the smallest
possible size, n = 2 The distribution of the many, many means of each of these
samples is also skewed If m’s still retains some skew, then n = 30 and larger.

POPL;I?(“C’“ m for n=2 m for n=5 m for n=30
0

&ggﬂ

Central Limit Theorem: Summary. The sample mean m is ...n from 2 onward n
less than 5 n is at least 30
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Population
of Y

............................................................................

m for n=2

m not normal

e A A AN
A A AL

CLT: Conclusion and Practical Consequences. The sample mean, m, must be at
least approximately normal to apply normal (or related) distribution probabilities
for the computation of the confidence interval. IF sample size n > 30, then the
sample mean, m, is at least approximately normally distributed unless the data are
sampled from a severely skewed population.

Particularly for smaller sample sizes, the histogram or other frequency display should
be checked to evaluate the skewness of the population distribution. If the population
is somewhat or moderately skewed, then a sample size of at least n = 30 should be
obtained. For severely skewed populations, the use of normal curve probabilities on
which to base statistical inference may not be acceptable.

For symmetric populations, the sample size may be as small as n = 10 or even n =5
to properly employ normal curve probabilities. If the population is normal, then
the resulting distribution of m is normal even for the smallest possible sample size
of n = 2. A small sample size will generally result in poor estimation, but in these
circumstances, a normal or at leasts symmetric distribution, results in the valid
application of normal curve probabilities.

Knowing that m usually follows a normal distribution is a powerful and interesting
result that leads to a world in which many process, which themselves are created
from the sums of constituent components, are normally distributed. But how do we
use this information for statistical inference?
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