
Anaconda downloaded on your computer

Anaconda in the Cloud, click the Notebooks tab at the top

Google Colab in the Cloud

To do Python data analysis, choose one of these environments. Because our Python
programs are uploadable to the cloud and downloadable to our computer from the cloud,
you could work in multiple environments though only one is needed. Of course, the cloud
environments require Internet access. The advantage is that a cloud account can be
accessed from a web browser on any device including tablets, phones, and Chromebooks.

For the cloud, the Anaconda system does not appear to allow access to data files on the
web (presumably security issues). To access a data, upload the data to your cloud account.
This may require first downloading a web data file to your computer. However, the file
structure for your cloud account resembles that of your computer. Your files will include
Python code (notebooks) and data files.

For the Google cloud system, you will need a Google account. Any data you wish to store in
the cloud you store on Google Drive, which requires separate access. The process of
accessing a data file from the Google system is described belwo. However, you do have the
ability to also read data files directly from the web.

The core Python language does not provide specialized functions, including those for data
analysis. However, the language is extensible. Access additional sets of functions, organized
in what are called packages, to provide this functionality.

To access these packages they must first be downloaded to your computer, automatically
done by the Anaconda distribution on your computer and the Anaconda and Google cloud
environments. Then, usually at the beginning of a Python program, provide access to the
funcitons by importing the external package with the import method.

Not necessary, but useful to know the time and date you conducted the analysis,
particularly useful as you conduct multiple data analyses and revise each analysis as part of
a general data analysis project. As with most Python functionality, the now() function that
provides this information is not part of core Python. Instead, the needed functions are
available from the datetime package, abbreviated here as dt . The datetime package is
not included with the original Python distribution, so separately access with the import
method.

Analysis on 2024-01-16 at 13:21

Refer to the package with its designated abbreviation dt . Refer to each function from an
external package by prefacing the function name with the name or abbreviated name of
the containing package followed by a period, such as dt.now() . This convention instructs
Python where to locate the corresponding function that is not included with the original
Python distribution.

Also, note that the displayed time is the time where the code is running. If running in the
Cloud, expect the posted time to be the time wherever the corresponding server is located.

Again, not necessary, but especially useful if reading files from your own computer, to know
the current working directory, where the code file is located. Then locate the data file
relative to that reference.

Current working directoryCurrent working directory: Folder (directory) in your computer’s file system, the
default location where Python reads and writes data files.

To identify the current working directory we use the getwd() function from the os
package.

'/Users/dgerbing/Documents/000/522/Week1/PythonEg/IntroPython'

If your data file is not in your current working directly, then move it there, preferably in a
sub-folder called data that you have created. Reference such a data file with
data/FILENAME .

All pre-programmed data analysis functions in Python are developed separately from the
core language, so these external packages must also be imported into a Python program,
usually at the beginning but always before the functions are run.

Virtually every data analysis invokes functions from at least two packages, pandas
and numpy .

pandas , a general package for reading, storing, and manipulating data in data frames
(tables), standard row x column data tables
numpy , a general package for numerical computations, upon which many other
packages rely, including pandas

Data analysis usually involves some form of data visualization as well.

Find the basic data visualization functions in the matplotlib package

seaborn , a more elegant, higher-level plotting library based on matplotlib , the package
that we primarily use

The optional as parameter on the import method provides an abbreviation by which to
reference the package, such as when calling one of its functions.

There are two different sources of data files to read into a working Python program. Read
the data from …

the web (apparently not available in the cloud version of Anaconda)
a file on a user’s file directory, either locally or in the cloud

To read a data file from the web, specify the file’s URL (web address) when calling a read
function. To read a data file from your local computer or cloud drive, specify the location of
the file on your computer or local network.

The rest of this section explains the default location for reading and writing data files on
your local or networked computer file system. To read and write data files, each notebook
begins with a default location on a computer’s file system. The concept of a current working
directory allows simplified references to data files without the tedium and error-prone
process of listing the full path name from the root level of your computer, such as C: on
Windows. Instead, reference the files relative to the folder (directory) from which the Python
program is being run.

Before opening a code file, first, create a folder to store all notebooks and data files. As
indicated, store your data files in a folder that you create named data , located at the top-
level of your current working directory.

Best to create a data folder from the New Folder icon at the top-left of the browser
window to create the folder where you store your data files. Refer to such data files stored
in the data folder when writing code to read the data with data/FILENAME.

To download a Python code file stored in the Anaconda notebook version of a Jupyter
Notebook, or a data file, right-click on the file name in the file directory, toward the top-left
of your data directory. Cloud accounts do not access files on your personal computer.
Instead, upload data files on your computer for analysis to your cloud account. To upload a
notebook or data file, click the Upload Files icon next to the New Folder icon.

Colab is Google’s free cloud computing environment. All that is needed to access is a
Google account.

Colab Notebooks do not access the files on your personal computer. Instead, they use
Google Drive as your file directory. For convenience, create a folder called data on your
Google Drive and copy one or more data files to that location. Colab will automatically
create a folder called Colab Notebooks on your Google Drive to store your Jupyter
Notebook files.

Accessing your Google Drive files requires using the mount() function in the
google.colab package, specifically in a part of the package called drive , the only part
we need to import. Once imported, access the mount() function with drive.mount() .
We need to follow the structure of how colab accesses Google Drive. To do so, mount your
Google Drive in the content directory (folder) and the nested directory called drive .
When you request to mount the drive you will need to verify your identity.

This notebook is not being run on Colab so the following two lines of code are commented
with a # sign in the first column of each line. If running on Colab, remove the # signs so
that the lines of code will run.

from google.colab import drive

drive.mount('/content/drive')

Manage the files on your Google Drive, such as storing a data file in a folder called data .

To read or write files to or from Google Drive, also include \MyDrive in the path name
because that reference is to your Google Drive. The full reference to your Google Drive
follows:

`/content/drive/MyDrive/`

If you have a folder on the top level of MyDrive called data , and a file named
employee.xlsx in that folder, here is the full path name to locate that file:

'/content/drive/MyDrive/data/employee.xlsx'

Note the path name is included within quotes.

Once drive is mounted so that you can access the data file, as well as any other existing
files, you can also view the path name for any file in the system. Click on the folder icon in
the extreme left margin to explore your drive file directory (folder). Click on MyDrive to
access your Google Drive files. To can locate any specific file in that directory, hover the
mouse over it, and then click on the three displayed dots. From the displayed choices,
choose Copy path to get the exact path name to reference that specific file.

Data are stored as a table in external files in various formats, such as an Excel worksheet of
filetype .xlsx . When the data table is read into Python, the data table is called a data
frame , named after the same concept in the other free, historically prior data analysis
package, R. The pandas package defines the concept of a data frame and provides the
needed functions for reading text csv or Excel data files (and many other formats) into a
data frame.

You are free to use any valid name for the data frame, but, especially if only analyzing one
data file, recommended to read data into a data frame named d. The d stands for data,
entered with only one keystroke. Within a Python analysis, reference the data frame, not the
file from which the data were read.

Read an Excel data file into the pandas data frame named d with the pandas function
read_excel() . Enter one of the following three read_excel() statements in your code
file. Here, three statements are listed but two of them are commented out, indicated by the
Python (and R) comment symbol, # , which means that the computer igores these lines of
code. When this Python code runs only one read statement should be active.

1. The first (commented) line is designed to run on Google Colab, to read the Excel data
file stored in the data folder created on Google Drive.

2. The second (commented) read statement is for the same Excel data file, but for Python
running on the user’s computer, or the Anaconda Cloud, stored on the user’s data
folder, which is in the same folder that contains the running Python notebook.

3. The third read statement is to read the data file on the web, the read statement run in
this notebook (because it is not commented out).

When running Python you can easily view a summary of your data, which you should do
when first reading data into a data frame, and any time you encounter some kind of error.
Never begin an analysis without first checking your data. Always check your data when:

1. When first reading the data
2. After any data transformation
3. Whenever you encounter a programming error.

When in doubt, always LOOK! Always. If you have a problem, always view your data. Just
because you are not in Excel does not mean that your data are some kind of
incomprehensible mystery.

The entire data frame, all the data and variable names, can be viewed just be entering the
name of the data frame, here d , into a Code cell. However, usually you do not want to view
all of the data, so usually view with the head() function, which lists the variable names and
the first several lines of data in the specified data file.

Most references to pre-programmed functions provide the option of passing specific
parameter values within parentheses. But even if all the default values are accepted, the
parentheses must still be provided, even if empty. The head() function has only one
parameter, n , which is the number of rows of data to display, and so is the first and only
parameter. The default value is five. The three following function calls provide the same
result:

head()
head(5)
head(n=5)

NameName YearsYears GenderGender DeptDept SalarySalary JobSatJobSat PlanPlan PrePre PostPost

0 Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92

1 Wu, James NaN M SALE 94494.58 low 1 62 74

2 Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

3 Jones, Alissa 5.0 W NaN 53772.58 NaN 1 65 62

4 Downs, Deborah 7.0 W FINC 57139.90 high 2 90 86

Unfortunately (in my opinion), Python starts row numbering (and everything else) with 0
instead of 1. For example, the row of data numbered 4 is the fifth row of data.

Missing data requires its own representation. In the corresponding Excel file with the data
read into the d data frame, the cell for variable Years for James Wu is missing, it is blank.
When read into the data frame, the corresponding cell displays the pandas missing data
code, NaN , abbreviated from Not a Number.

Another way to describe the data is according to its number of columns and number of
rows, the dimensions of the corresponding data frame. The dot notation, the period after
the d, indicates that the corresponding reference to the shape method is for the d data
frame. Each instance of the data frame object, here d, has an attribute (property) called
shape . Here, retrieve the shape of d, rows by columns.

(37, 9)

The d data frame has 37 rows and 9 columns.

Not true in this example, but sometimes there are too many variables in the data frame to
list the columns across the page. In that case, transpose (flip) the data frame to display the
variables in rows with the pandas function transpose() . This code transposes the
display, but not the data frame itself, which still has variables in columns.

00 11 22 33 44

Name Ritchie, Darnell Wu, James Hoang, Binh Jones, Alissa Downs, Deborah

Years 7.0 NaN 15.0 5.0 7.0

Gender M M M W W

Dept ADMN SALE SALE NaN FINC

Salary 53788.26 94494.58 111074.86 53772.58 57139.9

JobSat med low low NaN high

Plan 1 1 3 1 2

Pre 82 62 96 65 90

Post 92 74 97 62 86

The first data analyses examine the data values. Consistent with all data analyses in all data
analysis apps, treat categorical and continuous variables differently. Always be aware which
variables are continuous, measured with or without decimal digits, and which are
categorical, with data values as integers or character strings.

The most common visualization of a categorical variable is the bar chart.

Obtain a bar chart with the seaborn function countplot() .

The categorical variable JobSat has categories ‘low’, ‘med’, and ‘high’. The levels of JobSat are
arbitrarily ordered. Python does not understand the English language and so has no way of
knowing how these categories should be ordered. Python does not know that ‘low’ is less
than ‘high’, for example. Specify that order for the bar chart with the order parameter,
enclosing the values in [] to form a Python list .

Text(0.5, 0, 'Job Satisfaction')

What if we only have the frequency distribution of JobSat and not the original data from
which the frequencies are computed? Compute the frequencies, then act as if we only have
the frequencies, such as copied from a web page or a company financials brochure.

Get the frequency distribution of a categorical variable as a table with the
value_counts() function from the pandas package. The output of value_counts()
sorts the levels of JobSat according to their respective frequencies.

JobSat
low 13
med 11
high 11
Name: count, dtype: int64

We need to massage this output a bit to prepare for the bar chart. Reset the row index of
JobSat_freq to have JobSat as a variable instead of the row name, the index. Then name the
variables as JobSat and Count.

 JobSat Count
0 low 13
1 med 11
2 high 11

Create the plot from this table of counts. Now use the seaborn function barplot() ,
which does not do the counts but instead plots the given values, here the frequencies
(counts) but they could be anything.

Text(0, 0.5, 'Count')

We must use matplotlib function pie() to generate a pie chart as seaborn has no
equivalent function. Generate a ring chart version. Order the levels of JobSat when the
counts are obtained with value_counts because pie() has no parameter for ordering
the values. Better to formally declare JobSat as a categorical variable but that declaration
is covered elsewhere.

The parameter setting autopct='%1.1f%% means each slice will have its percentage
value displayed as a floating point number with one decimal place, followed by a percent
sign. The % symbol is a special character used to introduce a format specifier, so %%
represents a literal percent sign.

Setting the parameter wedgeprops to dict(width=0.3) sets the width of the ring to
30% of the radius of the pie.

The most common visualization of the distribution of a continuous variable is with a
histogram. A bar chart does not flag an error message, but it is impractical to plot a single
bar for each of the many unique values of a continuous variable. Instead, bin the values of
the variables and plot a bar for each bin. The seaborn function histplot() is one
seaborn function that plots a histogram. If the full plot does not show, click in the left-
margin of the plot.

<Axes: xlabel='Salary', ylabel='Count'>

The default bin width usually needs adjustment. Most distributions are smooth, not with zig-
zags such as the above histogram that dips then increases again at the tail end of the
distribution. Instead, to obtain a smoother representation of the distribution of Salary,
increase the bin width from 10,000 to 12,000 with the binwidth parameter. Use trial-and-
error as needed to obtain a bin width that smooths the distribution shape with the
minimum size bins as necessary.

Here, change the default fill color of the bars with the color parameter and the border
color of each bar with the edgecolor parameter.

<Axes: xlabel='Salary', ylabel='Count'>

/Users/dgerbing/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning:

use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

/Users/dgerbing/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning:

use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

David Gerbing Jan 16, 2024, 01:21 pm

Introduction to PythonIntroduction to Python

AUTHOR PUBLISHED

AccessAccess

Import PackagesImport Packages

Time StampTime Stamp

from datetime import datetime as dt
now = dt.now()
print("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Current Working DirectoryCurrent Working Directory

import os
os.getcwd()

Data AnalysisData Analysis

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Read and Display DataRead and Display Data

File DirectoryFile Directory

On Your Computer

On Anaconda Cloud

On Google Colab

ReadRead

#d = pd.read_excel('/content/drive/MyDrive/data/employee.xlsx')
#d = pd.read_excel('data/employee.xlsx')
d = pd.read_excel('http://web.pdx.edu/~gerbing/data/employee.xlsx')

DisplayDisplay

d.head()

d.shape

d.head().transpose()

Count Data ValuesCount Data Values

Categorical VariablesCategorical Variables

From the Data

plt.figure(figsize=(5.1, 4.0))
sns.countplot(x='JobSat', data=d, order=['low', 'med', 'high'])
plt.xlabel('Job Satisfaction')

12•

10•

8-

c
o
u
n
t

6

4

2-

0
low med

JobSatisfaction
high

From the Frequencies

JobSat_freq = d['JobSat'].value_counts()
print(JobSat_freq)

JobSat_freq = JobSat_freq.reset_index()
JobSat_freq.columns = ['JobSat', 'Count']
print(JobSat_freq)

plt.figure(figsize=(5.1, 4.0))
sns.barplot(x='JobSat', y='Count', data=JobSat_freq,
 order=['low', 'med', 'high'])
plt.xlabel('Job Satisfaction')
plt.ylabel('Count')

Ring Chart

JobSat_freq = d['JobSat'].value_counts()[['low', 'med', 'high']]

Creating a pie chart for Job Satisfaction
plt.figure(figsize=(6, 5))
plt.pie(JobSat_freq, labels=JobSat_freq.index,
 autopct='%1.1f%%', startangle=140,
 wedgeprops=dict(width=0.3))
plt.title('Job Satisfaction')
plt.show()

Continuous VariablesContinuous Variables

sns.histplot(d, x='Salary')

sns.histplot(d, x='Salary', binwidth=12000,
 color="seagreen", edgecolor="darkgreen")

Access
Import Packages

Time Stamp
Current Working Directory
Data Analysis

Read and Display Data
Count Data Values

Table of contents

https://www.anaconda.com/products/individual
https://anaconda.cloud/sign-in
https://colab.research.google.com/
https://drive.google.com/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.head.html
https://web.pdx.edu/~gerbing/522/Week2/CatCont/CatContVar.html

