
212
CHAPTER 9. VISUALIZE SPATIAL DATA

AND NETWORK DATA

9.1 Maps

Using R and supporting packages we can create maps of the world, countries, counties,
cities, or smaller areas, and we can portray characteristics or activities at selected locations.

9.1.1 Map the World

Projections

projection:
Transformation to
represent spherical
coordinates on a flat
surface.

We typically view our maps on paper or a computer screen, both of which are flat. The Earth
is almost a sphere, more accurately (but still not precisely) described as an ellipsoid derived
from a rotated ellipse with two identical minor axes. A projection transforms spherical
coordinates, which describe specific locations on the spherical surface, to the Cartesian
coordinates of a flat surface. That is, a projection flattens the latitude and longitude of the
Earth’s ellipsoid surface to a two-dimensional representation. Every map of the Earth, or
some part of the Earth’s surface, is a projection.

The problem is that the surface of a flat surface cannot represent a spherical object such as
an ellipsoid without distortion. This transformation cannot simultaneously retain accuracy
of area, direction, distance, and shape, so each projection compromise at least one of these
properties. There are many different projections, of which some of the most popular can be
viewed online for interactive display. The flexprojector.com option is free, cross-platform
downloadable Java software that allows for creating custom projections.

Interactive world maps from different projections

URL: https://www.jasondavies.com/maps/transition/
URL: http://projections.mgis.psu.edu
URL: http://flexprojector.com

Figure 9.1 presents two world maps, both easily created with ggplot2, derived from two
different projections.

(a) Lat/long Projection (b) Mollweide Projection

Figure 9.1: World maps created from the same data but two different projections.

The first projection, Figure 9.1a, is one of the simplest. This projection maps latitude and
longitude directly into coordinates in the x-y plane, a version of what is called the Plate
Carrée projection, which means "square plane" in French. The Plate Carrée projection
renders the Earth as a flat rectangle, necessarily resulting in much distortion.

The projection in Figure 9.1b, Mollweide, presents a more sophisticated rendering of the
Earth with much less distortion of the sizes of the continents, but with some loss of accuracy

David W. Gerbing April 15, 2019

https://www.jasondavies.com/maps/transition/
http://projections.mgis.psu.edu
http://flexprojector.com

9.1. MAPS 213

of angles between the continents and their shapes. The Mollweide projection follows from a
non-linear transformation of the spherical coordinates of latitude and longitude into the
coordinates of the map’s x-y plane.

Spatial data spatial data: Data
that identifies the
geographic location
of features and
boundaries on Earth.

To construct a map first download the corresponding spatial data, the data that describes
geophysical features and locations of the area to be mapped, features such as the boundaries
between countries, shore lines, and related details. Spatial data is stored in a file called
a shapefile with a specific format. A comprehensive, free, public domain spatial dataset,
provided in three different levels of detail and frequently updated, is Natural Earth, available
on the web.

shapefile: Vector
data storage format
that stores the
location, shape, and
attributes of
geographic features.

http://www.naturalearthdata.com

Files of spatial data can be downloaded directly from the website, or, more conveniently for
R users, directly accessed with the R package rnaturalearthdata and formatted ready for
use in R, as shown in the following example.

To read the spatial Natural Earth data into R, access the functions in the package
rnaturalearth. The ne_download() function downloads spatial data directly from the
Natural Earth website to an R data frame. Or, access data already downloaded with
the package with ne_country(). For more detail use the ne_states() function. The
default value of the parameter scale provides the least detail, "small", but also the fastest
computations. Figure 9.1 results from more detail by setting scale to "medium", which also
requires more processing to compute the map than does the default. Much more processing
time is required for the most detail, set with "large", which also requires installing the
rnaturalearthhires package to access the much more comprehensive data.

Two rnaturalearth package functions for accessing Natural Earth spatial data

rnaturalearth: world <- ne_countries(scale="medium", returnclass="sf")
rnaturalearth: world <- ne_download(scale="medium", type="countries",

returnclass="sf")

simple features data
frame example,
Section 9.4, p. 222

In this example obtain spatial data for the entire world because no specific countries or
continents were specified. The spatial data table, named world in this example, typically
organizes the data in one of two shapefile formats: "sp" or "sf". The "sp" format, for
SpatialPolygonsDataFrame, is the older standard, of which geographers are transitioning
away from to the newer standard, "sf", or “simple features”. The features are the objects
that have a geometry such as points, lines, or polygons, all described with vector (drawing)
attributes. The structure of sf data is simpler than "sp" encoded data. Each row represents
a single spatial object such as a line, any associated data such as length, and a variable
that contains the coordinates of the object.

By default, both ne_countries() and ne_states() return a spatial data frame of type sp.
To obtain the emerging standard, invoke the returnclass parameter with the argument
of "sf". Many plotting functions such as provided by ggplot2 convert the spatial data
to "sf" format automatically, but more straightforward and faster to begin with the data
structure input into the analysis.

Create the world maps
To create the map, here use ggplot2 with its newly developed geom for Version 3, geom_sf(),
which visualizes simple feature objects. Given this geom and the world data set, creating

David W. Gerbing April 15, 2019

http://www.naturalearthdata.com

214
CHAPTER 9. VISUALIZE SPATIAL DATA

AND NETWORK DATA

the default world map requires little effort.

Create the default version of Figure 9.1a.

ggplot2 : ggplot() + geom_sf(data=world)

The default projection in Figure 9.1a is not one that a cartographer would typically
choose to represent the Earth. Most would agree that the Mollweide projection presented in
Figure 9.1b more accurately depicts the Earth’s surface, and there are many more alternative
sophisticated projections from which to choose. How to realize these options? Via ggplot2
the answer is the coord_sf() function, which includes the crs parameter for Coordinate
Reference System (CRS). A CRS transforms geospatial coordinates from one coordinate
reference system to another, which includes projections.

Running the following code generates both Figure 9.1a and b from the previously created
world data frame. To provide for the flexibility of creating maps with different projections,
in this example most of the ggplot2 function calls are saved in the ggplot2 object p,
referenced later to add a specific projection for the creation of each map.

R Input Create the world maps in Figure 9.1

ggplot2 : p <- ggplot() + geom_sf(data=world) +
theme_set(theme_bw()) +
theme(panel.grid.major = element_line(color="gray75", size=.5))

Lat/long: p + coord_sf(crs="+proj=longlat")
Mollweide: p + coord_sf(crs="+proj=moll")

To map just part of the world use parameters xlim and ylim for coord_sf() to specify
starting and ending longitudes and latitudes, respectively.

The CRS transformations are from the public domain PROJ library (PROJ contributors,
2018), version 4, written as PROJ.4. The sf function st_proj_info() lists the available
projections within R. The following web site reference, some of the official documentation of
PROJ, visually displays each projection and describes its parameters.

Available projections in R

sf : st_proj_info(type="proj")
URL : https://proj4.org/operations/projections/index.html

proj-string:
Description of a
coordinate system
used to render a map.

Within the PROJ system, describe coordinate transformations with proj-strings, which
serve as values of the crs parameter for the ggplot2 function coord_sf(). Precede each
parameter in a proj-string with a +. Here we focus on just the projection parameter, proj.
The default value is longlat, explicitly provided in the preceding ggplot2 function call,
but not necessary. The value of proj for the Mollweide projection is moll, which must be
explicitly indicated to obtain that projection.

datum: Define the
shape and size of the
Earth and provide a
reference point for
describing locations
via coordinates.

Also required is a model, called a datum, of the specific spherical surface that serves as a
reference point for the geospherical coordinates such as longitude and latitude. The most
common choice of cartographers is the WGS84 datum, the 1984 World Geodetic System
standard, which also serves as the reference standard for GPS, the Global Positioning
System. Still, alternate Earth surface models are available, as well as models designed
specifically for local regions.

David W. Gerbing April 15, 2019

https://proj4.org/operations/projections/index.html

9.1. MAPS 215

The reliance upon WGS84 can be made explicit with st_crs() from the sf package, which
retrieves the coordinate reference system upon which an sf data frame is based, illustrated
for the world data frame in Listing 9.1.

> st_crs(world)
Coordinate Reference System:

EPSG: 4326
proj4string: "+proj=longlat +datum=WGS84 +no_defs"

Listing 9.1: Apply the st_crs() function to the world sf data frame.

The EPSG number is an alternate designation of the obtained prog-string. Each spatial
data set is only interpreted within the context of a datum, and the projection that defines
the map used to display the data. Different datums may be choose to enhance accuracy in
a specific location. Using the correct datum on which the spatial data is based is essential
because distances between locations can substantially differ according to different datums.

9.1.2 Raster Images raster image: Set
of tiny pixels or dots,
each of which
conveys a color.

vector image: Set
of mathematical
descriptions of
geometric objects
and positioning.

At the most general level, store an image in one of two primary storage formats: vector
or raster. A raster image is composed of many pixels (on a computer screen) or dots (on
a printed image). In contrast, a vector image consists of a mathematical description of
geometric objects such as points, lines and polygons, and their relative positioning. A
photograph is a raster image, typically composed of a large but fixed number of tiny pixels
or dots. The format can require much storage space and does not scale well to larger images
but can provide much detail and gradation of colors. Vector images can scale perfectly but
without the fine level of detail and gradation provided by a raster image.

The previous examples of spatial data files in sf format are vector files. The ne_download()
function also provides for highly detailed raster images available as part of the Natural
Earth data set, as shown in Figure 9.2.

Figure 9.2: Grayscale raster image scale relief map of the world from Natural Earth.

To create this raster map, first download the data with the previously introduced ne_download(),
but with the category parameter set to "raster". Set the type parameter to "MSR_50M"
to indicate a medium scale raster Manual Scale Relief map. Create the map with the base R
function plot(), applied to objects of the class raster. As such, the full name of the
plotting function is plot.raster(), invoked with just plot().

R Input
naturalearth: r.world <- ne_download(scale="medium", type="MSR_50M",

David W. Gerbing April 15, 2019

216
CHAPTER 9. VISUALIZE SPATIAL DATA

AND NETWORK DATA

category="raster")

base R: plot(r.world, col=getColors("black", "white", n=48)

Create the grayscale image with the parameter col. In this example, the lessR function
getColors() generates a sequential scale of 48 shades of gray from "black" to "white".

The default color palette for plot.raster generates the base R terrain colors. The following
call to getColors() displays the terrain palette.getColors() lessR,

Section 3.2.1, p. 55

Base R terrain palette

lessR: getColors("terrain", n=100, border="off")

Of course, other color sequential scales could be employed to generate the raster image map.

9.1.3 Online geocode databases
geocoding: Obtain
the geographical
coordinates for a
given location.

Locate every place on the Earth’s surface according to its geographical coordinates, usually
latitude and longitude. Plot the locations on the map, such as cities or country boundaries,
according to their latitude and longitude. Geocoding provides the geographical coordinates
of a specific location, its geocode.geocode: The

geographical
coordinates of a
location.

US Census Bureau geocodes
Multiple commercial options for geocoding exist, but so do some quality free alternatives.
For locations within the USA, the US Census Bureau offers a free, authoritative source of
geocodes, which provides access to an extensive database of addresses and their corresponding
longitudes and latitudes.

US Census Bureau geocodes website

URL: https://geocoding.geo.census.gov

To obtain an individual geocode enter an address at the prompt, either as a single line with
comma delimiters for the One Line button, or multiple lines for the Address button. Or,
click on the Address Batch button to submit a batch file of up to 10,000 lines of addresses
in either csv or Excel format to have the geocodes returned as a downloaded file in the
same format as submitted. The first column of the input file is the row number, and the
csv file cannot end with a blank line. The output file is named GecodeResults with a file
type of csv of xlsx.

Google Map Services
A Google mapping technology called Google Map Services provides one source to obtain
geocodes for addresses across the world. As of this writing, limited use of this service is free
in the sense that although the lookup of geocodes costs .005¢ per geocode, or $5.00 per
1000, a $200 USD credit automatically applies each month. The result is that if no other
mapping services are used, the first 40,000 geocodes per month are functionally free. The
downside is that, unlike the previously discussed geocoding source, obtaining a geocode
costs money, even if refundable, and so can only be accessed by providing the map service a
credit card number.

David W. Gerbing April 15, 2019

https://geocoding.geo.census.gov

9.1. MAPS 217

To access this service within R requires registration with Google map services, and then
proof of such registration offered to R. Register at the cloud.google.com website to obtain
an Application Programming Interface (API) key to access specific types of information,
here the geocode API as well as five other mapping API’s by default. The second listed
website is the source for maintaining the account.

Google map service geocodes registration

URL: https://cloud.google.com/maps-platform/
URL: https://console.cloud.google.com

To register at the website, click a Get Started button, then choose Places. Next, select an
existing project or enter a new project name. Now time to enter credit card information for
billing. The system then provides a rather long character string that is a personal API Key.
It is this key that allows you to access the mapping service from within R.

library() base R,
Section 1.1.4, p. 9

To inform R of your personal key, invoke library() to load the ggmap package, and then
register_google() as follows. The has_google_key() function indicates if a key has
been successfully registered and is available for the current R session.

Inform R of your personal key

ggmap: register_google(key="personal_key")
ggmap: has_google_key()

The register_google() function has a parameter write, FALSE by default. If set to TRUE,
the function writes the entered personal key into the R system to be automatically available
for future use. The potential difficulty with this approach is that R is not designed to store
confidential information, so that it may be possible for a rogue package to locate this key
and transmit the information somewhere else. Also obtain the personal key at any time
from the google console, of which the URL is provided above.

vector character,
Section 1.3, p. 6

Once the API key has been registered with R, Listing 9.2 illustrates the use of geocode()
from ggmap to build a data frame of locations and longitudes and latitudes. First, create a
character vector of the specified locations. Then submit this vector to geocode(), which
constructs a URL for each location and then calls the mapping service with the URL’s,
returning only each respective latitude and longitude. To construct the data frame of
locations matched with their corresponding coordinates, here use base R cbind() for
“column bind” to merge the two sources of information.

location <- c(
"615 SW Harrison St, Portland, OR",
"Disneyland",
"Rio de Janerio, Brazil"
)
d <- geocode(location)
d <- cbind(location, d)
d

location lon lat
1 615 SW Harrison St, Portland, OR -122.6832 45.51156
2 Disneyland -117.9190 33.81209
3 Rio de Janerio, Brazil -43.1729 -22.90685

Listing 9.2: Input, function call, and output for package ggmap function geocode().

David W. Gerbing April 15, 2019

https://cloud.google.com/maps-platform/
https://console.cloud.google.com

218
CHAPTER 9. VISUALIZE SPATIAL DATA

AND NETWORK DATA

The example in Listing 9.2 demonstrates geocode’s impressive flexibility to identify locations
according to a variety of references. The first location is a standard address, the second the
name of a well-known landmark, and the third location only a city name name.

Geonames geocodes
A free, public domain database provides geocodes that each represents an entire city, not just
in the USA but the entire world. GeoNames offers, among other databases, city geocodes in
files that include cities across the world of just 500 or more inhabitants, as well as 1000 or
more, 5000 or more, and 15000 or more inhabitants, as described in the readme file.

Readme file for the Geonames databases

URL: http://download.geonames.org/export/dump/readme.txt

Licensed under the generous Creative Commons Attribution 4.0 License, the data and related
information can be copied and redistributed in any medium or format, and transformed
and modified as needed for any purpose, even commercially, with the requirement to cite
the source of the data.

Download the zipped data file from geonames.org from within R with base R download.file().
When calling this function, first specify the URL, and then the destination file. Because no
path name precedes the file name in this example, R writes the file to the current working
directory, obtained from getwd(). Use base R unzip() to unzip the file to a .txt file
to read into R. The downloaded data file, however, does not include the variable names.
Include the variable names with the call to Read() as the value of the base R parameter
col.names.

Download and read Geonames databases such as cities15000.zip

base R: download.file("http://download.geonames.org/export/dump/",
cities15000.zip"))

base R: unzip("cities1500.zip")
lessR: d <- Read("cities15000.txt", col.names = c("id","name","ascii_name",

"alt_names","latitude","longitude","feature_class","feature",
"country.code","cc2","admin1","admin2","admin3","admin4",
"population","elevation","dem","timezone","mod_date"))

Once read into R, to specify the data used in a subsequent map, query the data frame for
specific city geocodes. For example, apply the base R subsetting function to limit the d data
frame to all Italian cities larger than 250,000 inhabitants, with just the specified variables.

R Input Base R query of geocities database for specified cities, variables
data: d <- Read("http://lessRstats.com/data/employee.csv")

cols <- c("name", "longitude", "latitude", "population", "elevation")
rows <- d$country.code=="IT" & d$population > 250000
d <- d[rows, cols]
d

Listing 9.3 shows the query results.

David W. Gerbing April 15, 2019

"http://download.geonames.org/export/dump/",
http://lessRstats.com/data/employee.csv

9.1. MAPS 219

name longitude latitude population elevation
11990 Palermo 13.33561 38.13205 648260 14
12020 Catania 15.07041 37.49223 290927 7
12084 Turin 7.68682 45.07049 870456 239
12162 Rome 12.51133 41.89193 2318895 20
12231 Naples 14.26811 40.85216 959470 17
12258 Milan 9.18951 45.46427 1236837 122
12330 Genoa 8.94439 44.40478 580223 19
12354 Florence 11.24626 43.77925 349296 50
12458 Bologna 11.33875 44.49381 366133 54
12470 Bari 16.86982 41.12066 277387 5

Listing 9.3: Extracted geocode information from free, downloadable Geonames database.

Define one variable, cols, to specify the variables to retain, and another variable, rows, to
specify the rows of the data table to retain. Then do the subsetting with the [] operator.
Replace the country.code in the definition of rows to select cities from any other country.

subsetting (extract)
function,
Section 1.2.3, p. 18

9.1.4 Create a Country Map with Cities

The example here is a map of one country, Italy, that includes its ten most populous
cities. The ggplot2 code to construct this map references different data sets in different
layers. One data set is for the polygons that define the map of Italy, and the second data
set contains the information for the ten cities, their geographical coordinates, and their
populations. Apply both data sets in their respective layers to obtain Figure 9.3.

●

●

●

●

●

●

●

●

●

●

Palermo Catania

Turin

Rome

Naples

Milan

Genoa
Florence

Bologna

Bari

36°N

38°N

40°N

42°N

44°N

46°N

8°E 10°E 12°E 14°E 16°E 18°E

(a) cities as points

Palermo

Catania

Turin

Rome

Naples

Milan

Genoa
Florence

Bologna

Bari

36°N

38°N

40°N

42°N

44°N

46°N

8°E 10°E 12°E 14°E 16°E 18°E

population

500000
1000000
1500000
2000000

(b) cities as bubbles

Figure 9.3: Italy and its ten most populous cities.

create data frame of
Italian cities,
Section 9.3, p. 219

The next task needed to generate the map is to create the data table of polygons for Italy
and its provinces. To obtain the polygons that define the Italian provinces and boundaries
with rnaturalearth function ne_states(), set country to "italy". Also needed is a
second data data frame of the city coordinates, based on the already obtained d data frame
of the ten most populous Italian cities and their geographical coordinates.

R Input Two data sets for the map of Italy given data frame d from Listing 9.3
rnaturalearth: italy <- ne_states(country="italy", returnclass="sf")
sf : cities <- st_as_sf(d, coords = c("longitude", "latitude"),

crs=st_crs(italy), remove=FALSE)

David W. Gerbing April 15, 2019

220
CHAPTER 9. VISUALIZE SPATIAL DATA

AND NETWORK DATA

Multiple spatial data sets plotted on the same panel should all share the same coordinate
reference system and projection. If not explicitly specified with coord_sf(), ggplot2’s
geom_sf() assumes the coordinate reference system of the first set, and performs any
needed transformations on subsequent layers with functions from the sf package to ensure
a common reference system. geom_sf() also adds by default the lines of longitude and
latitude, as well as the axis value labels of longitude and latitude.

However, instead of relying on this default, use st_as_sf() from the sf package to assign
the italy CRS to the cities data frame d. For parameter crs, invoke st_crs() to retrieve
this CRS. Set the st_as_sf() remove parameter to FALSE to retain the city coordinates,
latitude and longitude, as separate variables in the resulting sf data frame.

world maps code,
Section 9.1.1, p. 214

As with the world maps, use geom_sf() to do the plotting. Each row of a sf data frame
after the preliminary header information contains the specifications for an object to plot,
including the type of object. So geom_sf() plots polygons for the map of Italy and points
for the cities placed on the map.

Constrained to grayscale, for the map of Italy the fill for the polygon interiors and color
for the borders are set to shades of gray. Reduce the size of the border lines from their
default by setting size to 0.2. For the plotting of the cities, increase the default size to 2.

The geom_text_repel() function, from the ggrepel package, extends the concept of
geom_text() to provide convenient features for maps. By default, the text, here the city
names, is written above or below the corresponding coordinate, to not write over the
corresponding point. As always, the package must first be retrieved from the R package
library with library().

library() base R,
Section ??, p. ??

R Input Map of Italy with its ten most populous cities plotted as points
ggplot2 : ggplot() +

geom_sf(data=italy, fill="gray85", color="gray65", size=0.2) +
geom_sf(data=cities, size=2) +
theme_set(theme_bw()) + labs(x=NULL, y=NULL) +

ggrepel: geom_text_repel(data=cities, aes(longitude,latitude, label=name),
size=3.25, col="black")

scale_size_area()
ggplot2,
Section 6.2.3, p. 149

Figure 9.3b plots the coordinate for each city as a bubble, the size of which depends on
the population of the corresponding city.1 The scale_size_area() function scales the
population as the area of each bubble, instead of the default radius. Activate plotting the
bubble plot by mapping the variable population to the parameter size.

The geom_text_repel() parameters nudge_y and nudge_x move the corresponding text
element the specified amount, and then, if the text element becomes too far from the
corresponding coordinate, it automatically draws a line segment from the text to the
coordinate. To use the nudge parameters, apply them to an array that is of the same length
as the number of text elements to plot. Each element corresponds to the corresponding
coordinate in the defining data frame. Here also invoke the size parameter to increase the
text from the default size.

1The geom_sf() function properly plotted the bubbles, but due to an apparent bug, did not
properly display the legend. As such, geom_point() did the plot in Figure 9.3b according to:
aes(longitude, latitude, size=population).

David W. Gerbing April 15, 2019

9.1. MAPS 221

R Input Map of Italy with its ten most populous cities plotted as bubbles
ggplot2 : ggplot() +

geom_sf(data=italy, fill="gray85", color="gray65", size=.2) +
geom_sf(aes(size=population), data=cities, alpha=.7) +
scale_size_area() +
theme_set(theme_bw()) + labs(x=NULL, y=NULL) +

ggrepel: geom_text_repel(data=cities, aes(longitude,latitude, label=name),
size=3.75, col="black",
nudge_y=c(.5,.4,.5,-.6,-.4,.4,-.2,0,.5,.4))

Visualize any other country on Earth, or multiple countries by specifying a vector of
countries, with the rnaturalearth function ne_states.

9.1.5 Choropleth Map
choropleth map:
Specific areas are
colored or shaded in
proportion to the
value of a
corresponding
variable.

A choropleth map shades areas in proportion to the values of a variable displayed on the
map, such as population density or incidence of a disease. The example in Figure 9.4 is
the Gini coefficient (Gini, 1921), an index of income inequality, of the 48 contiguous states
of the USA from 2017 data U.S. Census Bureau (2017). New York state has the largest
income equality, followed by a band of states throughout the south-east and California. The
north-west and mid-west states have the lowest income inequality.

25°N

30°N

35°N

40°N

45°N

50°N

120°W 110°W 100°W 90°W 80°W 70°W

0.450

0.475

0.500

0.525

Gini

Figure 9.4: Income inequality by State of USA, 2017 Gini coefficients.

This example relies upon another widely used source of mapping data, the maps package.
The map data files produced by the map function from maps is not in simple features format,
so convert with st_as_sf() and store in the sf data frame states. Listing 9.4 presents the
first several lines of states. After the header information, there are two data fields, geometry,
the information for the polygon that defines the boundary of each state, and ID, which is
the variable of state names, all in lower case.

The gini data are downloaded from the American Community Survey data section of the
US Census web site, available at factfinder.census.gov. The downloaded file was edited
by removing the first row and a few columns not relevant to the current analysis. To match
the information in the states data frame, covert the state names to lower case and rename
the column of State names as ID. Rename the column of Gini scores as Gini. This revised
data frame is saved on the web for general access.

The data wrangling issue here is that to create the map in Figure 9.4 merge the Gini data,

David W. Gerbing April 15, 2019

222
CHAPTER 9. VISUALIZE SPATIAL DATA

AND NETWORK DATA

> head(states, n=3)
Simple feature collection with 3 features and 1 field
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -114.8093 ymin: 30.24071 xmax: -84.90089 ymax: 37.00161
epsg (SRID): 4326
proj4string: +proj=longlat +datum=WGS84 +no_defs

geometry ID
1 MULTIPOLYGON (((-87.46201 3... alabama
2 MULTIPOLYGON (((-114.6374 3... arizona
3 MULTIPOLYGON (((-94.05103 3... arkansas

Listing 9.4: Header information and first three rows of data for the simple features states
data frame.

which exists in a regular data frame, into the special features states data frame. The states
data frame consists of 49 rows of data, the contiguous 48 states and the District of Columbia.
The gini data frame consists of all 50 states plus the District of Columbia and Puerto Rico.
The merged data file should have all the rows of data (records) for which a state exists in
both data frames.

Accomplish the merging with an inner join, that is, a joining of the two data frames
that contains only the shared data that exists based on the values of the joined variable
in each data table, here ID. Join the data frames by ID with the sf package function
inner_join.sf(), which follows the form of the tidyverse dplyr function, inner_join,
referenced without the .sf. The result is a simple features data frame with the Gini
coefficient for each state.

R Input Data wrangling to create the data frame for analysis yielding Figure 9.4
sf, maps: states <- st_as_sf(map("state", plot=FALSE, fill=TRUE))
lessR: gini <- Read("http://lessRstats.com/data/Gini2017.xlsx")
base R: gini$ID <- tolower(gini$ID)
sf : states <- inner_join(states, gini, by="ID")

With ggplot2 create the map with only a single line of code as geom_sf() accomplishes the
work. Specify the states data frame to visualize the states of the USA, and then specify the
variable Gini as the fill variable to create the choropleth map. The optional second line
of code, the call to scale_fill_gradient(), displays the map in grayscale. The default is
a sequential blue palette.

R Input Mapping code to create Figure 9.4
ggplot2 : ggplot() + geom_sf(data=states, aes(fill=Gini)) +

scale_fill_gradient(low="gray95", high="gray5")

This example demonstrates the ease of creating a droplet map with ggplot2’s geom_sf().
Map the variable analyzed, the Gini coefficient, to the visual aesthetic of choice, here the
fill parameter.

VBS plot,
Section 5.5, p. 127

Creating a map does not preclude other data visualizations. The distribution of a continuous
variable, such as the Gini coefficient, can provide information complementary to a map. In
this situation, the scale of the map in Figure 9.4 does not reveal information regarding the
District of Columbia. Moreover, regardless of scale, how is the Gini coefficient distributed
across the states?

David W. Gerbing April 15, 2019

9.2. NETWORK VISUALIZATIONS 223

Gini

0.42 0.44 0.46 0.48 0.50 0.52

●

di
st

ric
t o

f c
ol

um
bi

a

●● ● ●● ●● ●●● ●●
● ●

● ●●●
●●● ●

●●
●

●● ●● ●
●● ●

●
● ● ●●●

●
●● ● ●● ●●●

Figure 9.5: VBS plot of the Gini coefficient
of income inequality across the
48 contiguous states of the USA
plus the District of Columbia.

The VBS plot (Gerbing, 2019) from lessR
Plot() provides one answer: the integrated
violin plot, box plot, and scatterplot. Fig-
ure 9.5 reveals that the distribution of Gini
is approximately normal, with one outlier,
the District of Columbia. A second Gini
coefficient, for New York state, approaches
outlier status as it is near but not beyond
the fence, the boundary for labeling a point
as an outlier.

9.2 Network Visualizations

network: Set of objects called nodes
joined by edges that represent relationships.

A network consists of nodes and edges that
join the nodes. For a social network the
nodes are people, and the edges are rela-
tionships between the people. An informa-
tion network shows how information flows
between people or organizations, such as a network of email communication among a
company’s employees. A biological network of feeding relationships from plants to predators
that shows which organisms feed off of others is a food web. Transportation networks
indicate routes that connect locations.

Network visualization shows the connections between the nodes, revealing the structure
of the network in terms of the interconnected nodes. What nodes are central? What
sub-groups exist? Additional analysis tools answer questions such as, for transportation
networks, finding the shortest path through the network.

adjacency matrix:
Representation of
network connections
with a square matrix
of nodes with data
values of 1 or 0 or a
connection or not.

R provides several traditional quality network visualization tools that include the igraph
(Csardi & Nepusz, 2006) and network (Butts, 2008) packages. Although different network
software applications represent data in different ways, one traditional method is an adjacency
matrix, used by both igraph and network, which is a square matrix with the column and
row names the nodes of the network. Each data value of 1 within the matrix indicates that
there is a connection between the nodes, and a 0 indicates no connection.

asymmetric
relation: The
direction of the
relation from one
node to another is
not the same as the
relation in the return
direction.

A recent development, the approach pursued here, represents network data in terms of
traditional data frames or tibbles, so that traditional data manipulation tools such as
provided by base R and tidyverse packages such as dplyr and tidyr can be applied to
the analysis of network data. Thomas Lin Pedersen’s tidygraph (2019) package defines
network data in terms of data frames or tibbles. Pedersen’s ggraph (2018) package works
with syntax similar to ggplot2 to create the network graphs from the tidygraph data
structure. The graphics software is built on igraph, and so easily accesses the power of
igraph with a tidyverse/ggplot2 style interface.

9.2.1 Data

The data are for a small demonstration network of only four nodes that generalizes to
large networks with thousands of nodes. Consider four cities, generically named City_A
through City_D. City_C is central, and directly connects with the other three cities. The
only direct connection between Cities A, B and D is between Cities A and D. The network
represents commuter trains that travel into the city for a morning commute, in which some
of the routes are assymetric or directed. Bi-directional service at that time only for Cities

David W. Gerbing April 15, 2019

