

Data Visualizations:

Concepts and R

BTA 553

Spring 2024

David Gerbing

Week Content
1 Basis of Data Visualization
1
1
1
1

Introduction to R
Continuity vs Categories
Read Data into R
R: Continuity vs Categories

2
2

Visualize Categorical Data
R: Visualize Categorical Data

3 Visualize Continuous Variables, R
4 Visualize Relationships, R
6
6

Visualize Processes, R
Visualize Forecasts, R

7 Visualize Maps, R
8 R: Visualize Dashboards
9 Visualize Colors, R

The Data TableThe Data Table
DATA ANALYSIS BEGINS WITH, WELL, DATA. Analyze the data values for at least one variable, such as the company’s
employee annual salaries.

A numerical measurement or a classification into a category.

An example of a numerical measurement is John’s annual salary for the variable Salary. An example of a
classification for John is into the category Male for the variable Gender.

The object of study could be employees, customers, geographical units, or financial performance, among
many other possibilities. Generically, refer to any of these possibilities as an entity.

An attribute of an entity that varies from entity to entity.

The name variable was chosen because the data values for a variable vary. The natural variation of
measurements for different instances motivates their analysis. Two different people have different heights,
place differing amounts of trust in others, have different blood pressures and earn different salaries. Height,
trustfulness, blood pressure, and income are some of the many variables amenable to measurement. GPA and
number of credits completed provide additional examples of measured variables for college students.

Organize the data values by variable into a specific structure from which analysis proceeds. To use a data
analysis system such as R, organize the data values into a table. Each column corresponds to a variable.

Data values organized into a rectangular data table with the name of each variable at the top of a column followed by
its data values in the remainder of the column.

Video: Data Table [3:24]

Your data organized as a data table exists as a file stored on your computer, a local network, or the web.
Encode the data table in one of a variety of computer file formats. Standard formats include Excel files,
indicated by a file type of .xlsx , and text files in the form of comma-separated value files (csv). Identify a text
file with one of several potential file types, such as .txt , but usually .csv .

Figure 1 shows a data table as an Excel file named employee.xlsx stored on a (Macintosh) computer.

When analyzing data read into the data analysis app, the same data exists in two locations: a computer file on
your computer system and within a current session of the data analysis app: Different locations, different
names, but the same data. Identify the data table by its file name and location on your computer system.
Within a data analysis app session, identify the same data from the data file by its name as read into the data
analysis app, such as d.

The Excel data table in Figure 1 contains four variables of primary interest: Years, Gender, Dept, and Salary,
plus a special type of variable, an ID field called Name, for a total of five columns.

A column of data values that has a unique data value for each row so as to uniquely identify the corresponding row of
data.

Figure 2 displays the data values for the first six employees.

Describe the data table by its columns, rows, and cell entries.

A short, concise word or abbreviation that identifies a column of data values in a data table.

Usually, though not necessarily, find the variable names in the first row of the data table.

Data analysis can only proceed with the data table identified and the relevant variables in the data table
columns identified by their names, including the pattern of capitalization. All data analysis functions analyze
the data values within a data table for one or more specified variables.

Variables define the columns of a data table. What about the rows?

A row of the data table that contains the data for a specific instance of a single person, organization, place, event, or
whatever is the object of analysis.

Unfortunately, the reference for the rows of the data table can be one of several alternatives. Observations are
also called cases, examples, samples, and instances.

Consider employee Darnell Ritchie. He has worked at the company for seven years, identifies as a man, and
works in administration with an annual salary of $53,788.26. Two data values in this section of the data table
are missing. The number of years James Wu has worked at the company is not recorded, nor is the
department in which Alissa Jones works.

Visual AestheticsVisual Aesthetics

DefinitionDefinition

Visualization of any kind depends on visual aesthetics.

A visual property such as shape, size, color, or location.

What is so intriguing about data visualizations?

Transform data into visual aesthetics.

To create a visualization, physically express a visual aesthetic such as with a mark drawn on paper or a
corresponding digital representation that selectively lights pixels on a computer monitor. Visualizations are
typically drawn on two-dimensional surfaces, such as paper or a monitor.

Data visualization is an essential activity of virtually every analysis project. Why? As the opening paragraphs
excerpted from my book (2020) on data visualization explain, the history and survival of our species is rooted
deeply on visualizing our world. On the contrary, data is a recent invention.

We are wonderfully competent visual processors. As we move about our daily life, we do what our
ancestors back through the distant past did so well: Effortlessly process a panorama of shapes and images
that surround us, patterns immersed within the landscape of our visual world. Modern life, however, delivers
a new invention for us to consider: data. With data, we search for patterns such as normality, trends, and
relationships, and we search for exceptions from these patterns. Examine rows and columns of data to
uncover this information? Our distant ancestors never encountered tables of data, so our brains never
adapted to evaluate data directly.

The solution? We return to our familiar form: visual images. To visualize data, we use computer technology
to transform rows and columns of data into visible objects. We perceive these objects according to their
visual aesthetics:

as different shapes (points, lines, bars)
displayed at varying sizes (areas, lengths)
with a palette of different colors (hue, saturation, brightness, transparency)
which occupy different positions (by axes that define a coordinate system)

Visual aesthetics focus our perception on emergent patterns inherent in the data. We literally see the
distributions and relationships.

For example, the lengths of bars on a bar graph could indicate different numbers of employees in each
department. Different colors of points in a scatterplot could also represent different employees in different
departments. Or, the shapes of the points could vary depending on the department.

Coordinate SystemCoordinate System

Visualizations are typically, though not necessarily, drawn within a coordinate system defined by one or more
axes. Each axis represents a variable. Each plotted coordinate represents a data value for each axis.

One of a set of one or more data values together determines the position of a point or object within a space.

A 1-dimensional space is a line with each point determined by a single coordinate and a single axis. A 2-
dimensional space is a plane, with each point determined by two coordinates with two axes. A 3-dimensional
space is a cube, with each point determined by three coordinates with three axes.

The generic names for the axes are well accepted: x for the first axis, typically horizontal; y for the second axis,
usually vertical; and, if there is a third axis, z. Trying to project a two-dimensional surface into three dimensions
is problematic, beyond three dimensions is not possible.

Some visualizations consist of only a single variable, so they have only a single axis to define the coordinates.

Figure 3 shows a single axis, the x-axis, for plotting values of a single variable, generically x, but within a
specific data analysis, a specific name such as categorical variable Gender or continuous variable Salary.

The axis can represent a continuum for a continuous variable or discrete values for a categorical variable. If
continuous, the values can potentially represent any value on the real number line, positive, zero, or negative.
Or, the values can be restricted, for example, to just zero and positive numbers.

Figure 4 illustrates plotting a single data value for variable x, where a continuous variable is represented by an
axis of the real number line in which values all along the axis are possible. In this visualization, assume the
following values for the aesthetics.

shape: point
size: fixed diameter
color:: shade of violet red
position:: 3.5 coordinate relative to the axis

With only one dimension, one axis, the vertical height of the point above that axis is not relevant to the
visualization. Choose a height that is visually pleasing and keeps the plot relatively compact. One potential
height is zero, plotting the point directly on the x-axis, though that positioning can obscure the labels on the
axis.

The variable plotted on the x-axis in Figure 4 represents the variable of interest. Suppose that variable is the
number of years since the initiation of an investment. Then, the plotted point represents an investment of 3.5
years in duration.

Most visualizations consist of two variables, plotted in two dimensions. The two axes in Figure 5 represent
continuous dimensions on which the data values of generic variables x and y are plotted with potential and

 values for each variable. Each plotted point, identified as <x,y> , represents a set of paired data values for x
and y for the unit of analysis, such as an employee or a geographic unit.

The axes for the continuous variables in Figure 5 accommodate both positive and negative values. Axes can
also be defined for categorical variables, or continuous variables with just positive (or negative) values.

An example of plotting a point in a two-dimensional coordinate system includes two variables regarding a
person’s financial investment in a company’s stock: the number of years since the purchase of the stock on
the x-axis and the investment’s percent return on the y-axis. Negative values on the y-axis are available
because the percentage return on that investment, negative returns, losses, are possible, whereas the x-axis is
restricted to non-negative values.

Suppose the investor doubled the return on a 3.5 year investment. Figure 6 shows a visualization for a single
coordinate defined by the paired data values of variables x and y, Time and Percent_Return, here with
respective values of 3.5 and 2. We have the same shape, size, and color aesthetics as in Figure 4 but now
specify location with the dual coordinate <3.5,2> .

In practice, more than one point would likely be plotted. The investor could visualize investment success over
many investments by plotting each investment as a separate point.

Basis of Data VisualizationBasis of Data VisualizationBasis of Data VisualizationBasis of Data Visualization

David Gerbing Mar 30, 2024, 11:37 am
AUTHOR PUBLISHED

Data valueData value

VariableVariable

Data tableData table

Figure 1: Data table, named employee.xlsx, stored as an Excel file.

ID fieldID field

Figure 2: Structure of a data table.

Variable nameVariable name

ObservationObservation

Visual aestheticVisual aesthetic

Data visualizationData visualization

CoordinateCoordinate

One VariableOne Variable

Figure 3: The basis for visualization is only on the x-axis, which uses the x-coordinate to represent the data values for a
single variable.

Figure 4: A data value x=3.5, plotted on a 1-variable visualization with visual aesthetics of point, color, size, and coordinate.

Two VariablesTwo Variables

+
−

Figure 5: Coordinate system for a 2-variable visualization that uses both x- and y-coordinates, allowing for both positive
and negative values along both axes.

Figure 6: Basis for a two-variable visualization for x=3.5 and y=2 plotted as the coordinate <3.5,2>.

Table of contents
The Data Table
Visual Aesthetics

An ID field with unique data values
is called a primary key field in a
relational database..

Gerbing, David. 2020. R
Visualizations: Derive Meaning from
Data. CRC Press.

https://media.pdx.edu/media/t/1_m8m47ktp

DATA ANALYTICS IS A FAST DEVELOPING, EXCITING TOPIC OF RESEARCH AND APPLICATION THAT

IMPACTS MANY AREAS OF OUR LIVES. We are today experiencing an authentic knowledge
revolution that integrates the statistical analysis of data using computers. Here you are
introduced to data analytics. After you spend a few hours learning the basics of the R
software system for analytics, the rest is straightforward. From a small investment in
learning how the system works, you gain access to much data analytic prowess using
one of the primary languages of modern data science.

OverviewOverview
WE BEGIN WITH SOME BASIC CONCEPTS OF DATA ANALYTICS. All data analysis, as in 100%, is
done on the computer. We use R (R Core Team 2024) as the app for data analytics, the
same analysis system many data scientists use doing real data science throughout the
world.

Following a general explanation of how R works, find some instructions on how to
accomplish some basic tasks. Work through the following content step-by-step. Each
step is straightforward. Skipping steps or skimming the content, however, leads to
nowhere except confusion.

As you proceed, follow along with your computer, actively running each example, guided by the
written material and the linked videos.

Get the basics down, and the rest readily follows.

R vs. ExcelR vs. Excel

EXCEL AND R ANALYZE DATA WITH FUNCTIONS. You already know more about using R than
you thought you did. Excel implements many built-in functions, plus user-defined
functions (which Excel calls macros), and so does R.

Set of instructions to perform the computations that transform data values into results, the
output of the analysis.

The input into a data analysis function is data. The output of a function can assume
several forms:

text in the form of writing and tables
visualizations in a graphics format such as pdf or png
data transformed from the original input data.

To run an R program is to process the code, a sequence of function calls that perform
the analyses.

R AND EXCEL DIFFER ON HOW TO INSTRUCT A FUNCTION TO DO ITS WORK.

To illustrate, consider the following six data values, the annual
salaries of six employees at a company. According to the standard
organization of data, find the variable name Salary in the first row of
the Excel worksheet. The data values follow in the same column
under the variable name.

What is the average salary? Compute the average, more technically
called the (arithmetic) mean, either with the Excel function
average() or with the R function mean() . Both functions provide the same result, but
the respective languages name their functions differently.

Computer instruction to process the computations of a function from within a data analysis
system such as Excel or R.

Excel function call. Enter the function call into a cell in the worksheet, sharing the same
type of storage area, a worksheet cell, as the data values.

In this example, enter the function call beneath the column of data into the 8th cell in
Column A. Specify the data for analysis with a cell range, such as the relative cell range
A2:A7. This cell range refers to cells in the same column relative to the cell that contains
the function call. This cell range extends from the cell in the second row of Column A to
the cell in the seventh row.

R function call. R works differently than a worksheet app. R processes the analysis
instructions line-by-line in an area separate from the data, called the R console. Each line
is called a command line, which contains a prompt, a > , for entering a command, that is,
an R instruction.

At the > prompt in the R console, enter the name of the function designed to accomplish that
analysis with the variable(s) to be analyzed, followed by Enter/Return.

Figure 1 shows the R prompt for one line in the R console.

Each function has a name, such as Histogram() to display a histogram and related
summary statistics such as the mean. The () indicates that the reference is to a
function, which is where various values such as a variable name are passed to the
function. To call a function for data analysis, in response to the R command prompt, > ,
enter the function name, a left parenthesis, usually at least one value such as the
variable name for which to do the analysis, and then a matching right parenthesis.

The example in Figure 2 creates the histogram of variable Salary, as well as summary
statistics that include the mean, by calling the Histogram() function for the variable
Salary.

Data easily flows from an Excel worksheet into R. To begin this analysis, read the Excel
worksheet that includes a variable named Salary into R from a simple instruction you
enter at the command line.

That is it. To get the histogram and mean and more of the variable Salary after reading
the data into R, at the > prompt enter the function call Histogram(Salary) . To analyze
the data values for a variable in R, refer to the variable’s name within the parentheses. Be
aware of the exact spelling of the variable names, including capitalization, in this case
beginning the function reference with an uppercase H.

As with the Excel example, this histogram analysis with R requires no programming. The
programming was done by the people who wrote the functions referenced in the
analysis. Instead of potentially writing complicated computer code, enter a simple
function call to analyze the data. In this example, the R function accomplished much
more than the computation of a simple mean. Just getting the histogram with Excel
involves much more work.

We have seen that both Excel and R analyze the data values for a variable organized
within a column, though with different user interfaces. R, however, presents several
advantages.

Advantages of RAdvantages of R

DATA SCIENTISTS USE R (OR SIMILAR LANGUAGES) FOR THEIR ANALYSES instead of Excel. Some
reasons for the preference for R and related languages follow.

Excel is great for data entry and viewing data as a spreadsheet app, but provides
only the most basic statistical computations. Excel is not a serious app for data
analysis.
Once the concept of working with R is understood, less work is required to conduct
an analysis even directly from Excel data, such as simply entering
Histogram(Salary) , than can be obtained with the more cumbersome set of
procedures offered by Excel.
R does Big Data, efficiently handling data sets with millions of rows of data, limited
only by the computer’s available memory.
R separates the instructions for the analysis of data from the data. This separation
makes debugging errors much more straightforward than Excel files that can
include multiple, linked worksheets that can more easily hide errors.
Obtain each R analysis with one or more instructions, function calls, that can be
saved for future use instead of irrecoverable mouse clicks. The results of R analyses
are reproducible.

The multiple instructions to perform an R analysis precisely document how to conduct
the analysis. As shown later, save these instructions in a file for later use to repeat the
analysis.

Analyses can be re-run in the future to reproduce previously obtained results.

The analyst typically does not enter code directly into R. Instead, write the R instructions
into a file, able to retrieve and re-run the instructions at any time. Saving the R code
allows for reproducible analysis. The instructions for analyses done by one person
become accessible to all members of your organization with access to the file, including
yourself, at any subsequent point in time. On the contrary, those Excel mouse clicks
vanish into digital dust.

As I wrote in the Journal of Statistics and Data Science Education (Gerbing 2021):

From the perspective of data science, Excel worksheets exhibit a fundamental flaw, the
confounding of the data with the instructions to process that data. Both data and data
processing instructions are entered into adjacent cells stored within the same worksheet. On
the contrary, R and related analysis systems separately store data and data processing
instructions into different files (p. 251).

Countless overly complex Excel worksheets that model business processes are
horrendous to debug and understand in their complexity. Let the (moderate size) data
reside within Excel, but use R or similar language to write your code that manipulates
and analyzes your data. If needed, export the results of your specified computations back
to Excel. R writes data to Excel files as easily as it reads data from Excel worksheets.

Separate your data from your code to process that data. Data analysis programming
languages such as R provide that separation. In my opinion, Excel is vastly overused to
the extent that it becomes a detriment to many business operations. Welcome, instead,
to the world of data science.

RStudioRStudio

MOST ANALYSTS WHO USE R RUN R FROM WITHIN AN APP CALLED RSTUDIO because of the
additional features that RStudio provides. From RStudio, you are running R at the
standard R command line from what is called the R console, but within the RStudio
environment.

As shown in Figure 3, the RStudio window consists of several resizable window panes.
The primary window pane is the standard R console, the same console available from
running R by itself. The bottom-right window pane with the Plots tab is where RStudio
directs the data visualizations and can also display other information such as your file
directory. The top-right window pane displays information such as your History of
entered R instructions.

R processes all instructions at the command prompt in the R console window pane. One
option directly enters the instructions at the command prompt. The short-coming of this
approach is that the instructions must be reentered every time the analysis is re-run. To
provide for reproducibility from storing R code, add a fourth window pane in the top-left
corner, labeled Script Files in Figure 3. Create a new R script file with the following
menu sequence:

File menu --> New File --> R Script

Enter R instructions into the script window, select one or more instructions, and press
the Run button at the top-right of the window pane. RStudio will copy the selected
information to the command prompt and run the instructions as if you had entered them
directly into the console. Save the file of R script so that you to provide for reproducing
or extending the analysis without having to re-type everything.

Getting StartedGetting Started
DOWNLOAD AND INSTALL R ON YOUR COMPUTER, OR RUN VIA A WEB BROWSER IN THE CLOUD.

The choice is yours. R works the same regardless of the platform. Of course, running in
the cloud requires an active Internet connection. With your data and your data
processing app on your own computer you maintain a level of independence and
security not available with cloud processing, but to run R locally you do need a
computing device with more than just a web browser.

Unless you are interested in exploring both venues, there is no need to read the local
computer and cloud sections. You can switch between a local computer and the cloud if
you wish, but not needed unless you leave home with an iPad or similar device and use
your computer at home.

1. On Your Computer
 or

2. In the Cloud

After accessing R on either your computer or the cloud, download and access the lessR
extension that adds simplifying data analysis functions to R, making analysis with R
more straightforward and accessible.

On Your ComputerOn Your Computer

Running R on your computer requires to first download the R app to your computer, and,
usually the RStudio app as well. Get them both at the same location.

When installing R, choose your operating system from the links at the top of the
corresponding web page. For Windows, the top of the resulting web page has the
download link. For Mac, several paragraphs down, in the left margin, you have a choice.
The first link in the margin is for For Apple silicon (M1-3) Macs , the version for the
more recently developed Apple M series processors. A second link, further down the
margin, is For older Intel Macs . If not sure of your CPU type, go to the first choice
under the Apple menu, About this Mac, and look at the information for Chip .

If you are asked the question, Install in a personal library? answer y for yes (unless you
understand administrative privileges). The installer offers both 32-bit and 64-bit versions.
Unless your computer is from around 2012 or earlier, run 64-bit software as you would
any other app.

Once R and RStudio are downloaded, their installations proceed as with any app. Accept
the given defaults for each step of the process. When installed, run R as you would any
other application, such as double-clicking on the application’s icon in your file system
display. Usually, however, run the RStudio app, which then automatically connects to and
runs R in the RStudio environment.

In the CloudIn the Cloud

FROM THE CLOUD, ACCESS R WITH A WEB BROWSER ON ANY COMPUTING DEVICE, such as a
Chromebook or an iPad.

The cloud refers to a computer but not the one on your desk or your lap.

One or more computer servers, usually in locations unknown to the users, that run applications
accessed via a standard web browser.

Two advantages of doing data analysis in the cloud readily follow:

Analysis takes place on remote servers, so you do not need an expensive computer
You can use any device with a web browser, such as an iPad, to do your data
analysis

An important company in the R ecosystem, Posit (formerly RStudio, Inc.), provides a free,
though limited, cloud account for running R within the app called RStudio. Access an R
cloud account at:

https://posit.cloud/

In general, running R in the cloud is the same as running R on your computer, with R and
RStudio already pre-installed.

Create a free cloud account at the prompt, which provides 25 free hours per month. The
good news is that 25 hours should be plenty of time to complete the assignments in the
typical course that does basic data analysis on small to moderate size data sets.
However, this time limit is not just the time the computer requires to perform the data
analysis computations but also includes the time that a cloud project is open. Wait to log
into your account until you are ready to enter the instructions needed to perform an
analysis, and then log out of your account when the analysis is complete. View your
account status by clicking on the icon at the top-right with your initials.

Typically not needed for small projects, but even paying a small amount for monthly
access to R in the cloud can be considerably cheaper than buying a computer or
upgrading to a more powerful computer. Of course, the strategy of off-loading computer
processing and storage applies to not just running R, but to many types of data
processing. Many companies now maintain and access data bases in the cloud. Many
people store not just data files, but also photographs, videos and other types of
information in the cloud.

Organize your analyses by project. Each project corresponds to a different data analysis
project. To begin, select the New Project drop-down menu, then New RStudio
Project , as in Figure 4.

Click on the initial project name Untitled Project shown in Figure 5 toward the top
of the window and type in a new name, HW or something.

The next time you login click on that project name you will access R and RStudio ready
for analysis exactly as it was when you last left that project.

Your cloud account provides no direct access to data files on your computer. This lack of
computer access makes no difference if reading a file from the web. However, to access
a data file that resides on your own computer from your cloud account, first upload the
data file. To upload, go the right-bottom window pane of your RStudio session and select
the Files tab at the top-left of the window pane. Then select the Upload tab, shown in
Figure 6.

The Files tab reveals the files in your cloud folder. You will see your data file appear
there after uploading.

When finished, at the top-right corner of the web page, click your initials and log out,
shown in Figure 7.

The next time you log in, either select the project you were working on, or create a new
one.

lessR Enhancements Enhancements

STANDARD R IS FOR GEEKS. R analyses typically involve writing programming code well
beyond just a few function calls. I have made R for basic data analysis more
straightforward with my 45 or so functions that complement the standard R functions,
such as my Histogram() function. These functions, and the more extensive and helpful
error diagnostics they provide, result in a more or less “un-geeked” R. The set of these
functions are included in the package called lessR , the basis for my article in the
Journal of Statistics and Data Science Education, Gerbing (2021), and book, Gerbing
(2023).

lessR function calls are straightforward – only function calls, no programming required to
obtain comprehensive results.

lessR organizes functions into what the R ecosystem refers to as a package. The full R
ecosystem, available on servers worldwide, consists of the hundreds of base (standard) R
functions included with the installation of R, plus the functions found in additional
packages that fulfill a strict set of requirements before published on the R servers.
Downloading R installs all the base R functions. Separately download packages such as
lessR to access additional functions, all accessed via the standard R environment.

Running R, within RStudio or by itself, on either your computer or in the cloud, one time
only, download the lessR package of functions (and associated dependent packages)
from the worldwide network of R servers. At the R console command prompt, > , enter
the following instruction (function call) into the R console, then press Enter/Return.

Video: install lessR [1:28]

This installation process involves not only downloading the lessR functions, but also
many packages on which lessR depends. The entire process takes some seconds to a
minute or so, depending on the speed of your Internet connection.

➝ If asked the following question about compilation, answer no .

Do you want to install from sources the package which
 needs compilation? (Yes/no/cancel)

➝ When you install lessR you may get the following warning, which will be misleading
for most people who use R.

> install.packages("lessR")
WARNING: Rtools is required to build R packages but is not currently
installed. Please download and install the appropriate version of Rtools
before proceeding:

https://cran.rstudio.com/bin/windows/Rtools/

That message is for people who want to work with R at a much deeper level than the
typical user. You likely have no desire to ever “build” an R package, which means compile
from source R code to a ready-to-run binary Windows, Mac, or Linux/Unix binary. Feel
free to ignore the warning as lessR and its dependent packages have already been
built for you.

➝ On some occasions, one of the additional packages upon which lessR depends
does not get downloaded. Then, when you try to access lessR as shown below, you get
a message that lessR cannot be accessed because of a missing package.

The response to that system error is to install the missing package using the same
install.packages() function you used to install lessR .

Once downloaded, R stores the lessR functions in your R library created for you during
the installation process. To access these functions for a specific R session, retrieve them
from the library.

At the beginning of every R session, first invoke the R function call library(lessR) that
retrieves the lessRlessR functions from your library for data analysis.

The library() function is one of the few places in R where it makes no difference if you
enclose the package name in quotes. Both library(lessR) and library("lessR") work, so
you may see that function illustrated either way in various examples.

Video: library(lessR) [1:04]

Does it work? If the lessR functions successfully load from your R library, the following
appears, which includes some instructions for getting started with R and lessR . These
instructions include how to read data from files on your computer system into R for
analysis and how to access examples of various analyses.

lessR 4.3.1 feedback: gerbing@pdx.edu
--
> d <- Read("") Read text, Excel, SPSS, SAS, or R data file
 d is default data frame, data= in analysis routines optional

Learn about reading, writing, and manipulating data, graphics,
testing means and proportions, regression, factor analysis,
customization, and descriptive statistics from pivot tables.
 Enter: browseVignettes(lessR)

View changes in this and recent versions of lessR.
 Enter: news(package="lessR")

Interactive data analysis.
 Enter: interact()

If this information does not appear when you enter library("lessR") , then the
lessR package is not properly installed in your R library. Consider running R/RStudio
with the free plan in the cloud instead of on your computer.

Occasionally update your R packages. To update, enter:

update.packages(ask=FALSE)

This instruction updates lessR as well as the packages upon which lessR depends,
and any other packages you may have installed. Or, if using RStudio, from the Tools
menu, you can also select Check for Package Updates... .

Introduction to RIntroduction to RIntroduction to RIntroduction to R

David Gerbing Mar 31, 2024, 06:54 am
AUTHOR PUBLISHED

Practice as you goPractice as you go

FunctionFunction

Function CallsFunction Calls

Function callFunction call

R promptR prompt

Figure 1: R command line prompt.

Figure 2: Function call entered at the command prompt.

ReproducibilityReproducibility

Separate your data from the codeSeparate your data from the code

Figure 3: RStudio window panes.

The CloudThe Cloud

The cloudThe cloud

New projectNew project

Figure 4: Create a new project.

Figure 5: Name your project.

Upload data to the cloudUpload data to the cloud

Figure 6: Upload a data file to the cloud.

Logout and loginLogout and login

Figure 7: Logout of your cloud account.

UngeekUngeek

No programming involvedNo programming involved

Download and InstallDownload and Install

install.packages("lessR")

Potential IssuesPotential Issues

Access Access lessR

Begin each session with Begin each session with library(lessR)

Quotes or no quotes?Quotes or no quotes?

library(lessR)

Table of contents
Overview

R vs. Excel
Advantages of R
RStudio

Getting Started

R Core Team. 2024. R: A Language
and Environment for Statistical
Computing. Vienna, Austria: R
Foundation for Statistical
Computing. https://www.R-
project.org/.

RStudio does more than run R data
analyses. It also runs Python and
other data analysis language
instructions. It also serves as the
basis of writing standard
documents using the Quarto
markdown language, such as the
document you are now reading.

Gerbing, David. 2021. “Enhancement
of the Command-Line Environment
for Use in the Introductory
Statistics Course and Beyond.”
Journal of Statistics and Data
Science Education 29 (3): 251–66.
https://doi.org/10.1080/26939169.2021.1999871.

———. 2023. R Data Analysis Without
Programming: Explanation and
Interpretation. 2nd ed. Routledge
Publishing.

file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/GetApps/R/R_Get.html#hist
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/GetApps/R/R_Get.html#read
https://posit.co/download/rstudio-desktop/
https://media.pdx.edu/media/t/1_as8dy1xh
https://media.pdx.edu/media/t/1_jom6shh9
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/GetApps/R/R_Get.html#vig
http://web.pdx.edu/~gerbing/R/RStudioCloud.pdf
https://www.r-project.org/
https://doi.org/10.1080/26939169.2021.1999871

The following general discussion and the R material are based on the content presented in my book on Pages
22-24 and 43-46:

R Data Analysis without Programming: Explanation and Interpretation, 2nd edition, Routledge, January, 2023.

IntroductionIntroduction
We begin with the fundamental concept: The analysis of data.

The analysis of the data values of one or more variables.

All data analysis computations are done today using the computer, yet people analyzed data well before
computers were invented. A variable’s conceptual meaning and data values exist apart from the computer.
This distinction applies to all data analysis software.

Whether using R, Python, Excel, Tableau, or any other system, we need to understand how our data values are digitally
stored and how that representation matches our conceptual definitions.

At the most general conceptual level, we have variables that represent continuity and variables that define
discrete non-numerical categories. A more complete expression of this distinction follows.

Two Classes of VariablesTwo Classes of Variables
Continuous or categorical variables are analyzed differently, so it is essential to differentiate between them
before beginning an analysis. To complicate that differentiation, numerical values can represent both types of
variables. Moreover, even for continuous variables, the numeric data values can represent different levels of
quality, permitting different types of numerical operations.

Before analysis begins, after reading data into the analysis system, distinguish between the continuous and categorical
variables and their corresponding properties.

These issues should be understood before analysis begins. The most general lesson is that numeric data
values can represent different levels of numeric quality. In extreme cases, a numeric data value may not even
represent a number.

Continuous VariablesContinuous Variables

The values for a continuous variable, sometimes called a quantitative variable, are ordered along a
quantitative continuum, which is the abstraction of the infinitely dense real number line.

Values of the variable are ordered along an infinitely dense numerical continuum.

Choose any two values and find unlimited numeric values between them. Examples of continuous variables
for a person are Age, Salary, and extent of Agreement with an opinion about some political issue; for a car,
MPG and Weight; and for a light bulb, Mean Number of Hours until Failure and Electrical Consumption per
Hour (kilowatt hours). A continuous variable is sometimes called a quantitative variable.

Distinguish between a continuous variable’s actual values and the data values that emerge from measuring those
values.

Measurement categorizes data values into specific groups. The value of the variable as it exists always differs
from the value of its measurement, the data value. Nothing, for example, weighs exactly 2 pounds, 2.01
pounds, or even 2.0000000001 pounds. The actual weight may theoretically be stated as an indefinitely large
number of decimal digits. In contrast, indicate a measurement to a specific level of precision, such as, for
weight, to the nearest pound, ounce, or gram. Measurement groups all similar weights together,
approximating the true weight to the nearest pound or whatever the unit of measurement.

Interpret the data values measured on a numeric scale for a continuous variable according to one of two
types: Ratio data and interval data. Ratio data follow a numeric scale with the usual properties assigned to
numbers.

Data organized according to a numeric scale with a fixed zero point and proportionality.

Two different ratio data values can be compared by their ratios: 20 is twice as much as 10. Equal intervals of
measurement separate values that are equal distance from each other. For example, the distance between 21
and 22 represents the same underlying difference for 22 and 23.

Just because you have numerical data for a variable does not imply that the data values exhibit the standard
properties of numbers on a number line, that is, ratio data. A weaker numerical scale applies to interval data.

Data organized according to a numerical scale without a fixed zero point but equal intervals.

Interval data maintains the equal interval property of ratio data but does not have a fixed, natural zero point.
The classic example of two alternative interval scales compares Fahrenheit and Celsius temperatures. As an
example, compare Fahrenheit and Celsius temperatures. Each temperature scale, for example, has a different
value of zero regarding the magnitude of the temperature. 0 F is not the same temperature as 0 C.

Because 0 is arbitrary, ratio comparisons for interval data are not valid; 20 F is not twice as warm as 10 F.
Accordingly, multiplication and division are not appropriate for these temperature scales. For example, 70 C is
not twice as warm as 35 C. Just because data values are stored numerically, even with decimal digits, does not
imply that those data values can be manipulated as numbers from the real number line with a fixed, non-
arbitrary value of 0.

Working with data is distinct from a mathematician working with theoretical numbers. Working with data
reveals four different representations of the values of continuous variables. We store the data on a computer
system as a data file and then read the data into an analysis system, such as R or Python. As data analysts, we
must ensure that the correct data type in our analysis corresponds to the correct conceptual definition of the
variable.

Distinguish between four distinct representations of the values of a variable:

1. Actual values as they exist apart from their measurement
2. Data values as recorded measurements of the actual values
3. Data values stored within a computer file in terms of bits, binary integers
4. Data values as represented within the analysis system

Categorical VariablesCategorical Variables

The primary type of variable other than continuous variables is the categorical variable.

Values of the variable are defined as a set of non-numerical categories called levels.

Examine the number of unique data values for each variable in the data frame. The values of a categorical
variable form a relatively small number of categories called levels. Each level represents a distinct group. For
example, the values of the categorical variable Gender define groups of Men, Women, and Other. Other
categorical variables are Cola Preference, State of Residence, or Football Jersey Number. Yes, the number on
the jersey consists of numeric digits, but those digits are labels, not subject to arithmetic operations such as
computing an average. A categorical variable may also be called a qualitative variable or a grouping variable.

The values of categorical variables are labeled rather than measured. We do not measure the state of the USA
in which a person resides but instead assign a person to that state based on self-report or an examination of
public records. The classification into a group assigns a label, such as Oregon or Texas.

One categorical data type is a set of rankings, called ordinal data, which are data values that are ordered
categories.

Data values ordered by rank with unequal intervals that separate their values.

Suppose the top three sprinters are ranked in order of finish in the 100-meter dash: 1st, 2nd, and 3rd. The finish
times represent a continuous variable, but simply ranking contestants by order of their finish does not convey
if the race was extremely close or if the winner finished well ahead of their nearest competitor.

Ordinal data also results when the measured value of a continuous variable is so imprecise that, instead of a
numerical scale, only a few categories exist in which the measured values can be placed. Suppose that
persons admitted to the emergency room are swiftly placed into one of only three severity categories: mild,
moderate, or severe. This simple rating scale recognizes that some injuries are more severe than others, but
the severity is classified into one of only three categories. The underlying variable for Injury Severity is
continuous. This underlying progression of severity is assumed, but not equal intervals of severity that
separate the levels. The rater’s interpretation of Moderate Severity of Injury may be closer to Mild Severity
than Severe Severity of Injury.

Another type of categorical data is classification into discrete, unordered categories.

Levels of a categorical variable with no natural order.

Data for Gender, State of Residence, and Phone Manufacturer are examples of nominal data.

Data Storage TypesData Storage Types
How are the data values structured? Are the data values for a variable continuous or categorical, labels
without numeric properties even if represented by integers? The data values for the variables are analyzed on
the computer, so how the data values are conceptually defined should align with how the computer stores
them.

After reading the data values into any data analysis app, verify that the data were read correctly and
represented correctly in the resulting data frame before data analysis begins. Many things can go wrong.
Perhaps errors occurred as the data values were entered into the data file. Maybe the data values were not
correctly read into the data analysis app, such as R. For example, if numerical values contain $ signs or
commas, the data values will be read as type character. There may be too much missing data to permit
meaningful analysis.

Distinguish between the conceptual meaning of the variable’s data values and how they are stored on the
computer.

How the data values of a variable are physically stored in the computer.

The data storage type is the computer’s representation of a data value in its binary memory locations. The
storage type should match the conceptual definition of the variable.

Continuous VariablesContinuous Variables

Variables with numerical data values are the only variables that can represent continuous variables. However,
some variables with numerical data values are categorical, so being numerical alone does not imply
underlying continuity. R does not attempt to decide for the user if a numerical variable is continuous or
categorical, a task that is often impossible to decide from the data values alone.

R: Data Storage Types - Continuous

Tableau: Data Storage Types - Continuous

Categorical VariablesCategorical Variables

Categorical variables can have several different storage types. The two most common categorical storaage
types are the same integer type for continuous variables and type character for variables with values of
text, that is, alphanumeric characters.

The categories, the unique levels of the categorical variable, are its data values, either numeric digits, usually
integers, or, text composed of alphabetical characters. For example, represent Gender numerically as 0 for
Man, 1 for Woman, and 2 for Other. Or encode Gender with M, W, and O. Although the mnemonic coding with
alphabetical characters better communicates meaning and prevents mistakes such as computing the mean of
a column of 0’s, 1’s, and 2’s, both representations of categorical variables in the data are common.

A potential confusion is that integer data values may represent categorical or numeric data. A categorical
variable’s relatively small number of unique, non-numeric values can correspond to any data type. For
example, in the data table from the Employee data file, the categorical variable Plan has three integer values –
1, 2, and 3 – corresponding to three health plans. Although the data values are numbers, in this context, they
only serve as labels to define a categorical variable. They could be replaced with any other set of arbitrary
labels, such as A, B, and C.

To avoid confusion, for at least two reasons it is better to represent categorical variables in the data with non-
numeric values.

The meaning is clear for the values Man and Woman or M and W, such as in the Employee data table.
For Gender stored as an integer variable, does the 0 represent Man, Woman, or something else?

A variable with non-numeric values has values that cannot be mistakenly treated as numeric values and
then subjected to inappropriate numerical analysis.
There is no mean for the values of M and F, but there is for values encoded as 0, 1, and 2. Unfortunately, if
this coding represents Gender, the mean is meaningless and misleading.

ImplementationImplementation

R: Data Storage Types - Implementation

Tableau: Data Storage Types - Implementation

Analyze Categorical VariablesAnalyze Categorical Variables
Whether categorical variables are read into the data analysis system as integers or as text character strings,
further adjustments are usually needed before analysis begins.

More information is typically required to analyze categorical variables than the data provides.

Three general issues for categorical variables may require answers before data analysis begins.

1. For non-numeric data values, properly order the levels, such as Low, Medium, and High.
2. Attach meaningful labels to the levels, particularly applicable to integer data values.
3. Display potential response categories that did not occur in the data.

R: Analyze Categorical Variables - R Factors

Accept Existing Levels and OrderAccept Existing Levels and Order

Suppose the data values for Gender present in a given data set are each one of two character strings: M or W.
How should this variable be transformed for subsequent analysis to an R factor ?

R: Analyze Categorical Variables - Accept Existing Levels and Order

Tableau: Analyze Categorical Variables - Accept Existing Levels and Order

Order Character String LevelsOrder Character String Levels

In the Employee data set, three levels describe the categorical variable JobSat: low, med, and high. Neither R
nor Tableau knows the meaning of words such as “low”. These analysis systems choose some arbitrary
ordering of the bars, an alphabetical ordering by default. Analyses that involve the unmodified JobSat variable,
such as a bar chart, present the levels in the wrong order: high, low, and med.

R: Analyze Categorical Variables - Order Character String Levels

Tableau: Analyze Categorical Variables - Order Character String Levels

Label Integer ValuesLabel Integer Values

The levels of a categorical variable may be coded as integers. For example, for the employee data, the variable
Plan is categorical, coded in the data file with the integers 1, 2, and 3 corresponding to three health plans,
respectively named GoodHealth, GetWell, and BestCare. The corresponding bar graph necessarily displays
these integer values, as illustrated with R/lessR.

The resulting visualizations are more meaningful with the output labeled with the names instead of integers,
so transform a categorical variable read into a data frame as integers into a formal categorical variable with
the corresponding labels.

R: Analyze Categorical Variables - Label Integer Values

Tableau: Analyze Categorical Variables - Label Integer Values

Add Levels Beyond the DataAdd Levels Beyond the Data

Sometimes, not all possible responses for a categorical variable occur for one or more variables. The resulting
visualization should usually include an analysis of potential responses for data that did not occur. To do so, the
visualization procedures must be made aware of potential data values that do not exist in the data.

Suppose that an employee survey contained the following question:

For a small sample of 37 employees, no employee chose response Other. As a result, data visualizations such
as a bar graph of the number of employees who responded to each category does not show the Other
category. The correct bar graph would show all possible responses, and show a count of 0 for Other. How to
visualize the full set of responses?

R: Analyze Categorical Variables - Add Levels Beyond the Data

Tableau: Analyze Categorical Variables - Add Levels Beyond the Data

Continuity vs CategoriesContinuity vs CategoriesContinuity vs CategoriesContinuity vs Categories

David Gerbing Mar 31, 2024, 04:36 pm
AUTHOR PUBLISHED

Data analysisData analysis

Examine read data before analysisExamine read data before analysis

Always identify your continous and categorical variablesAlways identify your continous and categorical variables

Continuous variableContinuous variable

Continuous data values only approximate actual valuesContinuous data values only approximate actual values

Ratio dataRatio data

Interval dataInterval data

∘ ∘

∘ ∘ ∘

∘

∘

Categorical variableCategorical variable

Ordinal dataOrdinal data

Nominal dataNominal data

Data storage typeData storage type

Categorical variables need more information than available from the data.Categorical variables need more information than available from the data.

Employee survey gender question.

Table of contents
Introduction
Two Classes of Variables
Data Storage Types
Analyze Categorical Variables

file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_R.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_Tbl.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_R.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_Tbl.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_R.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_R.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_Tbl.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_R.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_Tbl.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_R.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_Tbl.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_R.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week01/CatCont/CatContDV_Tbl.html

Read the Data FileRead the Data FileRead the Data FileRead the Data File
Getting the data from a file into a running R app is called reading the data.

The Data FrameThe Data FrameThe Data FrameThe Data Frame

Data analysis within R proceeds from one or more data tables stored within an active R session.

A data table stored within an active R session, referenced by its name.

Access the data within R by reading the data file into R. Multiple read functions are available from Base R as
downloaded and from functions in different packages. We use the lessR function Read() for its simplicity
and helpful output to better understand the data that R reads into a data frame.

Read the data table into an R data frame (table) with the Read() function, then analyze specific variables in that data
table, each referenced by its name.

Analogous to multiple Excel worksheets in a single Excel file, a running R session can contain multiple data
frames, though we usually work with only one, usually with the name of d for data.

Browse for the Data FileBrowse for the Data FileBrowse for the Data FileBrowse for the Data File

TO READ THE DATA, DIRECT R TO THE LOCATION OF THE DATA FILE. R can only read the data file once it knows where
it is stored. One option is to browse for the location of the data file on your computer system. You navigate
your file system until you locate the file.

To locate your data file by browsing through your file system, call the Read() function with an empty file reference,
("") , literally nothing between the quotes: Read("") .

If you are running R/RStudio in the cloud, your local computer is your cloud account, not the computer from
which you are accessing the cloud. That computer could be any computing device, such as a tablet or an
iPhone, that does not even run R. First, upload your data file to your cloud account, as shown referenced in the
link cloud directions.

The following Read() statement reads the data stored as a rectangular data table from an external file stored
on your computer system, such as an Excel file. The Read() statement reads the data from the file into an R
data frame called d. The empty quotes indicate that R should open your file browser to locate the data file that
already exists somewhere on your computer system.

Video: Read Data [3:35]

As with all R (and Excel, Python, and everything else) functions, the call to invoke the function includes a
matching set of parentheses. Information within the parentheses specifies the information provided to the
function for analysis.

The <- in the Read() statement indicates to assign what is on the right of the expression, here the data read
from an external file, to the object on the left, here the R data frame stored within the R session, named d in
this example. You can also use an ordinary equals sign, = , to indicate the assignment, but the <- shows the
flow of information in the assignment, and is more widely used by R practitioners.

Specify the Location of the Data Table FileSpecify the Location of the Data Table FileSpecify the Location of the Data Table FileSpecify the Location of the Data Table File

ONE WAY TO LOCATE A DATA FILE TO BE READ EXPLICITLY SPECIFIES THE LOCATION OF THE FILE within the quotes and
parentheses of the Read() function. Specify either the full path name of a file on your computer system or
specify a web address that locates the data table on the web. Again, read the data into the d data frame,
remembering to include the quotes.

d <- Read("path name" or "web address")

With Excel, R, or other computer apps that process data, enclose character string values in quotes, such as a
file name or web address (URL). For example, to read the data from the web data file employee.xlsx into the
data frame d, invoke the following Read() function call.

To specify the location of the data file on your computer, provide the full path name that locates and names
your data file. To obtain this path name, first browse for the file with Read("") . The resulting output displays
the path name of the identified file. Copy this path name and insert between the quotes of Read("") . Save
this and other R function calls in a text file for future analyses without needing to browse for its location.

In summary, with the Read() function, either put nothing between the quotes to browse for a data file or
specify the data file’s location on your computer system or the web. Direct the data read from a file into an R
data frame, usually named d, but can choose any valid name.

Multiple Excel WorksheetsMultiple Excel WorksheetsMultiple Excel WorksheetsMultiple Excel Worksheets

If you read an Excel data file with multiple worksheets, the default is to read only the first worksheet as the
data file. If you wish to read another worksheet as the data file, then specify that worksheet with the sheet
parameter. Specify either the number of the worksheet or its name.

Output of Output of Output of Output of Read()

R ORGANIZES ANALYSES BY VARIABLE NAME, SO KNOWING THE EXACT VARIABLE NAMES IS CRITICAL. This specification
includes the pattern of capitalization. The Read() function automatically displays these names. The variables
are in the columns, so to specify a variable is to select a column of data values.

Read() also displays the type of how each variable is stored in the computer: as numbers with or without
decimal digits or as character strings. Also listed are the number of complete and missing values for each
variable, the number of unique values for each variable, and sample data values. Figure 1 lists the output from
reading the employee.xlsx data file.

Always compare the output of ‘Read()’ with the actual data file to ensure your data was correctly read. Never
read data into R or any other system without ensuring that the data values in the data table stored on some
computer system correspond to the variables and data values read into an R data frame.

To allow for the display of many variables, Read() lists the information for each variable in a row. Of course,
the data file organizes the variables by column.

Display the DataDisplay the DataDisplay the DataDisplay the Data
TO ANALYZE DATA, FIRST UNDERSTAND THE DATA. You should know what the data values look like for each variable
and the variable names. The output of the lessR function Read() assists this understanding, but you often
want to view the data directly.

After reading the data into R, you can view all or some of the contents of the newly created data frame. The
rule is to view the contents of any R object, of which there are many types: enter the object’s name at the
console, in response to the command prompt, > .

Video: Display the Data [1:49]

Or, use the R head() function to list the variable names and, by default, the first six rows of data, here for the
data frame d.

Separating data from the instructions to process that data is a welcome benefit of R over Excel. You should,
however, view your data on a regular basis in order to understand what you are analyzing.

When doing data analysis with R, frequently access the head() function to view the beginning lines of the data table
you are analyzing.

You should routinely view your data as you analyze it. When something does not work the way you expected
it to work, look at your data!

Often, the problem can be fixed because the computer stores your data differently than you think it would be
stored. Instead of trying to fix a problem by guessing, first look at your data.

 Name Years Gender Dept Salary JobSat Plan Pre Post
1 Ritchie, Darnell 7 M ADMN 53788.26 med 1 82 92
2 Wu, James NA M SALE 94494.58 low 1 62 74
3 Hoang, Binh 15 M SALE 111074.86 low 3 96 97
4 Jones, Alissa 5 W <NA> 53772.58 <NA> 1 65 62
5 Downs, Deborah 7 W FINC 57139.90 high 2 90 86
6 Afshari, Anbar 6 W ADMN 69441.93 high 2 100 100

Compare this output, the representation of the data within R, to the data table in Figure 1 as an Excel file.
Same data, different locations. Note the representation of missing data.

NA and <NA> for not available indicates missing data for numerical and non-numerical variables, respectively.

The blank cells in an Excel file are replaced with either NA for numerical variables or <NA> for the non-
numerical variables.

R also provides a corresponding function tail() that lists the data values at the end of the file.

Read Data into RRead Data into RRead Data into RRead Data into RRead Data into RRead Data into RRead Data into RRead Data into R

David Gerbing Apr 11, 2024, 08:21 am
AUTHOR PUBLISHED

Data frameData frameData frameData frame

Reading dataReading dataReading dataReading data

Browse to locate your data file to readBrowse to locate your data file to readBrowse to locate your data file to readBrowse to locate your data file to read

d <- Read("")

Read data from a specified locationRead data from a specified locationRead data from a specified locationRead data from a specified location

d <- Read("http://web.pdx.edu/~gerbing/data/employee.xlsx")

Figure 1: Annotated output of Read() function with the Variable Name column highlighted.

d

head(d)

View your dataView your dataView your dataView your data

R missing data codeR missing data codeR missing data codeR missing data code

Table of contents
Read the Data File

The Data Frame
Browse for the Data File
Specify the Location of the
Data Table File
Multiple Excel Worksheets
Output of Read()

Display the Data

http://web.pdx.edu/~gerbing/R/RStudioCloud.pdf
https://media.pdx.edu/media/Read/1_m1sdcer2
https://media.pdx.edu/media/display/1_py9v24jw

This document is the R interpretation of the more general, conceptual discussion regarding continuous vs
categorical variables.

Data Storage TypesData Storage Types

Continuous VariablesContinuous Variables

The storage type for continuous variables within R are represented as numbers with or without decimal digits.

double . The term double refers to the amount of memory allocated to store the numeric value, in this
case, what is called double precision for 64 bits per data value.

integer . An integer value is stored as an exact value. Computers do not store numbers as decimal digits
but instead as binary digits. Often, the binary representation of a double precision number is not precisely
the same value as its decimal digit representation.

Categorical VariablesCategorical Variables

character . The term character refers to a variable with alphanumeric data values, that is, text. If
numeric, the numbers serve only as labels, not as quantitative information.

integer . Same definition as with continuous variables but different meaning in which the numeric
values are labels.

ImplementationImplementation

To explore these data storage types and their relation to continuous or categorical variables, let’s look at
some lessR analysis. Access lessR with library("lessR") . Read the Employee data set, an internal data
set downloaded with lessR .

Data Types
--
character: Non-numeric data values
integer: Numeric data values, integers only
double: Numeric data values with decimal digits
--

 Variable Missing Unique
 Name Type Values Values Values First and last values
--
 1 Years integer 36 1 16 7 NA 7 ... 1 2 10
 2 Gender character 37 0 2 M M W ... W W M
 3 Dept character 36 1 5 ADMN SALE FINC ... MKTG SALE FINC
 4 Salary double 37 0 37 53788.26 94494.58 ... 56508.32 57562.36
 5 JobSat character 35 2 3 med low high ... high low high
 6 Plan integer 37 0 3 1 1 2 ... 2 2 1
 7 Pre integer 37 0 27 82 62 90 ... 83 59 80
 8 Post integer 37 0 22 92 74 86 ... 90 71 87
--

Describe the data values for the variables in a given data frame at any time during an R analysis with the
lessR function details_brief() , abbreviated db() , with the name of the data frame as the first
parameter value. Read() automatically calls db() after the data are read. Or, for more information, invoke
the full version, detail() .

Given this information, we can interpret the output from the data frame with the lessR function Read() .
When categorical variables are read into the analysis system, their data values are stored as integers or as
text, the R character variable type. The R integer variable storage type is type integer . The R storage type
for a character string or text variable is type character .

R does not attempt to classify variables as continuous or categorical, presumably because that task cannot be
fully automated. Instead, manually identify the categorical variables by examining the type of variable as read
into the system. For integer-valued variables, compare the number of unique values to the total number of
values and generally characterize as categorical when the ratio of unique values to the total number is
relatively small.

Analyze Categorical VariablesAnalyze Categorical Variables

R FactorsR Factors

To address these issues, R has a special variable type designed to represent categorical variables.

Before an R analysis begins, convert categorical variables, usually read initially as type integer or
character , to formally defined categorical variables of variable type factor .

Express categorical variables as factors with the Base R function factor() . Distinguish between the levels of
the categorical variable as they are represented or potentially represented in the data and the labels used to
describe those levels in the output of analyses. The two corresponding and appropriately named parameters
of the function:

levels parameter: specify the existing and potential data values that define the levels
labels parameter: value labels to attach to the data values for clarifying the output

As explained the following material, when using factor() we can use neither of these parameters, one of
them, or both of them.

Accept Existing Levels and OrderAccept Existing Levels and Order

Here, use the base R function class() to show the variable type of Gender.

[1] "character"

Although the levels of Gender could be further clarified with labels Man and Woman, in this data set, the
levels can be considered sufficiently descriptive: M and W. There is no necessary ordering of the levels, so the
arbitrary alphabetical ordering of the levels is appropriate. Although Gender could be analyzed as a type
character without transformation, it is better to pursue consistency and have all character variables defined
as factors. In this situation, invoke the factor() function without specifying any parameter values.

Identify the corresponding data frame when referencing a variable, such as the Gender variable, so that R can
locate the variable. It is possible, for example, to have multiple current data frames, each with a variable called
Gender. Identify the containing data frame by preceding the variable name with the name of the data frame
followed by a dollar sign, $.

[1] "factor"

After the transformation, the variable Gender in the d data frame is now of variable type factor instead of
type character .

Order Character String LevelsOrder Character String Levels

To properly order the character string levels of a categorical variable, convert the variable from type
character as initially read into R to type factor with the factor() function. To specify the desired order,
use the levels parameter of the factor() function to specify the desired ordering of the categorical
variable’s levels as they exist, or could exist, in the data.

Replace the current JobSat variable with its factor version. List the levels in the desired order, what can be
called their presentation order in subsequent visualizations.

Once converted, there is no need for the original character version of JobSat, so the preceding transformation
replaced the original with the factor version. Or, create a new variable in the d frame by entering a new
variable name in the left-hand side of the specification before the assignment operator, <- .

The optional ordered parameter for factor() indicates that the levels progress in magnitude from “less” to
“more”. Ordering the levels with the levels parameter specifies their intrinsic order. Setting the ordered
parameter to TRUE goes further than specifying the presentation order to indicate that the factor variable is
an ordinal variable. By default, the value of ordered is FALSE , which indicates a nominal variable. For
subsequent data visualizations, ordered factors have different default color palettes than non-ordered factors
that reflect the underlying ordering.

Label Integer ValuesLabel Integer Values

To assign integer values, follow the same general procedure as the previous example, which transforms a
variable of type character into a factor but also introduces the labels parameter to provide more
meaningful value labels. The data values are integers, 1 through 3, so the levels parameter has the
corresponding integer values, the integer vector 1:3 , an abbreviation for c(1,2,3) .

The labels parameter of factor() specifies the value labels to attach to the levels in the data frame for the
corresponding categorical variable. In the following function call to factor() , the labels parameter is
written underneath the levels parameter to help ensure that the labels match the levels in the desired one-
to-one correspondence.

Verify that the variable type of Plan has changed from integer to a factor .

[1] "factor"

The resulting bar chart contains the more descriptive labels in place of the original integers.

This example ordered the levels in the sequence of 1, 2, and 3 because the levels were listed in that order
defined by the vector 1:3 . Other vectors could have been entered, such as c(3,1,2) , to specify a different
order.

Regardless of the specified order of the levels, the ordering of the labels must match the exact ordering
so that each label matches its corresponding level.

The labels applied in this example are attached to integers. The labels parameter can also apply to variables
of type of character. In that situation, display the original character-valued levels with another set of labels. For
example, for the categorical variable Gender, display a data value of M on the output with the value label Man .

Add Levels Beyond the DataAdd Levels Beyond the Data

We have modified Gender from the original data table, so re-read.

The following lessR function call to pivot() generates the frequency table for Gender of the data
unmodified as read into the R d data frame.

 Gender n Prop
1 M 18 0.486
2 W 19 0.514

The possible values for Gender are M, W, and O for other. However, in this small data set, there were no
responses for O, so the frequency table and corresponding bar chart cannot show a count of a value that does
not exist in the data. Fortunately, factor() can include all possible data values, not just those that occurred.
Define all possible levels of the categorical variable in their desired presentation order. In this example, also
provide the optional labels for greater clarification of each level’s meaning.

Now that O is defined as a level with the corresponding label Other for the Gender variable, the value of Other
is included in the analysis output even though it never occurs in the data.

R: Continuity vs CategoriesR: Continuity vs CategoriesR: Continuity vs CategoriesR: Continuity vs Categories

David Gerbing Apr 1, 2024, 08:34 pm
AUTHOR PUBLISHED

d <- Read("Employee")

Interpretation of the output of lessR function details() .

class(d$Gender)

d$Gender <- factor(d$Gender)
class(d$Gender)

d$JobSat <- factor(d$JobSat, levels=c("low", "med", "high"))

d$Plan <- factor(d$Plan, levels=1:3,
 labels=c("GoodHealth", "GetWell", "BestCare"))

class(d$Plan)

d <- Read("Employee", quiet=TRUE)

pivot(d, table, Gender)

d$Gender <- factor(d$Gender,
 levels=c("M", "W", "O"),
 labels=c("Man", "Woman", "Other"))

Table of contents
Data Storage Types

Continuous Variables
Categorical Variables
Implementation

Analyze Categorical Variables

Data analysis, in general, requires
more information for categorical
variables. For example, in Python
data analysis with Pandas , convert
categorical variables to type
category . Similar manual
transformations must also be
accomplished with Tableau.

https://web.pdx.edu/~gerbing/0Viz/CatCont/CatContDV.html

The Family of VisualizationsThe Family of VisualizationsThe Family of VisualizationsThe Family of Visualizations 

One of the most encountered types of data visualizations relates the size of a numerical value attached to
each level of a categorical variable. These visualizations involve two variables: the categorical variable of
interest, generically referred to as , and the associated numerical variable, generically referred to as . Refer
to this family of visualizations as the categorical data visualization family, of which the most well-known
examples are bar charts and pie charts.

A data visualization that associates a value of a numerical variable with a corresponding level of a categorical variable.

What benefit do we derive from these type of visualizations?

Assess the extent of the numerical value associated with each level of a categorical variable and compare the
numerical values across levels.

What information do we need to construct a categorical data visualization?

Construct the bar chart or related visualization from the values of the two variables expressed as a table in which one
column contains the name of each level of the categorical variable and the second column associates the number
associated with the corresponding level.

For example, consider the number of employees, n, who work in each department of a small company. The
values of the categorical variable, Dept, refer to the departments of the company. There are five departments,
so there are five unique values of Dept: ACCT (accounting), ADMN (administration), FINC (finance), MKTG
(marketing), and SALE (sales). Each unique value of Dept defines a group of employees.

Table 1 of the paired data values of the variables Dept and n displays the counts of the employees in each
department. We see, for example, that 15 people work in sales, and this is by far the department with the most
employees.

How do we visualize the relationship between the levels and numbers in this simple and small table? The bar
chart is the generally most preferred visualization in categorical data visualizations, illustrated in Figure 1 (a).

A bar chart plots a bar for each level of a categorical variable, the height of each bar proportional to a numeric value
associated with the corresponding level.

Comparing the lengths of the bars with each other facilitates a better understanding of the differences among
the groups on the numeric variable of interest. Similar logic applies to the related visualizations. Instead of
describing each visualization with words, Figure 1 displays six alternative categorical data visualizations.

Figure 1: The primary visualizations in the categorical data visualizations family, shown using the default lessR palette of
colors.

Each corresponding visualization function processes the data in a simple table, as shown in Table 1, to obtain
a visualization. However, if you are not sure which visualization to choose, generally choose the bar chart or
perhaps the dot plot in place of visualizations that rely on area as the primary visual aesthetic such as a pie
chart shown in@fig-charts (b).

Relate each level of a categorical variable to the area of a circle (pie) scaled according to the associated numerical
value.

The issue is the ease and accuracy by which people can evaluate the extent of the data represented by a
visual aesthetic.

People are more accurate and precise at detecting differences in length or position than in detecting differences in
angles.

The bar chart and the dot plot depend on the visual aesthetic of length, which provides more accurate
comparisons among levels than the visual aesthetic of area, upon which the other categorical data
visualizations rely. The effectiveness of length for visual comparison does not imply that the other
visualizations should not be used. Still, bar charts and dot plots should probably be considered as the first
contenders for visualization.

Of course, the goal of a visualization is to summarize meaningful results. However, note that the levels can be
for any categorical variable, and the associated number can be anything, meaningful or not. You are free to
open a worksheet app such as Excel and make up a similar table of total randomness with nonsense
categories and associated made-up numbers. You can submit that table to a bar chart function or any related
function and create the resulting visualization. All you need is a similar table of paired levels and numbers
with access to a corresponding visualization function.

The Input Summary TableThe Input Summary TableThe Input Summary TableThe Input Summary Table

In practice, the levels of each categorical variable define groups, such as the employees who work in different
departments of a company shown in Table 1. Another question of potential interest: What is the mean salary
for employees of the company across different departments? A bar chart or related visualizes these results.
The count of the number of employees in each department, or the calculation of the mean salary for the
employees in each department, is an example of data aggregation, a standard method for obtaining the
numerical value associated with each category.

Compute a statistic over groups defined by the levels of one or more categorical variables.

You may know an alternate name for a summary table of an aggregated statistic, pivot table.

The name by which Excel refers to a summary table computed as a data aggregation.

An example of data aggregation is Table 1, the summary table that shows the number of employees in each
department, indicated by the variable n. The statistical procedure aggregated the count of employees across
departments from the original data with one record or observation for each employee. Or aggregate the mean
salary across departments.

Summary tables computed from different aggregations and potential subsequent processing of that
information lead to different bar charts and related visualizations.

Aggregate a numerical variable that corresponds to each level of a categorical variable.
The count of the number of occurrences of each level.
Any statistic computed for another numerical variable for each level.

Optionally, further processing of the results after the aggregation is also possible.
Show the deviation of each level from the center, such as the mean.
Sort the levels according to their corresponding numerical values.

How many categorical variables from which to aggregate the groups defined by the respective levels?

Level of detail in the data depending on the extent of aggregation.

The more categorical variables are aggregated, the more detailed the resulting summary table. At one
extreme, the number of levels to aggregate over is 0, where the statistic of interest is calculated once for all
individual data values, the most detailed, most granular result. For example, compute the mean salary for all
employees in a company. Or, consider aggregation over groups defined by a single categorical variable, such
as the average salary in each department, visualized according to the examples in Figure 1.

At the other extreme, define the groups by the combinations of levels over several categorical variables, with
the limitation that each additional categorical variable defines additional groups, which lowers the amount of
available data per group. Define one such group as Women working in the Finance Department, employed
more than 10 years, and within 10 years of retirement age. What is their mean salary? The complete
aggregation would consider all possible combinations of groups based on the different values of these
categorical variables, resulting a high level of granularity.

Construct the VisualizationConstruct the VisualizationConstruct the VisualizationConstruct the Visualization

The chosen categorical variable provides the list of categories, or levels, from which to construct the chart.
Then, pair each category with a numerical variable presumably of interest. The provided example is the
number of people who work in each department.

What is the source of the values of the numerical variable associated with each category? There are three
possibilities: Provide the table that pairs categories with numbers directly or use one of two different ways to
have the bar chart or related function implicitly calculate the summary table from the original data.

The original data values that were recorded for each observation, an instance of the unit of analysis, such as a person,
before summarizing or transforming the data.

The raw or original data file of measurements is data at its most detailed, granular level. An example of raw
data is the employee data table with variables such as Salary and Gender. The data values for each employee
are the original data values from which the analysis begins. To begin the analysis, read these data values into
an R data frame, usually named .

1. Provide the summary table directly to the bar chart function. The numbers could be anything, including a
prior data aggregation result.

Enter this table from some web page or printed quarterly report into a worksheet app such as Excel.

Read the summary table from the worksheet app into the data analysis system.

Enter the summary table into a bar chart function as its data to analyze.

Example: From a table of the amount of wine grapes produced in tons for different varietals (types of
grapes) during a given year in Oregon, visualize the production number for each varietal with a bar chart.

2. Obtain the counts simply from analysis of the values of the categorical variable. The numerical variable is
the count of how many times each category or level of a categorical variable appeared in the data, or
could have appeared, where the bar chart or related function from the original data implicitly does the
aggregation by calculating the summary table. A separate numerical variable is not specified in the
function call that creates the visualization.
Example: From the class grade book, how many students in the class received an A for their course
grade? An A-? … and so on. From the original data, the class grade book, the bar chart function first
computes the summary table, which associates the count for each level with the corresponding level, the
letter grade in this example, and the draws the bar chart.

A summary (pivot) table of the counts of the number of times each categorical value (level) occurred in the data for a
variable.

3. Define the data aggregation by computing a statistic separately for each level of the categorical variable.
The bar chart or related function implicitly aggregates by constructing the summary (pivot) table from the
original data as a statistic computed for a specified continuous variable.
Example: The bar chart function computes the average salary for each department in a company, and
then plots the bar chart from the resulting summary table.

Functions and ParametersFunctions and ParametersFunctions and ParametersFunctions and Parameters

Accomplish each data analysis operation by calling a function. This discussion applies to all analysis and
visualization functions in all data analysis systems. It is introduced here because bar charts and related
visualizations are the first that we encounter.

Procedure to accomplish a specific, repeatable task that provides the same output given the same input, here a specific
statistical set of computations and instructions for plotting a visualization from the data.

Various conditions control the output of each analysis, text or visualization. For example, every data
visualization system, such as Excel or R or Tableau, has at least one bar chart function. Access the bar chart
function by, depending on the system, using written instructions or by clicking somewhere on the display.
Further, characteristics such as the interior color of the bars or maximum line width can be customized.
Customizing the visualization requires access to the function’s parameters.

A user-controlled value of a function’s code, a placeholder, that specifies some characteristic of the way the data is
processed or the output of the function is displayed.

Each function includes parameters to customize input or output. For any bar chart function from any analysis
system, one parameter sets the color of the bars, and another sets the color of the bar edges.

Data analysis functions can have from a few to tens of parameters. To manually set all the parameter values
to process data with a function would be much too tedious.

A preset value of a parameter that can be explicitly changed when invoking the function.

Regardless of whether functions such as a bar chart function are invoked with a written instruction at a
command line or clicking on a button in a GUI interface, there needs to be a way to customize the values of
the relevant parameters. Override a default parameter value by explicitly setting its value in the function call.
For example, the bar chart function in any visualization system provides a way to change the default interior
bar colors to whatever the user specifies.

Business ApplicationsBusiness ApplicationsBusiness ApplicationsBusiness Applications

We have an example of the number of employees in each department, and the average salary in each
department is mentioned as another possibility for a categorical data visualization. However, there are almost
limitless examples of comparing numerical values across categories in business analysis. These examples
involve both the variety of categorical variables and their corresponding numerical variables of interest. Apply
categorical data visualization, such as bar charts, to better perceive the extent and differences of each
category regarding the numerical variable of interest. Some examples follow.

SalesSalesSalesSales - Decision focus: Identify over- and under-performing areas for further investigation to understand
reasons for success and reasons for improvement.
Plot: sales performance across different

products
regions

MarketingMarketingMarketingMarketing - Decision focus: Consider which products and geographical regions may need additional
advertising or price adjustment.
Plot market share of a product:

with competitors
across regions

MarketingMarketingMarketingMarketing - Decision focus: Understand where customers are most and least satisfied to generate
guidance on product or store design.
Plot customer satisfaction for

different products
in-store vs online shopping experience

Supply ChainSupply ChainSupply ChainSupply Chain - Decision focus: Evaluate each supplier on salient attributes.
Plot supplier performance across different suppliers for:

quality of goods
delivery time

Supply ChainSupply ChainSupply ChainSupply Chain - Decision focus: To employ just-in-time inventory management more effectively, identify
over- and under-stocked units.
Plot amounts of inventory across:

products
retail outlets

FinanceFinanceFinanceFinance - Decision focus: Understand what products are over-performing and which are under-
performing or perhaps even generating negative returns to consider revising the product mix or product
marketing.
Plot revenue, expenses, and profit margins across:

products
regions

Human RelationsHuman RelationsHuman RelationsHuman Relations - Decision focus: Decide who receives promotions and bonuses and who needs
additional training.
Plot evaluations of employee performance across:

departments
genders

Operations ManagementOperations ManagementOperations ManagementOperations Management - Decision focus: Identify bottlenecks and opportunities for process
optimization.
Plot: process efficiency across

products
regions

Visualize Categorical DataVisualize Categorical DataVisualize Categorical DataVisualize Categorical DataVisualize Categorical DataVisualize Categorical DataVisualize Categorical DataVisualize Categorical Data

David Gerbing May 2, 2024, 04:32 pm
AUTHOR PUBLISHED

x y

Categorical data visualizationCategorical data visualizationCategorical data visualizationCategorical data visualization

Purpose of a categorical data visualizationPurpose of a categorical data visualizationPurpose of a categorical data visualizationPurpose of a categorical data visualization

Data from which to construct the categorical data visualizationData from which to construct the categorical data visualizationData from which to construct the categorical data visualizationData from which to construct the categorical data visualization

Table 1: Construct any visualization in this categorical data visualization family from this table.

DeptDeptDeptDept nnnn

ACCT 5

ADMN 6

FINC 4

MKTG 6

SALE 15

Bar chartBar chartBar chartBar chart

(a) Annotated bar chart. (b) Ring chart form of a pie chart.

(c) Dot plot or lollipop chart. (d) Bubble chart.

(e) Waffle chart. (f) Treemap chart.

Pie chartPie chartPie chartPie chart

Visual aesthetic length generally preferred for comparing levelsVisual aesthetic length generally preferred for comparing levelsVisual aesthetic length generally preferred for comparing levelsVisual aesthetic length generally preferred for comparing levels

Data aggregationData aggregationData aggregationData aggregation

Pivot tablePivot tablePivot tablePivot table

GranularityGranularityGranularityGranularity

Raw dataRaw dataRaw dataRaw data

d

Frequency distributionFrequency distributionFrequency distributionFrequency distribution

FunctionFunctionFunctionFunction

ParameterParameterParameterParameter

Default parameter valueDefault parameter valueDefault parameter valueDefault parameter value

Table of contents
The Family of Visualizations
The Input Summary Table
Construct the Visualization
Functions and Parameters
Business Applications

https://dgerbing.github.io/R_lessR_Intro/02-Data.html

This document is the R implementation of the more general, conceptual discussion regarding
categorical data visualizations.

For the following descriptions of the various categorical data visualizations in R, the section on
the bar chart is by far the largest section. One reason for this size is that the bar chart is the
essential visualization of this family. Another reason is that it is described first, so general
descriptions of aspects of using these functions are explained in the bar chart section but also
apply to the other visualizations.

Bar ChartBar ChartBar ChartBar Chart
The following discussions show how to create the bar chart from various sources, beginning
with the summary table that results from a prior data aggregation, what Excel calls a pivot
operation that results in a pivot table.

From Summary TableFrom Summary TableFrom Summary TableFrom Summary Table

For employment in various company departments, suppose the summary table of the counts is
already available, but not the raw data, the original table of data values for each individual.
Maybe you located a management report that listed the number of employees in each
department and wish to create the corresponding bar chart from that table. Enter the summary
table directly into a worksheet app, such as Excel.

Read the summary table into R for analysis, as in the following example. Then display its
contents by entering its name into the R console.

 Dept n
1 ACCT 5
2 ADMN 6
3 FINC 4
4 MKTG 6
5 SALE 15

This summary or pivot table contains the two variables relevant to the analysis: categorical
variable Dept and numerical variable n. There is only one row for each unique value (category)
of Dept. To create the bar chart from the summary table, specify these two variables:
categorical variable, , and numerical variable, , which maps to each bar’s height.

The following general form of the call to BarChart() analyzes data from a summary table,
which requires both variables.

Of course, in actual data analysis, replace the generic and with the relevant variable
names. Both variables are in the d data frame. There is no need to specify data=d for data in
the d data frame because the name d is assumed unless otherwise specified.

When the data are a summary table, BarChart() analyzes the values of the variable
directly instead of computing its values. Because a categorical variable and a numerical
variable are read in this example, with no further instructions on how to aggregate the
numerical variable (with the stat parameter), BarChart() assumes the data are in summary
table form.

The BarChart() function provides a default color theme, and also labels each bar with the
associated percentage of values for the corresponding category.

Aggregate CountsAggregate CountsAggregate CountsAggregate Counts

One possibility creates the bar chart from the original data table of individual responses. Data
analysis ultimately begins with the data values obtained for each unit in the analysis, such as
each person or each company. To plot a bar chart, first read the data table from a computer file
into the R data frame named d. BarChart() computes the frequency distribution, the
association of counts and categories, which serves as the summary or pivot table to construct
the bar chart of counts.

Enter the function call to create a bar chart directly into the R console. The instruction in
Figure 3 creates the bar chart of the count of each category for a categorical variable named ,
and also displays the table of counts (frequencies).

With the BarChart() function, the name of the categorical variable is the first value passed
to the function, and in this example, the only value passed to the function. If the data frame is
named d, you do not need to specify the data parameter.

When only the name of one categorical variable name is passed to BarChart() , the visualization is
of the variable’s distribution, with the height of the bar for each category representing the
corresponding count of the number of occurrences.

To illustrate, return to the Employee data. First, read the data into R as the d data frame. Given
the data, BarChart(Dept) tabulates and displays the number of employees in each
department, according to the variable named Dept. The values of Dept are in the default data
frame (table) named d. The result is the bar chart in Figure 4 for the distribution of the values of
the categorical variable Dept.

Video: Bar Chart of Counts [3:08]

The result is the identical bar chart shown in Figure 4 created from data in summary table
form. When computing the bar chart from the original data, BarChart() implicitly calculates
the summary table of departments and counts.

Obtain the same analysis by explicitly including the data parameter to identify the name of
the data frame, here the default value d.

BarChart(Dept, data=d)

When doing R analyses, you can have as many data frames as computer memory allows and
name your data frames any valid name. However, d is the default name for lessR data
analysis functions.

The BarChart() function provides the tabular form of the computed frequency distribution, a
pivot table, as part of its text output to the R console, as shown in the above output. The counts
appear in the row labeled Frequencies, with the levels shown in the previous row.

 ACCT ADMN FINC MKTG SALE Total
Frequencies: 5 6 4 6 15 36
Proportions: 0.139 0.167 0.111 0.167 0.417 1.000

From the frequency distribution that pairs a number with each category or level of the variable
of interest. In this example, the frequency distribution reveals that there are five accountants
(ACCT), six administrators (ADMN), four financial analysts (FINC), six marketers (MKTG), and 15
people working in sales (SALE). From this information, a bar chart function defines the bars and
their associated heights.

Aggregate Aggregate Aggregate Aggregate yyyy

An example of the third method of invoking BarChart() is the bar chart of the mean salary
for each department computed from the original data. To obtain this bar chart, specify the
categorical variable, , the numerical variable, , and then specify the statistic to compute with
the parameter stat . The available values of stat : "sum" , "mean" , "sd" , "dev" for mean
deviations, "min" , "median" , and "max" .

As with reading a summary table as the data from which to compute the bar chart, here we
specify both an x categorical variable and a y numerical variable. However, in this situation, we
are reading the data from the original data table of measurements. We need the stat
parameter to specify the transformation of the numerical variable y in the data aggregation.

The statistical output of this BarChart() analysis includes the summary statistics aggregated
across all of the levels of the x categorical variable as well as the specific values plotted.

Salary
 - by levels of -
Dept

 n miss mean sd min mdn max
ACCT 5 0 61792.776 12774.606 46124.970 69547.600 72502.500
ADMN 6 0 81277.117 27585.151 53788.260 71058.595 122563.380
FINC 4 0 69010.675 17852.498 57139.900 61937.625 95027.550
MKTG 6 0 70257.128 19869.812 51036.850 61658.990 99062.660
SALE 15 0 78830.065 23476.839 49188.960 77714.850 134419.230

 Plotted Values

 ACCT ADMN FINC MKTG SALE
 61792.776 81277.117 69010.675 70257.128 78830.065

Unlike most visualization systems, lessR visualization functions also provide statistical
analysis as well.

Export the VisualizationExport the VisualizationExport the VisualizationExport the Visualization

RStudio provides a simple and effective process for exporting visualizations, which appear in
the lower right window pane under the Plots tab. After creating a visualization, click the
Export button and then save it as an image file in .png format, a .pdf file, or copy directly to
the clipboard for pasting into any relevant application, such as MS Word.

Figure 6 illustrates these choices.

Parameter ValuesParameter ValuesParameter ValuesParameter Values

A data analysis function in any data analysis system is defined with a set of parameters to
customize the visualization. For example, the lessR function BarChart() and other data
visualization functions have the parameter fill that sets the color that fills the bars. By
default, BarChart() displays each bar in a different color, but the bars can also be set to the
same color or other colors depending on the colors passed to the fill parameter. To change
the color of all the bars to a blue shade as in Figure 7, set the fill parameter to
"steelblue" , one of many R defined color names.

The full function call to obtain the blue bars appears below. Again, set the parameter quiet to
TRUE to suppress the statistical output.

As is true of Excel and other analysis systems, such as R, the general format for setting a
parameter value within the call to a function follows in Figure 8. The three dots, ... , in the
figure indicate other stuff that is part of the function call, such as a variable name.

In the BarChart() example above, fill names the parameter. The value of "steelblue" is
the specific value set for that parameter. Explicitly setting that parameter value overrides the
default value of fill for BarChart() , which provides a different color for each bar.

All input into a function is input into the function’s parameters. Each parameter has a name. For
example, the parameter name of the first categorical variable entered into a BarChart()
function call is x . The name of the parameter that specifies the data frame is data . Parameter
values can be numeric or a character string, such as a word or a letter. As is true of all computer
analysis systems, such as Excel and R, if a parameter value is a character string, enclose its
value in quotes, double or single quotes. For example, "steelblue" . Specify numbers without
quotes.

In the definition of a function, if the parameter values are entered into the same order as they are
presented in the definition, then the parameter values do not need to be named.

For example, because the BarChart() first parameter is in the definition of the function,
then if the value for that parameter is listed first in the function call, that value does not have
to be named with a x= preceding the value.

     BarChart(Dept) is the same function call as BarChart(x=Dept)

Parameters control many aspects of how a function processes data, far more than just color.
You can rely upon the default parameter values or add more paired parameter names and
values as there are parameters to specify.

GUI systems, such as Tableau, may be considered easier to learn and use in part because the available
parameters are listed on the computer display and accessed by clicking on their respective buttons.
This accessibility leads to the misperception that when using a system with written instructions there
is much information to memorize, requiring the dedicated neuroticism of a super-geek. In reality, it is
easy to access the list of available parameters with R functions as well, and, the meaning of the
parameters is also explained.

How do you view all the available parameters for an R function? All functions in the R
ecosystem have a corresponding help manual, which lists and describes the function’s
parameters. To display a help manual, enter the name of the function preceded by a question
mark into the R console, such as the following.

?BarChart

Toward the beginning of the help file, find a list of all the parameters, their default values, and
an explanation of each under the heading of Usage . Figure 9 shows an excerpt from that part
of the BarChart() manual that lists the function’s arguments, its parameters, just the first of
61 available BarChart() parameters. Further, unlike most manuals of R functions, the lessR
manuals group and label the parameters according to their role in data visualization.

Figure 9 displays the first eight BarChart() parameters: categorical variable x , numerical
variable y , second categorical variable by , and data frame data . The value of NULL means
that the parameter value is not required but can be specified when the function is called. If no
value is specified in the definition, then the parameter value is required in the function call.
Here, all parameters are assigned values even if NULL , so it is possible to call the function
without any parameter values. In that situation, a bar chart is generated for each categorical
variable in the entire data set.

Setting the data parameter to d means that d is the default value, which can be overridden,
but if not specified defaults to d for the name of the input data frame. The available values of
the stat parameter are also displayed. The first listed value, "mean" is the default value. If
the y variable is not specified, then stat_x indicates to define y as either the "count" or
the "proportion" , with the later the default value.

Figure 10 shows the next section of the manual, under the heading Arguments , that defines
the meaning of each parameter. These values are again shown for the first eight of the 61
parameters.

All of the 61 parameters are available for BarChart() because they are presumably useful.
Here, you can now explore the manual as you wish. For example, the horiz parameter, set to
TRUE , displays the bars horizontally. The sort parameter sorts the bars in descending or
ascending order according to the corresponding parameter value, "-" for descending, and
"+" for ascending. The rotate_x parameter rotates the value labels on the x-axis which is
useful when they are too large to display in their default horizontal position. Use that
parameter in conjunction with the offset parameter to move the labels closer or further
away from the axis depending on the amount of specified rotation.

SummarySummarySummarySummary

To use R for data analysis requires at least three separate R functions. Run R either on your
computer or in the cloud.

1. Retrieve the lessR functions from your R library library(lessR)
2. Read the data from a file into R:

d <- Read("") to browse for the file,
or,
d <- Read("path name" or "web address") to specify the location of the file

3. Analyze the data values for generically named categorical variable x and possibly
numerical variable y. For a bar chart, enter one of the following three function calls,
depending on the type of data and the purpose of the analysis.

BarChart(x, y) for a summary table of usually aggregated data
BarChart(x) for calculating the counts of the levels from the original data
BarChart(x, y, stat="mean") for calculating the mean of y for each level of x
from the original data, other statistics are available

Beyond lessR , find many, many analysis functions in Base R as originally downloaded. Find
even more functions in contributed packages, such as lessR .

Interactive AnalysisInteractive AnalysisInteractive AnalysisInteractive Analysis

Another way to construct the corresponding bar chart references the lessR interactive
analysis, called by entering interact("BarChart") into the R console. The interactive
analysis presents a GUI interface, similar to Tableau and Power BI, in which you click on
various buttons to create a bar chart and explore different forms of the bar chart simply by
clicking with your mouse to specify different parameter values. The interactive analysis also
presents an option for saving the written instructions that generate the final bar chart into a
text file that can be modified and run separately.

Interactively explore some of the most important parameter values and their effect on the
resulting visualization with the lessR function interact() . To use, provide the name of the
visualization contained in quotes, such as interact("BarChart") . The process of creating an
interactive bar chart is explained in the following figures as well as in the following video.

Video: Create a bar chart interactively [before 4:04 does interactive bar charts on your
computer, after 4:04 does bar charts with a cloud account.]

Figure 11 shows the first window that appears after entering the call to
interact("BarChart") at the R console. Select an Excel or text file formatted data file. Then,
select if the data are on the your local computer system or online. If local, browse for the data,
otherwise you are prompted to enter a web address, a URL.

After selecting the data file, Figure 12 shows that by default the first 10 rows of data are
displayed, with available alternatives the last 10 rows, a random selection of 10 rows, or all of
the data.

Click on the BarChart tab and select from the list of categorical variables, shown in Figure 13.
The output immediately appears.

Add a numerical variable y by clicking on the y variable button, which then displays the list
of available statistical transformations. Different coloring options for the Bars can also be
selected as well as for the displayed Values on the bars. Different options, parameter values,
can be repeatedly set and explored. Save the visualization to a pdf file with the Save button.

Each change to a parameter value lists the corresponding function call to BarChart() that
creates the bar chart at the R console, plus the code for creating the bar chart can be saved
from the Save button. Moreover, the code to create the bar chart can be saved that creates
the bar chart, beginning with the call to library(lessR) , as shown in the following video.

Video: Examine the code created for BarChart() from an interactive session. [3:26]

At the current time, there is no provision for pre-processing the levels of a categorical variable, such as
presenting the correct order, attaching labels to the levels present in the data, or allowing for data
values that did not occur.

Not elegant, but the solution to the problem of not being able to specify the order of the levels
of the categorical variable interactively can be overcome by generating the code for the plot
visualization/ Run that code in the R console after specifying the correct transformation to a
factor variable with the factor() function. The call to BarChart() remains the same, only
the ordering of the levels as specified by the factor() function.

If you save the interactive plot working in the cloud, RStudio will save the plot in your cloud
home directory (folder). Navigate to this directory by clicking on the Cloud icon in the Files
tab in the bottom-right window pane, then click in the corresponding folder that contains the
created pdf file, as shown in the second half of the video linked above.

Pie ChartPie ChartPie ChartPie Chart
An alternative to the bar chart is the pie chart. Data visualized as a bar chart for a single
variable can also be represented with a pie chart, though not generally as optimal. It would
appear that the difficulty of detecting the relative size of the visual aesthetic of an angle is
mitigated to some extent with the ring or doughnut version of the pie chart, the default lessR
version.

As with the bar chart, obtain the pie chart of the frequencies of a categorical variable,
generically named . Of course, replace the generic name with the actual variable name for
any one analysis.

As with the bar chart, in lessR create the pie chart interactively by entering
interact("PieChart") into the R console. Figure 15 displays the pie chart as a doughnut or
ring chart.

Video: Pie Chart of Counts [1:23]

Here, create the ring chart for counting the occurrences for the levels of the categorical
variable Dept.

R: Visualize Categorical DataR: Visualize Categorical DataR: Visualize Categorical DataR: Visualize Categorical DataR: Visualize Categorical DataR: Visualize Categorical DataR: Visualize Categorical DataR: Visualize Categorical Data

David Gerbing Apr 16, 2024, 08:35 am
AUTHOR PUBLISHED

#d <- Read("http://web.pdx.edu/~gerbing/data/DeptCount.xlsx")
d <- Read("data/DeptCount.xlsx")

d

x y

Figure 1: Instruction to create a bar chart for the categorical variable given the numerical value of
variable for each category, both variables in the data frame as a summary table.

x
y d

x y

y

BarChart(Dept, n)

Figure 2: Barchart from summary table data.

x

Figure 3: Instruction to create a bar chart of the counts of each category for the generically named
categorical variable in the default data frame.x d

Barchart() called with no y variableBarchart() called with no y variableBarchart() called with no y variableBarchart() called with no y variable

BarChart(Dept)

Figure 4: The distribution of variable Dept visualized as the bar chart of tabulated counts of employees in
each department.

x y

BarChart(Dept, Salary, stat="mean")

Figure 5: The distribution of variable Salary visualized as the bar chart across departments.

Figure 6: Export the visualization to a .png file, .pdf file, or to the clipboard.

ExampleExampleExampleExample

1

BarChart(Dept, fill="steelblue")

Figure 7: Bar chart with bars filled a shade of blue.

Figure 8: A parameter and its value in a function call.

Function InputFunction InputFunction InputFunction Input

Order of listed parametersOrder of listed parametersOrder of listed parametersOrder of listed parameters

x

Ease of identifying available parametersEase of identifying available parametersEase of identifying available parametersEase of identifying available parameters

ViewViewViewView

Figure 9: First eight parameters in the definition of the BarChart() function.

Figure 10: Meaning of the first eight parameters of the lessR function BarChart() .

Figure 11: Initial window for the interactive analysis.

Figure 12: Data file has been chosen.

Figure 13: Proceed with as many versions of the bar chart as desired, including the first visualization when
a categorical variable is selected.

Interactive BarChart() limitationInteractive BarChart() limitationInteractive BarChart() limitationInteractive BarChart() limitation

x

Figure 14: Instruction to generate a pie (ring) chart of the counts of each category for the generically
named categorical variable in the data frame.x d

PieChart(Dept)

Table of contents
Bar Chart

From Summary Table
Aggregate Counts
Aggregate y
Export the Visualization
Parameter Values
Summary
Interactive Analysis

Pie Chart
Dot Plot
Bubble Plot
Waffle and Treemap Charts

The summary table is available
online, but that read statement is
commented out with a # in the
first column. When writing this
document, as the document gets
continually regenerated, reading
from the web takes longer, and I
have to be connected to the web.
So, instead, I read the data from a
local file on my computer.

 Create a pdf file that shows all R
color names and colors with the
lessR function showColors() .

1

If you would like to read more
about bar charts, I wrote an article
for medium.com. The link provides
free access. For a more
comprehensive understanding of
data visualization, see my (2020)
book on the topic:
Gerbing, David. 2020. R
Visualizations: Derive Meaning from
Data. CRC Press.

I am not aware of research that
found that judgement of the size of
a pie slice increases with a ring
chart over a traditional pie chart.
But it “does appear” to be so. Also,
ring charts seem to be more
popular now in business analysis
but again that is just an impression.

https://web.pdx.edu/~gerbing/0Viz/LvlNmb/LvlNmb.html
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week02/LvlNmb/R_LvlNmb.html#read
https://media.pdx.edu/media/t/1_2g07bs6q
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week02/LvlNmb/R_LvlNmb.html#fn1
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week02/LvlNmb/R_LvlNmb.html#start
http://web.pdx.edu/~gerbing/R/RStudioCloud.pdf
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week02/LvlNmb/R_LvlNmb.html#lessR
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week02/LvlNmb/R_LvlNmb.html#browse
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week02/LvlNmb/R_LvlNmb.html#location
https://media.pdx.edu/media/t/1_tejddk8e
https://media.pdx.edu/media/t/1_qs5y0tev
https://web.pdx.edu/~gerbing/0Viz/CatCont/CatContDV.html
https://media.pdx.edu/media/t/1_y7g58dxa
https://towardsdatascience.com/easy-bar-charts-from-simple-to-sophisticated-7270c03eced8?source=friends_link&sk=0a724c1bb0317fc494ae80fa0ae7b58b

The doughnut or ring chart is a reasonable, though necessarily preferred, alternative to the
standard pie chart. The lessR function PieChart() can also create an “old-fashioned” pie
chart. Set the hole size in the doughnut or ring chart with the parameter hole , which specifies
the proportion of the pie occupied by the hole.

The default hole size is 0.65. Set hole to 0 to close the hole.

PieChart() , however, is not as robust as BarChart() .

When applied to the original data of individual measurements, the function currently only applies to
counts of the levels of the specified categorical variable.

However, previously aggregated data other than counts can also be analyzed. Although
PieChart() only aggregates counts, a summary table can also be specified as the input data,
in which case the numerical variable, y, can be any numerical value. As with BarChart() ,
when analyzing a summary table of two variables, specify in the function call to PieChart()
both the x and y variables. To view the actual values of y on the pie slices instead of
percentages, specify for the parameter named values the value of "input" .

Dot PlotDot PlotDot PlotDot Plot
In the lessR visualization system, the Plot() function plot points, just as the BarChart
function plots bars. The dots in a dot plot are plotted points, so generate this plot with Plot() .
To create, specify two parameters. First, specify x , the categorical variable of interest. Second,
as with BarChart() , specify a y variable to aggregate over levels of x and the stat
parameter to specify the statistic by which to aggregate. Or if there is no y variable specified,
then specify the stat_x parameter with the values of count or proportion .

The following function call specifies the counts of x , here Dept, when applied to the original
data of individual responses. The first variable listed, the x parameter, must be a categorical
variable. If the categorical variable has integer data values, then to obtain the bubble plot it firt
must have converted to a factor.

Or, do the mean of y for each level of x , here the mean of Salary for each department.

Currently, if reading the summary table of data aggregation as the data for the dot plot, there is no
default to connect the dots to the axis, to make the “lollipop”.

To add those line segments, set the parameter segments_x to TRUE .

Here, the categorical variable x is more properly listed on the horizontal axis.

Bubble PlotBubble PlotBubble PlotBubble Plot
The bubble plot utilizes only the x-axis and relies upon the visual aesthetic of the area of a
circle for which to communicate the extent of the corresponding numerical variable.

--- Dept ---

 ACCT ADMN FINC MKTG SALE Total
Frequencies: 5 6 4 6 15 36
Proportions: 0.139 0.167 0.111 0.167 0.417 1.000

Chi-squared test of null hypothesis of equal probabilities
 Chisq = 10.944, df = 4, p-value = 0.027

Some Parameter values (can be manually set)

radius: 0.22 size of largest bubble
power: 0.50 relative bubble sizes

As shown in the text output from the Plot() function, two useful parameters for controlling
the bubble sizes are radius and power . The former sets the size of the largest bubble and
the ladder sets the relative bubble sizes. In the next example, increase the radius of the largest
bubble from the given default value of 0.22 to 0.30.

--- Dept ---

 ACCT ADMN FINC MKTG SALE Total
Frequencies: 5 6 4 6 15 36
Proportions: 0.139 0.167 0.111 0.167 0.417 1.000

Chi-squared test of null hypothesis of equal probabilities
 Chisq = 10.944, df = 4, p-value = 0.027

Some Parameter values (can be manually set)

radius: 0.30 size of largest bubble
power: 0.50 relative bubble sizes

Waffle and Treemap ChartsWaffle and Treemap ChartsWaffle and Treemap ChartsWaffle and Treemap Charts
Obtain the waffle and treemap charts from functions located in separate R packages named
accordingly, not incorporated in lessR or the initial R download. First, these packages must be
downloaded to your computer or cloud account. To do so, use the install.packages()
function. Or, call that function from the RStudio Tools menu, selecting the Install
Packages... option, shown in Figure 17.

Then, enter the names of the packages to install, separated by commas, as shown in Figure 18.

As with any contributed R package, to access the functions in the package that has been
downloaded to your R library, invoke the library() function.

Loading required package: ggplot2

The functions that generate the visualizations have the same name as their respective
packages.

The waffle() and treemap() functions only process the already obtained summary or pivot table
as the data necessarily obtained from a previous data aggregation.

The lessR bar chart function, BarChart() , processes both the original, raw data of individual
measurements and then does the data aggregation for you, or it directly processes data input
as the summary table computed from a prior data aggregation. However, we can only use the
summary table from which to create a waffle chart or treemap in R. In this example, read the
summary table from an Excel file into the d data frame.

Always verify your data before you do an analysis. Here, with a summary table, the data table is
so small we can list it all of it.

 Dept n
1 ACCT 5
2 ADMN 6
3 FINC 4
4 MKTG 6
5 SALE 15

Of course, to read a summary table from Excel, you need a summary table in Excel. Where did
you get it from? As we discussed in the concept reading upon which this reading depends, the
summary table can come from anywhere, including pure nonsense. However, if you wish to
plot the frequencies, the counts of occurrence for each level of the categorical variable, you
can obtain those from a bar chart analysis. Construct a summary table exactly as presented in
the following example and also in several examples throughout the concept reading. In these
examples, we read the data in summary table form into the d data frame, so that is the data
structure that will be input into the waffle() and treemap() functions.

Waffle ChartWaffle ChartWaffle ChartWaffle Chart

The waffle plot, or square pie chart, replaces the bars of a bar chart or the slices of a pie with
squares (of a waffle): One square for each integer value of the corresponding number in your
summary table. For larger numerical values associated with a category, display more squares. If
you have too many squares to plot, see the warning below.

Create the waffle plot with the waffle() function. The squares for each level are displayed
with a different color. The waffle chart in Figure 19 shows the default colors. The optional flip
parameter set to TRUE indicates to place the chart horizontally. A waffle chart is a waffle chart
whether vertical or horizontal, so the choice is yours.

And there is the “waffle”. There are 15 people in sales, so there are 15 waffle squares for the
corresponding category, SALE. And so forth.

However, the total number of waffle squares is fairly small in this example. What happens if
you have data from a larger company and there are 4549 people in sales? And 3960 people in
marketing, etc.? We do not want a waffle plot with a total of around 10000 squares as that
would be way too large.

For numbers that you are plotting you may need to limit the number of elements to plot.

The little waffle squares do not automatically scale, so if there are too many squares, transform
the values of the numerical variable in your summary table by division to reduce the number of
squares. Depending on the number of categories, you likely do not want more than a
maximum of 50 or so for the largest category. For example, if the largest category is 4549, then
to scale all the category numbers, divide them by 100, resulting, for example, to yield 45.4 for
the largest value. Then, instead of 4549 squares you will have 45 squares for that one level. To
scale down even more, divide by 15 or 20 to rescale. There is no correct answer as to the
rescaling, as many possibilities work as long as you apply the same rescaling to all of the
numbers in the summary table, analgous to converting data values of length from inches to
centimeters.

Finally, the waffle() function has what I think is a bug, which did not appear in the previous
example.

Sometimes the function adds another set of squares of another color when necessary to fill out the
rectangle that results from placement of all the squares.

The legend for these extra squares is blank. There is some control in removing these extra
squares with the rows parameter that specifies the number of rows in the output waffle chart.
Often, the number of rows can be adjusted so that no extra squares are filled in.

Treemap ChartTreemap ChartTreemap ChartTreemap Chart

The treemap in Figure 20 illustrates the number of employees in the five company
departments. The largest rectangle represents the department with the most employees,
sales, with 15 employees. The smallest rectangle represents the department with the fewest
employees, finance with four employees. To call the function, specify the data frame, then the
categorical variable followed by the numerical variable.

Figure 15: Ring chart version of a pie chart for variable Dept in the d data frame.

style(quiet=TRUE)

PieChart(Dept, hole=0)

Figure 16: Standard pie chart of variable Dept in the data frame.d

PieChart() limitationPieChart() limitationPieChart() limitationPieChart() limitation

Plot(Dept, stat_x="count")

Plot(Dept, Salary, stat="mean")

Plot() limitation for summary table dataPlot() limitation for summary table dataPlot() limitation for summary table dataPlot() limitation for summary table data

d <- Read("http://web.pdx.edu/~gerbing/data/DeptCount.xlsx")

Plot(Dept, n, segments_x=TRUE)

Plot(Dept)

Plot(Dept, radius=.30)

Figure 17: .

Figure 18: .

library(waffle)

library(treemap)

Input dataInput dataInput dataInput data

#d <- Read("http://web.pdx.edu/~gerbing/data/DeptCount.xlsx", quiet=TRUE)
d <- Read("data/DeptCount.xlsx", quiet=TRUE)

d

waffle(d, flip=TRUE)

Figure 19: Waffle chart of the count of employees in each department with default colors.

waffle() plot limitationwaffle() plot limitationwaffle() plot limitationwaffle() plot limitation

waffle() plot weirdnesswaffle() plot weirdnesswaffle() plot weirdnesswaffle() plot weirdness

treemap(d, "Dept", "n")

Figure 20: Treemap of the count of employees in each department with default colors.

The output is written with the
categorical variable on the vertical
axis because there can be many
categories down to the individuals
in the original data table. However,
maybe I should revise this function
so that the x variable is plotted on
the horizontal axis for consistency
with other visualizations.

The lessR function pivot() does
data aggregation, creating the pivot
table as output. For example, a <-
pivot(d, table, Dept) to store
the pivot table in data frame a, to
distinguish it from the original data
frame d. But that result leaves a
third column, the proportions,
which must be deleted, with a <-
a[,-3] . These two statements
bring us into programming. But we
all know Excel, so that is how I
presented this example.

https://web.pdx.edu/~gerbing/0Viz/LvlNmb/LvlNmb.html
https://web.pdx.edu/~gerbing/0Viz/LvlNmb/LvlNmb.html

HistogramHistogram

Data Values into BinsData Values into Bins

In contrast to the relatively few unique values of a categorical variable, a continuous variable
has many potential values. How many potential values? Generally, there are too many unique
data values to plot individually on a single graph. Consider annual salary, where every single
value to the nearest penny must be considered from about $20,000 to $500,000 or so.
Because there are so many potential data values, for most data sets too many possible values
never occur in the data. For example, a specific annual salary of $83,924.79 would likely not
occur unless the sample size was extremely large and even then not likely to the nearest
penny.

What to do with all the unique data values that cannot be individually plotted?

Sequence of adjacent intervals, each generally the same size, which forms groups of values of a
continuous variable.

Partition the range of values into bins, sometimes called classes. Figure 1 presents an example
of a bin that contains values from $50,000 to $60,000 for annual salaries.

Each bin contains similar data values, defined by a lower and upper boundary, which specifies
the width of the bin. In Figure 1, bin width is $10,000, and the midpoint is $55,000.

To evaluate the distribution of a continuous variable, first define the bins and then place each
data value into its respective bin, as illustrated in Figure 2. Assign a annual salary of $57,358 to
the bin $50,000 to $60,000.

Consistently assign values precisely equal to a bin boundary to either the adjacent lower bin or
the adjacent higher bin. Each computer application that generates histograms defaults to one
of those choices.

ExampleExample

The most typical graphical display of the variation of a continuous variable is the histogram.

The visualization of a continuous variable with values distributed across a set of adjacent bins, usually
of the same width, plotted on the horizontal, x-axis, with the count of the number of data values in
each bin plotted on the vertical, y-axis.

Like the bar graph, the histogram consists of a set of bars. However, instead of associating a
single data value with a number, the histogram associates each bin with a number, the
corresponding frequency or count. Another distinction is that the adjacent bars of a histogram
share a common side to indicate the underlying continuity of a continuous variable.

For example, consider the histogram shown in Figure 3 of the annual salaries of 37 different
employees from the Employee data table included with lessR .

Histogram(Salary)

Unless you specify quiet=TRUE in the function call, the following text output also results.

The resulting frequency table lists each bin with the corresponding Count, Proportion,
Cumulative Count, and Cumulative Proportion.

 Bin Midpnt Count Prop Cumul.c Cumul.p

 40000 > 50000 45000 4 0.11 4 0.11
 50000 > 60000 55000 8 0.22 12 0.32
 60000 > 70000 65000 8 0.22 20 0.54
 70000 > 80000 75000 5 0.14 25 0.68
 80000 > 90000 85000 3 0.08 28 0.76
 90000 > 100000 95000 5 0.14 33 0.89
 100000 > 110000 105000 1 0.03 34 0.92
 110000 > 120000 115000 1 0.03 35 0.95
 120000 > 130000 125000 1 0.03 36 0.97
 130000 > 140000 135000 1 0.03 37 1.00

Also provided are the summary statistics of the distribution.

--- Salary ---
 n miss mean sd min mdn max
 37 0 73795.557 21799.533 46124.970 69547.600 134419.230

An outlier analysis should always be done for each variable in an analysis. Since it should always
be done, the function does that analysis by default. The box plot provides the same outlier
analysis but without that visualization.

--- Outliers --- from the box plot: 1

Small Large
----- -----
 134419.2

The width of the bins for this histogram is 8000. Here we see, for example, that there is only
one person who receives a salary between $40,000 and $48,000. Because the data values are
organized by bins, from the histogram alone we do not know the precise salary of that person,
just that it is somewhere between $40,000 and $48,000.

Artifacts and IssuesArtifacts and Issues

The choice of bins is critical for discerning the overall shape of a distribution. Yet, this choice
often relies upon potentially subjective decisions made by the analyst.

Unlike many statistical analyses, there is no one correct, best histogram for a given data set, so we run
several histograms with different bin widths.

Although there is not just one correct answer for choosing the bin width for a given data set,
some choices provide more clarity than others to discern the basic shape of the distribution.
The default histogram generated by analysis systems presume a default bin width. However,
these initial histograms may need adjusting because the underlying algorithms do not always
identify an optimal bin width. Through a process of trial and error, select a bin width that
displays as much detail as possible for the available sample size without excessive random
noise.

What guidance do we have for choosing a bin width? Although virtually any distribution shape
is possible, most distributions of a continuous variable encountered in practice tend to be
continuously increasing or decreasing in value, or like the normal or “bell” shaped curve, with
increasing frequencies up to a value and then decreasing frequencies after that value (or vice
versa). In particular, most real-life distributions, as opposed to mathematical oddities dreamed
up by mathematicians, are not characterized by a pattern of up and down zigzags.

As shown in the following examples, random ups and downs of a histogram’s bars usually
indicate sampling error resulting from a bin width that is too small. Yes, that problem can be
corrected by increasing bin width, but only to a certain extent. Bins that are too large obscure
information, not leveraging all the information in the data.

One artifact involves bin width.

Changing the width of the bins not only changes their width, it can also change the overall shape of
the histogram.

Choosing the optimal bin width depends on several factors with no one precise best answer.
Still, some choices are better than others. One problem is bins that are too small.

A bin width can be too small relative to the amount of available data, which yields an
undersmoothed histogram.

Too many bins result in too much detail that displays random noise.

The result is that the undersmoothed histogram indicates random ups and downs that would
not reproduce if a new set of comparable data were collected and analyzed. The previously
displayed histogram in Figure 3 is somewhat undersmoothed. To clarify that characteristic,
consider the frequency polygon of the same data.

Similar to a histogram but instead of bars, plots a point at would be the midpoint of each bar and
connects each pair of adjacent points with a line segment.

Figure 4 shows the frequency polygon that corresponds to the histogram in Figure 3.

Plot(Salary, stat_x="count")

Use the Plot() because we are plotting points, which are then, by default, connected with line
segments.

stat_x : Specify a value of "count" to mimic the action of a histogram, which computes counts.

Note: Can also control the bin width as shown shortly. The following frequency polygon is based
on a bin width of 8000.

Could those irregularities characteristic of that histogram or its associated frequency polygon
be real? Could those irregularities consistently repeat in other samples of data from the same
population? The answer is yes, those zigzags could be an actual characteristic of the
underlying population. However, particularly for such a small sample of 37 employees,
repeatability of those irregular fluctuations is very unlikely.Instead, the underlying true
distributional shape is likely much smoother.

To be more dramatic, we can decrease the bin with even more as in Figure 5.

Histogram(Salary, bin_width=5000)

bin_width : Specify the width of the bins to provide for custom values.

These undersmoothed histograms reflect too much random sampling variability – too many
random ups and downs – relative to the likely much smoother true shape of the underlying
distribution. The too narrow bin width obscures the actual shape of the underlying distribution.
Imagine trying to interpret this histogram, having to continually repeat statements such as:
Salaries just under $80,000 tend to be not encountered so much, but then over $80,000 there
is a rise in the number of salaries followed by a quick decline in the number with salaries a
little more than $85,000. True enough for this particular sample but irrelevant regarding the
population as a whole, which means also for any other sample.

In practice, when encountering undersmoothed histograms, increase bin width and
experiment. The following histogram in Figure 6, with a bin width of 13,000, is an excellent
candidate for the final histogram.

To further illustrate the more smoothed estimation of the underlying distribution, consider the
corresponding frequency polygon in Figure 7.

Interpretation. The histogram in Figure 6 indicates a distribution with a relatively small
number of employees with salaries that begin around $40,000, then increases in frequency
of employees up to $80,000, then the number of employees diminishes rapidly in frequency
for larger salaries.

This histogram shows the same general form as the histogram in Figure 3, with a bin width of
$8000. The improvement is that the revised histogram with a bin width of $13,000 reveals the
shape of the distribution without the irregular fluctuations.

Just as with an undersmoothed histogram that obscures the underlying distribution, a bin
width that is too wide also does not properly display the shape of the underlying distribution.

Bins that are too large obscure details of the underlying distribution.

Oversmoothed histograms do not utilize the data efficiently. They bury some of the
information inherent in the data.

The following oversmoothed histogram in Figure 8 illustrates the loss of information.

For this histogram, the bin width is $25000. If we only had this histogram by which to describe
the underlying distribution, we would misleadingly conclude that the largest number of
salaries are between $40,000 and $65,000 and that the number of people with higher salaries
steadily declines. True, but from the more optimal histogram in Figure 6, we know that the
shape of the distribution is more nuanced, with first an increase in the number of people from
the lowest end of the salary spectrum as salary increases and then followed by a decrease in
salaries.

To summarize, in general the default bin width given by a computer algorithm for a specific
histogram function is usually more or less decent. However, this initial bin width can often be
improved by experimenting with different bin widths. The goal is to display as much
information as possible given the size of the sample from which the histogram is estimated.

Another example of the potential arbitrariness of a histogram is the bin shift artifact.

Change the starting point of a histogram, and the shape of the histogram likely changes.

Particularly in small samples, the shape of the histogram may be overly dependent on the
starting position of the first bin. A histogram of the same data with the same bin width can
substantively change shape simply by changing the starting point of the first bin.

To illustrate the impact of bin shift, consider a sample of 15 shipment times, assessed as the
number of days from the time of the order until the shipment is received, shown in Figure 9.

The default starting point of the histogram in Figure 9 is 5. The histogram indicates steadily
increasing frequencies for longer ship times. To revise the histogram, retain the bin width of 1
but instead start the first bin at 4.5, as shown in Figure 10.

Histogram(ShipTime, bin_start=4.5)

bin_start : Specify the starting value of the bins to provide for custom values.

Note: The data are available at: https://web.pdx.edu/~gerbing/data/shiptime.csv

Compare the histograms in Figure 9 and Figure 10 of ship Time, which have the same bin
width but with start values that differ by 0.5. The resulting histograms differ to the extent that,
at first glance, they appear to describe different data sets. The reason for this change is that for
this small sample size there are relatively large gaps between some of the adjacent data
values. The continuity of the possible underlying values would be better represented by the
relatively few values in the data set. The one-dimensional scatterplot, explained later, is usually
a better alternative to visualize the distribution of data values in a small data set.

For any type of visualization plotted with axes, the values displayed on an axis should not
include too many zeros to enhance readability.To illustrate, consider a histogram of the data
values of the variable Income. The histogram is shown in Figure 11.

After dividing the values of the variable Income by 1000, its values now range between 0 and
600 instead of 0 and 600,000. The rescaling of the variable should be noted, such as with a
new variable label on the horizontal or x-axis for the histogram, shown in Figure 12.

To transform the scale of a variable, that is, to re-scale, if the data are in Excel you can transform
the data in Excel. However, the R implementation is straightforward: simply enter the equation
that defines the transformation into the R console. The primary “gotcha” here is that the
variable’s reference needs to include the name of its containing data frame.

data_frame_name$variable_name

Why do you have to include the data frame name? You can have as many active data frames as
your computer’s memory can accommodate. Each data frame can contain a variable of the same
name. In many functions, specify the data frame that contains each variable with the $ notation.
However, some analysis functions, such as my lessR functions, use the data parameter to
specify the data frame that contains the relevant variables. In that situation, specify the variable
names only.

d$Salary <- d$Salary / 1000

The resulting histogram in Figure 12 is expressed in units of thousands of dollars.

Histogram(Salary, xlab="Salary (USD in thousands)")

xlab : Specifies the label on the x-axis to override the default value of the variable name.

Other language for a variable transformation is calculated field.

Density CurveDensity Curve

The histogram is a 19th-century innovation. It’s notable limitation is that the underlying
distribution of a continuous variable is, well, continuous but the histogram plots the
distribution in discrete chunks, the bins. Ideally, a continuous distribution would be
represented by a smooth curve. Modern computer technology delivers that representation,
directly estimating that smooth curve.

The smooth curve that directly visualizes continuity.

As with the histogram, the density curve indicates where the values of the variable tend to
occur more or less frequently than the other values, as shown in Figure 13. Here, return to the
data from the Employee data set.

Histogram(Salary, density=TRUE)

density : Set to TRUE to display the smoothed density curve over the histogram.

Note: Can still specify bin_width and bin_start if desired.

The density curve in Figure 13 is a bit wobbly. Its smoothness can be adjusted.

Determines the smoothness of the estimated density curve.

The value of each point of the density curve is computed by averaging the values of nearby
data values. A larger bandwidth results in a smoother curve because it averages over a broader
range of data points, leading to less sensitivity to fluctuations in individual data points. A
smaller bandwidth produces a more jagged curve that closely follows the individual data
points.

The lack of smoothness in Figure 13 is likely due to random sampling fluctuations
characteristic of such small samples. The bandwidth applied to that histogram is 9000. To
derive a smoother curve more impervious to this likely random error, the curve in Figure 14
was computed with a larger bandwidth than the density curve in Figure 13, a bandwidth value
of 15000.

Histogram(Salary, density=TRUE, bandwidth=15000)

bandwidth : Specify the bandwidth for the density curve to provide for custom values.

As with the underlying histogram, there is no one best density curve. The goal is to find the
optimal value of bandwidth that balances too much smoothness against over-emphasizing
random fluctuations of the data with lots of usually random ups and downs in the density
curve.

Box Plot and RelatedBox Plot and Related
The alternate primary display to the histogram of a continuous variable is the box plot plus
related visualizations that can enhance the basic box plot. To understand the box plot, we
need another set of statistics based on the position of a date value within the set of sorted
data values from smallest to largest.

Order StatisticsOrder Statistics

There are many positions within a set of ordered data values that can be identified, which
helps us understand the characteristics of a continuous variable’s distribution of data values.

Specify the position in an ordered set of data values.

One use for order statistics is that because their values depend only on the order of the sorted
values in a distribution, they can be applied to ordinal data. Statistics such as the mean and the
standard deviation require the higher quality interval or ratio data.

An essential order statistic indicates the middle of the distribution.

The value midway between the smallest and largest values of the sorted distribution.

A distribution with an odd number of values has a data value in the middle. For a distribution
with an even number of values, the median is generally not a data value but the mean of the
two values closest to the middle.

The median requires one split of the sorted data, but any number of splits can be made. The
quartiles split the distribution into four equal parts: 1st , 2nd , 3rd , and 4th quarters.

One of three values that together separate the values of an ordered distribution into four equal parts.

The median is the second quartile. The first quartile cuts off the bottom 25% of the distribution,
and the third quartile cuts off the bottom 75%.

The more variable the data values in the distribution, the wider the box. From the quartiles, we
can define an order statistic that describes the variability of the data values because its value is
the width of the box in the box plot.

The middle 50% of the data values in a distribution, the difference between the first and third
quartiles.

We have the median, counterpart to the mean, and the IQR, counterpart to the standard
deviation.

The BoxThe Box

Visualize Continuous VariablesVisualize Continuous VariablesVisualize Continuous VariablesVisualize Continuous Variables

David Gerbing Jun 26, 2024, 05:22 pm
AUTHOR PUBLISHED

BinsBins

Figure 1: An example of a bin defined over the range of data values from $50,000 up to $60,000.

Figure 2: The assignment of data value $57538 to the bin $50,000 to $60,000.

HistogramHistogram

lessR HistogramlessR Histogram

Figure 3: A histogram for the variable Salary.

Optimal Bin WidthOptimal Bin Width

No one correct histogramNo one correct histogram

Bin WidthBin Width

Bin width artifactBin width artifact

Undersmoothed histogramUndersmoothed histogram

Frequency polygonFrequency polygon

lessR Frequency polygonlessR Frequency polygon

Figure 4: Frequency polygon of the Salary data that displays the irregularities of the estimated
distribution shape.

lessR Custom bin widthlessR Custom bin width

Figure 5: Undersmoothed histogram.

Figure 6: Histogram with a bin width of $13,000 that could be the histogram accepted as the best display
of the underlying distribution.

Figure 7: Frequency polygon that estimates a distribution free of irregular ups and downs.

Oversmoothed histogramOversmoothed histogram

Figure 8: Oversmoothed histogram.

Bin ShiftBin Shift

Bin shift artifactBin shift artifact

Figure 9: Default histogram of ship time, the first bin starts at 5.

lessR Custom bin startlessR Custom bin start

Figure 10: Histogram of ship Time with specified bin start of 4.5.

Histogram ScaleHistogram Scale

Figure 11: Histogram with too many zeros in the numbers on the x-axis to efficiently read.

R Variable transformationR Variable transformation

Figure 12: Histogram with rescaled x-axis.

Density curveDensity curve

lessR Density curvelessR Density curve

Figure 13: Density curve of Salary.

BandwidthBandwidth

lessR Custom bandwidthlessR Custom bandwidth

Figure 14: Density curve of Salary with an increased bandwidth.

Order statisticOrder statistic

MedianMedian

QuartileQuartile

Interquartile range (IQR)Interquartile range (IQR)

Table of contents
Histogram

Data Values into Bins
Example
Artifacts and Issues
Density Curve

Box Plot and Related

Statistics such as the mean and
standard deviation are called
parametric statistics, which are
compared to order statistics,
sometimes referred to as non-
parametric statistics.

https://web.pdx.edu/~gerbing/0Viz/CatCont/CatContDV.html

Construct the box in the box plot from the three quartiles. The length of the box is the
interquartile range or IQR, the range of data that contains the middle 50% of all the data
values with a line through the median and perpendicular lines extending out from the edges.
Figure 15 shows the box plot based on these quartiles.

For a symmetric distribution, such as the normal curve, the right side is a mirror image of the
left side. The median will split the box evenly down the middle. However, many distributions
lack symmetry, with one tail larger than the other.

Indicator of lack of distribution symmetry.

An asymmetric distribution has a longer tail on either the right side or the left side on a
histogram or density plot. Asymmetry reveals itself in the box plot such that the side of the
distribution with the most extended tail occupies a larger box area from the median to the end
of the box than on the other side. Figure 16 illustrates.

Figure 16: Visualizing a severely right-skewed distribution.

The implications of skew in decision-making can be influential. For example, consider a
decision to set a re-order time. If the visualizations in Figure 16 represent ship time, it is
apparent that some shipments are received much later than the others. The average ship time
may not be a sufficient indicator of the amount of lag expected from the time of the order to
the time of receiving the shipment. When setting a reorder point based on inventory levels,
the cost of not having adequate inventory due to a particularly late order must be considered.

Whiskers and OutliersWhiskers and Outliers

As readily seen from the box plot visualizations, lines extend out from either side of the box. To
understand the meaning of those lines we first need to understand the concept of an outlier.
Some values in a distribution may be anomalies. An essential task of virtually every data
analysis is identifying these anomalies and then understanding why they occurred.

A value far from most of the remaining data values.

Outliers should always be identified for each variable of interest because their values could
represent as something as simple and as important as a coding error. Or, an outlier could
represent the outcome of a process that is different from the process that generated all or
most of the other values of the distribution.

A summary statistic should summarize data sampled from a single population, that is, data generated
by a single process.

Data are only meaningful when the same process generates all the data values for a variable.
Mixing the values from multiple processes into data values for a single variable may yield
accurate numerical results but does not represent any real-world process. The process that
generates an outlier can be different from that which generated the remaining values.

An analysis of salaries may include some part-time employees as well as full-time
employees. Any resulting conclusions, such as the average salary, may not be
representative of either group.
The mean of nine salaries and last year’s annual GNP can be correctly calculated, but this
mean has no meaningful interpretation.

The lack of meaning that results from mixing data from different processes follows from that
there is no single concept or entity shared by all the data values. Identify and then analyze
outliers from a different population as a separate group, and then generalize the results to the
population of interest.

The box plot is the classic visualization for detecting outliers in a single distribution of values
for a variable. In the context of a box plot, outliers are defined relative to the size of the box.
The definition of an outlier pertains to two different categories. As you read these definitions,
remember that the IQR is the width of the box.

Values between 1.5 IQR’s and 3.0 IQR’s from the edges of the box.

Values more than 3.0 IQR’s from either box’s edge.

The purpose of those lines extending out from the central box of the box plot is to assist in
identifying outliers.

A line from a box’s edge that extends to the most extreme data value that is not a potential outlier,
that is, within 1.5 IQR’s of the edges, with a perpendicular line segment at the end of the line.

Figure 17 shows the box plot of Salary from the Employee data set.

BoxPlot(Salary)

Although that function call works just fine, BoxPlot() is actually an alias, a stand-in, for the
Plot() function with a specific parameter setting.

vbs_plot : With values that are some combination of v , b , and s . The default value is "vbs" ,
which means create the full Violin/Box/Scatterplot.

To call Plot() directly to create only a box plot, set that parameter to b . The following function
call produces the same box plot as shown in Figure 17. The variable for the analysis needs to be
continuous.

Plot(Salary, vbs_plot="b"

Note: The lessR box plot analysis displays the potential outliers with a relatively dark red dot.
Identify the actual outliers by a stronger red dot.

Notice the red point displayed past the right whisker of the box plot in Figure 17. That point is a
potential outlier, the largest salary in the employee data set, almost $135,500. That value is
more than 1.5 times the width of the box beyond the third quartile. The data analyst who is
doing this salary analysis needs to explore why that potential outlier exists.

Interpretation. Is there some characteristic that distinguishes the outlier employee from the
remaining 36 employees? For example, is the employee in a more upper echelon of
management than the remaining employees? If so, then that data point should be dropped
from the analysis, and the conclusions from the salary analysis applied to the 36 Employees
at the same hierarchy within the company. Whether or not to delete that data value from the
analysis from these data values cannot be determined only from the data. Instead, the analyst
must supply knowledge of how salaries are defined within the company and how different
management levels are allocated.

Subjective judgment and business domain knowledge cannot be separated from data analytic
conclusions. Many pure mathematical or statistical types prefer to live in a world of their
geeked mathematical objective reality. However, the reality in which we are working, doing
data analysis, requires domain knowledge and judgment. When you encounter an outlier,
always use your subjective judgment to evaluate the reason for the outlier:

a coding error
from a different process as the other data values
a weird result from the same process

Statistics alone cannot answer that essential question.

Here is an example of outliers that result from the same process. To illustrate, generate 1000
normal curve simulated data values, as shown in Figure 18.

The detection of outliers at the two extremes of the normal curve provides an excellent
example of how outliers can occur when generated from the same process as the remaining
data values. Weird things happen from time to time. Occasionally, you flip a fair coin 10 times
and get nine heads (probability of 0.00978, or almost 1%). All the data in Figure 18 are properly
sampled from the same normal distribution. The detected outliers represent a weird result
from the same process, expected for such a large sample, here with 1000 simulated normally
distributed data values.

One-Variable ScatterplotOne-Variable Scatterplot

The scatterplot provides a direct visualization of the data values and corresponding sample
size. Each data value plots as a point, according to its location along the corresponding value
axis.

Plot(Salary, vbs_plot="s")

vbs_plot : Set to "s" to create only the scatterplot for, in this example, the one specified
variable.

Points corresponding to the same value overlap. What happens if points overlap each other?
Plot overlapping points either with partial transparency or with random perturbations to
distinguish between multiple points of the same value.

Random displacement of the horizontal and/or vertical coordinates of a plotted point.

More overlap results in the need for more jitter. If possible, apply only vertical jitter to retain the
value of the plotted point. If there are too many points with the same value, add horizontal
jitter as well.

The scatterplot in Figure 19 displays slight jitter. To emphasize, Figure 20 displays more vertical
jitter for the same data values.

jitter_y : Specify the extent of vertical jitter for a scatterplot to provide for custom values.

jitter_x : Specify the extent of horizontal jitter for a scatterplot to provide for custom values.

By default, the plotted values will be jittered vertically approximately as much as needed, which
can then be customized. The values of the jitter parameters used creating the scatterplot are
listed as part of the output at the R console.

Parameter values (can be manually set)

size: 0.61 size of plotted points
out_size: 0.82 size of plotted outlier points
jitter_y: 0.45 random vertical movement of points
jitter_x: 0.00 random horizontal movement of points
bw: 9529.04 set bandwidth higher for smoother edges

Again, there is no one correct answer for the amount of jitter to apply to the points in a
scatterplot. The amount to apply depends on the subjective perception of the analyst, usually
just enough to separate the points.

VBS PlotVBS Plot

John Tukey developed the box plot just before computer technology became dominant and
widely accessible for data visualization. As such, it is a pre-computer technology, which,
however, still performs quite well even with our modern sophisticated computer visualizations.
That said, we have a modern update that enhances the box plot.

Replace the top and bottom flat edges of the box plot with a density plot, which often, but not
necessarily, resembles a violin.

Figure 21 shows an example of a violin plot.

Those flat edges of the box in the box plot do not provide any information. Replacing those
edges with the corresponding density plot offers more information regarding the location of
the data values of the continuous variable of interest.

With modern computer technology we can go further to combine the violin plot, the box plot,
and the one-dimensional scatterplot into one comprehensive visualization. Contributing to the
development of this type of visualization (Gerbing 2020), I call this combination the VBS plot
for Violin/Box/Scatterplot, illustrated in Figure 22.

Plot(Salary)

The default value of the vbs_plot parameter is "vbs" .

The VBS plot simultaneously retains the advantages of all three of its constituent component
visualizations. We have the density plot to estimate the smooth distribution of the continuous
variable over the range of date values, we have the box plot with the median and first and 3rd
quartiles along with the whiskers to identify outliers, and we have a direct visualization of the
data points themselves.

A common and essential task in data visualization is comparing the values of a distribution
across different groups.

Divide a data table into subgroups, or strata, based on a the levels of one or more categorical
variables, to analyze how the distribution or relationship varies across these groups.

In the employee data set, we have the salaries for 37 employees and their gender, but in this
data set, only male and female values surfaced. Let’s compare salaries across these two
groups.

Plot the same visualization in different panels, each panel displaying the data values for a different
group.

The Trellis plot visualizes a stratification based on the levels of at least one categorical variable.
The primary interest may be the distribution of the data values for a single variable or for a
relationship between two or more variables.

The Trellis plot is so named because it resembles a garden trellis, also called a lattice. The
garden trellis is a structure that supports climbing plants and vines. The trellis provides a
vertical surface on which plants can grow upward. Figure 23 shows four examples.

Figure 24 illustrates a simple Trellis visualization: Generate a VBS plot separately for Men and
Women. The categorical variable that specifies the levels for which to create the visualization
is called a conditioning variable. In Figure 24 that plots, there are two levels of the conditioning
variable Gender present in these data: Male and Female.

Plot(Salary, by1=Gender)

by1 : Specify the value of the conditioning variable, the categorical variable for which its levels
define the different panels of the Trellis plot.

Note: Can also specify the vbs_plot parameter to obtain any combination of violin, box, and
scatterplots in the Trellis plot.

Note: Interact with colors and other parameters with Trellis VBS plots by entering
interact("Trellis") .

Interpretation. We conclude that a higher percentage of women occupy the lower salary
ranges. For example, the median Salary for women is considerably smaller than that for men.
More of the data points are shifted lower for women, despite that the highest salary is for a
woman. The pattern of these visualization encourages further investigation to establish any
significant differences in Salary, and perhaps a pattern of discrimination.

Current discrimination, however, is not a conclusion that can be supported by these data. It is
potentially suggestive but alternative explanations exist. Perhaps women in the past did not
apply for the available jobs in equal numbers with men. Perhaps in the past, the maternity
leave and support was insufficient and has since been upgraded. Or, perhaps management
used to be dominated by cigar smoking, whiskey drinking chauvinists who did not hire
women, but now all the old guys are retired, dead, or in jail.

Further subsetting of the data values occurs when we condition on two categorical variables.
In that situation, groups are formed for every combination of levels for the two variables. For
the Employee data, we have two levels of Gender and three levels of health Plan, numbered 1,
2, and 3. There is a total of six groups to plot, as shown in Figure 25.

Plot(Salary, by1=Gender, by2=Plan)

by1 : Specify the value of the conditioning variable, the categorical variable for which its levels
define the different panels of the Trellis plot.

by2 : Specify the value of the second conditioning variable.

Figure 15: The defining characteristics of the box plot.

SkewnessSkewness

(a) Density plot. (b) Box plot.

OutlierOutlier

Sample from one populationSample from one population

Moderate or potential outlierModerate or potential outlier

OutlierOutlier

WhiskerWhisker

lessR BoxplotlessR Boxplot

Figure 17: Box plot of salaries.

Figure 18: Plot of 1000 simulated normal curve values.

lessR One-variable scatterplotlessR One-variable scatterplot

Figure 19: One-dimensional scatterplot for Salary.

JitterJitter

lessR Jitter specificationlessR Jitter specification

Figure 20: One-dimensional scatterplot of Salary with added vertical jitter.

Further DevelopmentFurther Development

Violin plotViolin plot

Figure 21: Violin plot of Salary .

lessR VBS visualizationlessR VBS visualization

Figure 22: VBS plot of Salary.

Trellis GraphicsTrellis Graphics

StratificationStratification

One Conditioning Variable

Trellis (or facet) graphicsTrellis (or facet) graphics

Figure 23: Four garden trellis images created by DALL-E, OpenAI.

lessR VBS Trellis visualizationlessR VBS Trellis visualization

Figure 24: Trellis VBS plot of Salary plotted separately for two Genders.

Two Conditioning Variables

lessR VBS Two-Way Trellis visualizationlessR VBS Two-Way Trellis visualization

Figure 25: Trellis VBS plot of Salary plotted separately for two Genders and choice of health plan

Well-known and influential
statistician John Tukey developed
the concept of the box plot in the
1970’s and developed these
definitions of an outlier.

Gerbing, David. 2020. R
Visualizations: Derive Meaning from
Data. CRC Press.

Doing data analysis is analyzing variables. We use the term “variables” because their data values vary. Co-
variability, or relatedness, of two or more variables is the topic addressed here.

The analysis of variability, of the values of a single variable, and co-variability, the extent to which the values of two or
more variables vary together.

How analyize variability and co-variability depends on if the variables are categorical or continuous. We begin
with the study of categorical variables.

Categorical VariablesCategorical Variables

Joint DistributionsJoint Distributions

Visualizations for two categorical variables, such as the bar chart, express the relation between the two
variables with a numerical variable. For example, how is salary related to an employee’s gender and the
department for which they work? If there is no relation between the categorical variables regarding salary,
then each group would have the same mean salary. If there are real differences in salary across the groups,
then these differences will be evident comparing the group means, such as visually with a bar chart.

As with the bar chart of a single variable, a bar chart for two categorical variables associates a numerical value
for each group. The distinction is that here each group is defined by a combination of levels of the two
categorical variables. As with the one-variable chart, the bar chart is constructed from that summary table,
either entered directly into the bar chart function or implicitly computed by the function.

The source of the numeric values associated with the groups can be anything, including random nonsense.
However, the summary table is usually computed from a data aggregation for the specified numerical variable.
As with the one categorical variable bar chart, compute the numerical value as an aggregation of either:

the count of the membership in each group
a statistic such as the mean of another numerical variable

An example summary (pivot) table follows of the 10 groups defined by the combination of two levels of
Gender and 5 levels of Dept. The summary table has its own name.

For two categorical variables, a summary table that lists the numerical value associated with each group.

Each group is associated with the group’s mean Salary. The joint distribution presented below is in data table
format with three variables, so it can be read into a data analysis application as the data for analysis. Or, the
bar chart function will compute this table from the original, raw data of measurements if that is input into the
analysis, such as the Employee data table of 37 employees for this example.

Gender Dept Salary_mean
 M ACCT 59626.19
 W ACCT 63237.16
 M ADMN 80963.35
 W ADMN 81434.00
 M FINC 72967.60
 W FINC 57139.90
 M MKTG 99062.66
 W MKTG 64496.02
 M SALE 86150.97
 W SALE 64188.25

In terms of the presentation of results, the comparisons of the numbers that define the joint distribution
become more straightforward in a table with one variable’s group means organized horizontally and the other
group means displayed vertically. Note, however, that this tabular presentation is not a data table that can be
directly read into a data analysis application (without extra programming).

 Gender
Dept M W
 ACCT 59626.195 63237.163
 ADMN 80963.345 81434.003
 FINC 72967.600 57139.900
 MKTG 99062.660 64496.022
 SALE 86150.970 64188.254

Of course, better than the preceding table of descriptive statistics is the corresponding bar chart constructed
from the information contained within the table.

Bar ChartsBar Charts

For each level of the first categorical variable, the levels of the second categorical variable are stacked, one on top of
the other.

Figure 1 shows a bar chart of mean salary for the employees in each department, each bar displaying the
relative numbers of men and women. All three variables present in the summary table are processed by the
bar chart function, in this example: Gender, Dept, and Salary_mean, the mean for each department that has
been previously computed.

BarChart(Dept, Salary_mean, by=Gender)

by : The second categorical variable. The by= is either required or it is suggested to include for clarity.

Note: The specification of the call to BarChart() is the same as the call for the one categorical variable
visualization except that the by variable is specified with the parameter name.

Note: Experiment interactively with different parameter settings of the two-variable bar chart for your chosen data
with the lessR function interact(“BarChart”).

>>> Parameters values, values_color, etc. now renamed to: labels, labels_color, etc.
 Old parameter names will stop working in the future.

Each bar in the stacked bar chart has the same height as if there were no by variable, but each bar’s interior is
now divided into the relative proportions of each by level or category.

Directly compare the levels of the first categorical variable across levels while observing the sub-division of the second
categorical variable within each level of the first variable.

In this example, the bars are the same height for the one-variable bar chart of Dept but are now subdivided
according to Gender.

Often, if not usually, the original, raw data table of measurements is entered into the bar chart function from
which it computes the summary table. In this situation, the same bar chart as in Figure 1 can be produced.
However, in this situation the function must compute the mean of the specified numerical variable. There
must be an added parameter that instructs the function for the chosen statistic for which to do the
aggregation, here to compute the mean of Salary.

BarChart(Dept, Salary, by=Gender, stat="mean")

by : Identify the second categorical variable. The parameter name is either required or suggested to include.

stat : Specify the statistic by which to aggregate the specified numerical variable.

>>> Parameters values, values_color, etc. now renamed to: labels, labels_color, etc.
 Old parameter names will stop working in the future.

The only distinction between the bar charts from the summary table was entered, Figure 1, and from when it
was computed from the original data of measurements, Figure 2, is the label on the vertical, y-axis. The
previously computed mean in the summary table entered as data is named Salary_mean. In the bar chart from
the original data, the output signals that the mean was computed for Salary. Of course, the data analysis
application will allow custom axis labels as well.

The alternative to the stacked bar chart is the unstacked version. The unstacked bar chart presents the same
information as the stacked bar chart but with a different emphasis.

For each level of the first categorical variable, plot the levels of the second categorical variable as separate bars
grouped together.

The unstacked bar chart presents the levels of the second categorical variable, the sub-categories, side-by-
side.

Directly visualize the differences between the levels of the second categorical variable at each level of the first
variable.

Figure 3 shows a bar chart of counts for the employees in each department, each bar displaying the relative
numbers of men and women. The comparison of average men and women’s salaries in each department is
straightforward, just compare the height of the adjacent bars.

BarChart(Dept, Salary, by=Gender, stat="mean", beside=TRUE, labels="off")

beside : If set to TRUE , indicates to create the unstacked version.

Note: If the bars are too thin to properly display the corresponding values, turn off the display by setting
labels="off" . [Before lessR 4.3.3, the parameter labels was called values .]

The unstacked bar chart makes the comparison of the mean Salary in each department explicit.

Interpretation. Men and women employees in accounting and administration, on average, have about the
same salaries. However, in finance and sales and even more so in marketing, on average, men make
considerably more. This discrepancy should be further investigated. The result may be benign, such as
perhaps many of the men there have simply worked longer at the company. Or, there may be overt or covert
discrimination.

When constructing a bar chart from counts, regardless of the analysis system that computes and displays the
bar chart, the numerical variable referenced in the visualization is the count of the number of occurrences in
each group.

Do men and women employees differ in their job satisfaction? Are gender and job satisfaction related? To
answer this question, employees were administered a self-report survey in which they rated their own job
satisfaction of a scale with three response categories: low, med, and high.

The resulting summary table of counts follows for the 35 employees who had data recorded for both
corresponding variables, Gender and JobSat.

 Gender
JobSat M W
 low 11 2
 med 4 7
 high 3 8

The joint distribution of counts, that is, frequencies, has its own name.

A table that lists the number of occurrences for each group defined by two or more categorical variables.

The name of the table comes from the meaning of the word tabulate, which means to count. When doing a
bar chart of counts, it is this from the numbers in this cross-tabulation table from which the bar chart is
constructed.

Figure 4 shows the two categorical variable bar chart for the number of employees in each department, for
both men and women.

BarChart(Gender, by=JobSat)

Note: No third variable, the numerical variable, is entered into the analysis, only the two categorical variables. The
numerical variable for the analysis, the Count of employees in each group, is obtained directly from an analysis of
the two categorical variables.

The largest response category is men with low job satisfaction, 11 or 31% of all employees. The next largest
response category is women with high job satisfaction, 8 or 23% of all employees. The smallest response
category is a woman with low job satisfaction, only 2 or 6% of all employees.

Interpretation. Job satisfaction and gender are related for the employees of this company. Men tend to have
lower job satisfaction than women among the 35 employees for whom data for both variables were recorded.

How to explain the relationship between gender and job satisfaction? That question cannot be answered by
these data but it is clearly a topic for further investigation by management.

In general, there are different numbers of observations in each category or level on the x-axis. In this example,
the numbers of men and women are almost the same, but the numbers can vary dramatically in other
situations. To compensate for unequal sample sizes, the 100% stacked bar chart compares the percentage of
the distribution of the by variable within each level of the x-variable.

A motorcycle clothing manufacturer sells jackets in three different thicknesses: Lite, Medium, or Thick. One
venue for selling is the motorcycle rally that features a specific motorcycle company. The clothing
manufacturer must decide on the product mix to bring to a rally, a motorcycle show. Different rallies have
different levels of attendance. The manufacturer must estimate attendance at a rally and then base the
inventory brought to the rally on the percentage of jacket types customers purchase at the rally?

To compare the product mix across different motorcycle brands, levels of the x variable, is difficult for different
sample sizes.

Consider how many Lite jackets to inventory at a BMW show. From the bar chart in Figure 5, we see that 9%
of all purchases are BMW owners buying a Lite jacket. However, this 9% applies to all the purchases in the
entire cross-tabulation table, also impacted by the number jackets purchased by Honda owners.

Instead, the interest is the percentage of observations within each level of the first categorical variable, each
motorcycle brand. The 100% stacked version of the bar chart facilitates the comparison of the second
categorical variable value across the different levels of the first variable by gathering the percentages
computed only within a single level.

Each bar’s height for this analysis accounts for the full 100% of all elements within each category, of the first
categorical variable. Figure 6 shows both the traditional and the 100% stacked bar charts for past sales of
rallies for two motorcycle brands. The data are from the lessR file Jackets.

BarChart(Bike, by=Jacket, stack100=TRUE)

stack100 : Set to TRUE to display the stacked 100% bar chart.

As with the traditional bar chart of two categorical variables, the analysis begins with the table of joint
frequencies, here also including the row and column sums.

 Bike
 Jacket BMW Honda Sum
 Lite 89 283 372
 Med 135 207 342
 Thick 194 117 311
 Sum 418 607 1025

From the joint frequencies, to construct the 100% stacked bar chart, calculate each cell proportion not as
divided by the overall sum but instead the corresponding column sum, the column marginal sum. For
example, the proportion of BMW riders who buy a Lite jacket:

Find the corresponding value of 21% at the bottom of the first bar in Figure 6, the percentage of Lite jacket
purchases at BMW shows.

Interpretation. When going to a show with most or all attendees BMW owners, bring about 21% of total
inventory for Lite jackets, 32% Medium jackets, and the remaining 46% Thick jackets.

The different product mixes likely follow from the riding style. The BMW bike is more of a sport bike than the
Honda bikes. The thicker jacket provides more protection in case of a spill.

BarChart AlternativesBarChart Alternatives

Similar to the way in which the one categorical variable bar chart generalizes to a bar chart of two categorical
variables, a treemap visualization also generalizes.

The values of the categorical variables determine the structure, the rectangular boxes that together define the tree
map, one box for each group. The numerical variable with a value for each group defines the size of the corresponding
box.

To illustrate, consider the following summary (pivot) table computed from the Employee data table that
contains two categorical variables, Dept and Gender, and several numerical variables.

 Dept Gender Salary_n Salary_na Salary_mean
1 ACCT M 2 0 59626.19
2 ADMN M 2 0 80963.35
3 FINC M 3 0 72967.60
4 MKTG M 1 0 99062.66
5 SALE M 10 0 86150.97
7 ACCT W 3 0 63237.16
8 ADMN W 4 0 81434.00
9 FINC W 1 0 57139.90
10 MKTG W 5 0 64496.02
11 SALE W 5 0 64188.25

First, as in Figure 7, create the treemap of the mean of salary distributed across departments according to
gender within each department.

library(treemap)
treemap(b, c("Dept", "Gender"), "Salary_mean")

First parameter: Data frame in summary table form. You have to have an existing data frame named b in this
example for your treepmap to work and b must be a summary table.
Second parameter: One or more categorical variables. If more than one, combine the variables as a vector
with the c() function, in this example c(“Dept”, “Gender”).
Third parameter: Numeric variable that sets the size of the rectangles within the treemap, Salary_mean in
this example.

Note: The treemap() function is from the package of the same name.

Note: Unlike most R functions, enclosed all variable names in quotes.

Second, create a treemap of the count of occurrences of each group using the variable n already computed in
the given summary table. Find the result in Figure 8.

The bubble plot displays a bubble for each group. Figure 9 shows the bubble plot for the number of
employees in each combination of department employed and gender.

Plot(Dept, Gender)

Note: Pass two categorical variables to Plot() to automatically create the bubble plot.

Note: Only applies to counts of the groups defined from the combinations of levels of the two variables.

Business ApplicationsBusiness Applications

The type of applications that apply to the one-categorical bar chart apply also to the two categorical variable
version, except in this situation the categorical variables are simultaneously analyzed.

SalesSales - Decision focus: Identify how different products are performing in different regions.
Plot sales results for each group defined the two categorical variables product and region.

MarketingMarketing - Decision focus: Understand which services are favored by different genders and where
improvements might be needed.
Plot customer satisfaction by service type, retail vs online, and gender.

MarketingMarketing - Decision focus: Understand market share by product category of our company and
competitors.
Plot market share by product category and company, our own and competitors.

MarketingMarketing - Decision focus: Evaluate when certain online marketing channels are most effective to
increase advertising effectiveness.
Plot online sales revenue by origin such as direct, referral, and social media, with time of day.

HRHR - Decision focus: Identify specific departments with high turnover rates and reveal any related gender
disparities related to employee turnover by department and gender.
Plot employee turnover by department and gender.

AdvertisingAdvertising - Decision focus: Evaluate different ad campaign styles, serious or funny, across multiple
online platforms, such as Instagram, Google, and Facebook, for return on investment.
Plot sales revenue by platform and style.

Continuous VariablesContinuous Variables

RelatednessRelatedness

Do the values of two variables tend to change together or separately?

As the value of one variable increases, the values of the other tend to either increase or decrease.

Two continuous variables are related if, as the values of one variable increase, the values of the other variable
tend to either systematically increase or systematically decrease. Relationships can be positive or negative.

The values of both variables tend to increase together.

For a positive relationship, the values of both variables tend to increase together. The more Years worked at
the company, the higher, on average, is the person’s salary.

As the values of one variable increases, the values of the other variable tend to decrease..

Whereas for a negative relationship, the values of the variables tend in opposite directions. The more a
student is absent from class, on average, the lower the student’s grade.

To illustrate the positive relationship of Salary and Years, consider once again the Employee data set. What is
the relationship, if any, between the number of Years employed at the company and Salary?.

The visual expression of the values of one or more selected variables for each row of data is a scatterplot. The
two-variable scatterplot includes two variables plotted with two axes, one for each variable. The scatterplot in
Figure 10 shows that working more Years tends to be associated with a higher Salary. Each plotted point
represents one employee’s data values for Years and Salary. There are 36 employees with data values for both
variables, so the scatterplot consists of 36 points.

Visualize RelationshipsVisualize RelationshipsVisualize RelationshipsVisualize Relationships

David Gerbing Jun 26, 2024, 01:40 pm
AUTHOR PUBLISHED

Data analysisData analysis

Joint distributionJoint distribution

Stacked Bar ChartStacked Bar Chart

Stacked bar chartStacked bar chart

lessR Stacked bar chart from the summary tablelessR Stacked bar chart from the summary table

Figure 1: Stacked bar chart of the mean Salary of employees in each department, further subdivided into Gender,
computed from the summary table as the data.

Purpose of the stacked bar chartPurpose of the stacked bar chart

lessR Stacked bar chart from the original datalessR Stacked bar chart from the original data

Figure 2: Stacked bar chart of the mean Salary of employees in each department, further subdivided into Gender,
computed from the original, raw data.

Unstacked Bar ChartUnstacked Bar Chart

Unstacked or grouped bar chartUnstacked or grouped bar chart

Purpose of the unstacked bar chartPurpose of the unstacked bar chart

lessR unstacked bar chartlessR unstacked bar chart

Figure 3: Unstacked bar chart of the count of employees in each department, further subdivided into Gender.

Charts from CountsCharts from Counts

Cross-tabulation tableCross-tabulation table

lessR two categorical variable bar chart from countslessR two categorical variable bar chart from counts

Figure 4: Visualization of the relation between gender and job satisfaction among employees.

100% Stacked Bar Chart100% Stacked Bar Chart

Figure 5: Regular stacked bar chart.

lessR stacked 100% bar chartlessR stacked 100% bar chart

Figure 6: 100% stacked bar chart.

89
418

≈ 0.2129

TreemapTreemap

Treemap characteristicsTreemap characteristics

R treemapR treemap

Figure 7: Treemap of Salary distributed over department and gender.

Figure 8: Treemap of counts over department and gender.

Bubble PlotBubble Plot

lessR Bubble plotlessR Bubble plot

Figure 9: Bubble plot of counts across department and gender.

Relationship of continuous variablesRelationship of continuous variables

Positive relationshipPositive relationship

Negative relationshipNegative relationship

lessR ScatterplotlessR Scatterplot

Table of contents
Categorical Variables

Joint Distributions
Bar Charts

Stacked Bar Chart
Unstacked Bar Chart
Charts from Counts
100% Stacked Bar Chart

BarChart Alternatives
Business Applications

Continuous Variables

Visualizations such as the bar chart
are of descriptive statistics. To
evaluate if the differences likely
generalize beyond a single sample
requires inferential statistics. The
inferential chi-square test of
independence evaluates the
independence of two categorical
variables with the null hypothesis
that the variables are unrelated or
independent.

The scatterplot in Figure 10 indicates a strong, linear relationship. As the number of Years employed increases,
the annual USD Salary also tends larger. This concept of a relationship leads to one of the essential concepts
in all of statistics and data analysis, including the foundation of the modern pursuit of machine learning.

Two variables are related to the extent that knowledge of the value of one variable provides information regarding the
value of the second variable.

The stronger the relationship, the more information about the value of Variable Y is provided regarding the
value of Variable X. In this example, knowing how many years an employee worked at the company provides
for a more accurate estimate of their salary than without this knowledge. To consider this point further,
consider the data ellipse. The 95% data ellipse centered over the scatterplot can enhance understanding this
essential concept.

Contains, on average across multiple samples, 95% of the points in a sample scatterplot of two normally distributed
variables.

Figure 11 illustrates the same scatterplot from Figure 10 but here with the 95% data ellipse included. A data
ellipse can be specified for any percentage but 95% is the typical value.

Building upon the information provided by the ellipse, we can illustrate the strength of the relationship
between Years and Salary according to how predictable Salary is from Years. Figure 12 highlights the section
of the scatterplot that applies to the value of 10 years.

Overall, Salary ranges from a low of $46,124.97 to the highest value of $134,419.20, a range of $88294.26.
However, just for employees who have worked 10 years at the company, the 95% expected range of salaries,
reading directly from Figure 12, is about from $49,000 to $102,000, a considerably reduced range of $53,000.

Knowing the value of Variable X, Years employed in this example, we have information regarding the value of
Variable Y, Salary. If we know the value of X, we do not know the value of Y precisely but we have more
knowledge regarding Y. As is always the case except for trivialities such as converting inches to centimeters,
the information is not perfect. Moreover, the stronger the relationship, the narrower the enclosing ellipse, and
so the more information provided regarding the value of Y.

Correlation CoefficientCorrelation Coefficient

Indicate the most widely encountered correlation coefficient, the Pearson product-moment correlation
coefficient, or, more simply, Pearson correlation, with . One feature of the Pearson correlation is that it is
impervious to a change in units. Measure Height in inches or measure Height in centimeters. The relationship
between Height and Weight is the same relation regardless of the arbitrary measurement units. Accordingly,
the Pearson correlation of Height with Weight is the same in either case.

A correlation of +1 denotes a perfect positive association with all points falling on a straight line. “Perfect”
means that if the value of X is known, the relationship provides the precise value of Y. A correlation of −1
indicates a perfect negative relationship. A correlation of 0 indicates no relationship between the two
variables.

The size of the correlation indicates the magnitude of a correlation. The closer to 1 or -1, the stronger the linear
relationship. The direction of the relationship is indicated by the sign of the coefficient, + or -.

Strength and direction are two independent concepts for evaluating a linear relationship with a correlation
coefficient. For example, correlation of -0.7 indicates a stronger linear relationship and a correlation of 0.5.

Linear or straight-line relationships are perhaps the most common but not the only type of relationship.

Variables can be strongly non-linearly related, such as a U pattern, and yet correlate near 0.0, so always examine the
scatterplot for linearity before interpreting a correlation coefficient.

There are several types of correlation coefficients, not covered here, that generalize to beyond linear
relationships.

The correlation between Years employed and annual Salary in USD, from the scatterplot in Figure 10, is high,
r=0.85, which indicates a strong linear relationship.

Two Unrelated VariablesTwo Unrelated Variables

Consider a scatterplot of two uncorrelated variables, here X and Y. Generate the data by simulating random
sampling from a normal distribution. Create these simulated data values for variables X and Y with a
population mean of 50 and standard deviation of 10. The values are randomly and separately sampled,
without any correlation between X and Y in the population.

Figure 13 shows the scatterplot, 95% data ellipse, and fit line for two unrelated variables. The obtained sample
correlation is r = -0.144, differing from the population value of 0 only by random fluctuations of sampling error.
The 95% data ellipse over the scatterplot of variables X and Y in Figure 13 is approximately a circle, indicating
that the variables X and Y are unrelated. As a result, the best-fitting line through the scatterplot is nearly flat.

The lack of a linear relationship between the variables indicates that for a specific value of X, the
corresponding value of Y is as likely to be larger than its mean near 50 as smaller than its mean. Increasing
the value of X leads to no increased predictability regarding the corresponding value of Y. If we know the
value of X, we have no information regarding the value of Y.

Add a Third VariableAdd a Third Variable

More information can be obtained from the visualization of the relationship between two continuous variables
by including a third variable. This additional variable may be categorical or continuous. Both possibilities are
discussed next.

The relationship of two continuous variables can be enhanced by including one or more categorical analysis
in the visualization. Examining relationships at different levels of a categorical variable, stratification faciltates
compairson across groups.

Points in a scatterplot can also be plotted with different colors and/or plotting symbol according to different
values of a third variable, here a categorical variable. Figure 14 shows the same scatterplot as Figure 10 except
that the plotted points for the strata of men and women are differentiated by color.

A plotted point as a small circle filled with color is only one possibility. Any character, letter of the alphabet or
digit, can be plotted as the shape of each point. Most visualization systems also offer special plotting symbols
with interiors that can be filled with color. The default symbol is usually the small circle. Figure 15 illustrates
other possibilities in which planet points from different levels of the categorical variable our represented both
by different colors and different shapes.

Interpretation

At this company, three of the highest four salaries are by men and three of the lowest four salaries are by
women. The scatterplot also reveals, however, that women tend to be concentrated at the lower end of the
number of Years employed. The eight employees with the least Years of employment are all women.

The previous example stratified on a categorical variable by plotting all the points on the same panel, that is,
the same set of coordinate axes. The alternative plots the points for each level on a separate panel, the Trellis
plot.

For categorical variables with four or more levels, the Trellis plot becomes more readable than plotting points and fit
lines for all of the levels on the same panel.

Figure 16 illustrates the Trellis scatterplot of Years and Salary stratified by the categorical variable Gender.

The previous examples in this section mapped a categorical variable as a third variable into one or more visual
aesthetics. Another possibility introduces a third variable that is continuous. Figure 17 illustrates a scatterplot
of a car’s price with horsepower. Bubbles replace the standard filled small circles. The size of the bubbles
indicate the car’s fuel mileage expressed as miles per gallon.

Interpretation

More inexpensive cars tend to have less horsepower but they also have the best fuel mileage. Relatively
expensive cars offer more horsepower but considerably less fuel mileage.

Big DataBig Data

What happens when there are many data values to plot in a scatterplot, the situation described somewhat
colloquially by big data? With big data there are thousands if not hundreds of thousands or millions of data
values to plot. The problem encountered with a scatterplot of many data values is overlapping points,
illustrated in Figure 18 with 5000 pairs of simulated data values.

Jittering points, the random vertical and/or horizontal movement of points, can help in moderate situations
but not with a massive number of points to plot. Plotting points with varying degrees of transparency can help
but again a limit is reached. Figure 19 shows the 5000 points plotted with almost complete transparency of
their interiors but still individual points cannot be distinguished from each other.

Plot(x, y, fit="lm", transparency=.95)

transparency : Specify the amount of transparency of the interior of plotted points as a proportion from 0, no
transparency, to 1, complete transparency.

One reasonable solution is plotting smaller sized points, shown in Figure 20.

Plot(x, y, fit="lm", size=.25)

size : Specify the size of a plotted point, from 0 to whatever. The setting is 0.25 in Figure 20.

A solution that works well is smoothing.

Transform a scatterplot of plotted points into a two-dimensional smoothed surface.

Analogous to transforming a histogram into a smoothed density curve, a two-dimensional scatterplot can be
transformed into a smoothed two-dimensional surface. Plotting outliers as individual points, however,
provides useful information.

Plot(x, y, fit="lm", smooth=TRUE)

smooth : Set to TRUE to smooth the scatterplot.

Patterns of CorrelationsPatterns of Correlations

Supervised machine learning is the process of constructing predictive models from information contained in
various variables. For example, how does choice of advertising media and number of advertisements impact
sales revenue? There are thousands more examples of these predictive models being applied daily across the
business spectrum.

The key to building these models is to leverage the relationships of variables. Of particular interest is finding
variables that are related to the target variable of interest, the value that is to be predicted from a set of other
variables called predictor variables or features. The key then, is understanding the relationships of all the
variables in a set with each other.

Square matrix with scatterplots of each pair of variables in the lower-triangular part of the matrix and the
corresponding correlations in the upper-triangle of the matrix.

Figure 22 shows the scatterplot matrix of the four continuous variables in the d data frame, which is the
Employee data set. Each scatterplot in the matrix corresponds to a specific correlation in the upper-triangle of
the matrix. For example, in the first row, the correlation of Salary and Years is shown to be 0.85, which
corresponds to the first scatterplot in the first column, with the strong least-squares line of best fit, the
regression line.

Plot(c(Salary, Years, Pre, Post), fit="lm")

x : To obtain the scatterplot matrix, specify only one expression in the first position, the x parameter. The variable
is a vector built with the R combine function, c() . List relevant variables within the combine function, separated
by commas.

In this 4x4 matrix, Salary and Years correlate much with each other, r=0.85. And, Pre and Post also correlate
strongly with each other, r=0.91. The variables in each paired set do not correlate with the variables in the
other paired set. For example, Salary only correlates r=.03 with Pre.

Interpretation. If we were to try to build a predictive model of an employee’s salary from the other three
variables, we can see that only the number of years employed would be a useful predictor of salary. Scores on
the pre-test before instruction on some topic, and the post-test after the instruction, are not related to salary
and so would not be effective predictors of that variable.

The heat map substitutes colored squares for individual correlation coefficients. An example appears in
Figure 23.

d <- d[, .(Salary, Years, Pre, Post)]
mycor <- cor(d, use="pairwise.complete.obs")
heatmap(mycor, symm=TRUE, Rowv=NA, Colv=NA)

Note: To get the heat map of the correlation matrix we first need the correlation matrix, here stored in the object
named mycor. Here the matrix is computed with the R function cor() . The function is not smart enough to filter
out the non-numeric variables in the given date frame, here the d data frame of the Employee data set. We must
do this selection manually, accomplished with the code between the square brackets [] , and then pass this
smaller data frame to the cor() function. The code is a bit of technical stuff that is not obvious without a
background in subsetting data frames. However, to apply to another data table, follow the same form, just
changing the data frame name if needed in the first line and the selected variable names.

use : Specifies how to do deal with missing data when computing the correlations. The value of
“pairwise.complete.obs” is a good selection unless there is much missing data for a variable, in which case it
should not be selected for which to compute the corresponding correlations.

Note: The R heatmap() functions then processes the stored data frame mycor. The symm parameter set to TRUE
informs the function that the input matrix is symmetric, which is true of a correlation matrix. The Rowv and Colv
parameters are there to tidy up the output.

The heat map presents the same information as in the numerical correlation matrix, such as presented in
scatterplot matrix, but with colored squares, the intensity of which indicate corresponding correlation period.
Using the color scheme that appears in Figure 23, the deeper the red color the stronger the correlation. The
paler the yellow color, the weaker the correlation. Salary and Years correlate strongly with each other, and so
do Pre and Post, so these respective correlations are indicated by dark red in the heat map. Other correlations
are weak, indicated by yellow colors.

Figure 10: Scatterplot of Years employed and Salary from the Employee data set.

Basis of supervised machine learningBasis of supervised machine learning

95% data ellipse95% data ellipse

lessR 95% data ellipse aned fit linelessR 95% data ellipse aned fit line

Figure 11: Scatterplot of Years employed and Salary from the Employee data set.

Figure 12: 95% expected range of salaries for employees who have worked 10 years at the company.

rxy

Magnitude and direction of the correlation coefficientMagnitude and direction of the correlation coefficient

The Pearson correlation coefficient only applies to linear relationshipsThe Pearson correlation coefficient only applies to linear relationships

lessR Correlation analysislessR Correlation analysis

Figure 13: Scatterplot of two variables with no linear relationship.

StratificationStratification

lessR Stratified single-panel scatter plotlessR Stratified single-panel scatter plot

Figure 14: Scatterplot of Years employed and Salary stratified on Gender by color.

lessR Stratified scatterplot by shapelessR Stratified scatterplot by shape

Figure 15: Scatterplot of Years employed and Salary stratified on Gender by shape.

When to prefer a Trellis plotWhen to prefer a Trellis plot

lessR Stratified Trellis scatter plotlessR Stratified Trellis scatter plot

Figure 16: Scatterplot of Years employed and Salary stratified on Gender as a Trellis plot.

ContinuousContinuous

lessR Bubbles scatter plotlessR Bubbles scatter plot

Figure 17: Scatterplot of a car’s median price with horsepower plotted as bubbles with size determined by city MPG.

Figure 18: Scatterplot of 5000 paired data values.

lessR Transparency of pointslessR Transparency of points

Figure 19: Scatterplot of 5000 paired data values, each point plotted with a mostly transparent interior.

lessR Scatterplot point sizelessR Scatterplot point size

Figure 20: Scatterplot of 5000 paired data values, each point plotted at a small size.

lessR Two-dimensional scatterplot densitieslessR Two-dimensional scatterplot densities

lessR Scatterplot smoothinglessR Scatterplot smoothing

Figure 21: Scatterplot of 5000 paired data values smoothed into a two-dimensional density plot.

Scatterplot MatrixScatterplot Matrix

Scatterplot matrixScatterplot matrix

lessR Scatterplot MatrixlessR Scatterplot Matrix

Figure 22: Scatterplot matrix of four employee variables.

Heat MapHeat Map

R Heat mapR Heat map

Figure 23: Heat map of four employee variables.

The data for each variable were
generated by simulating random
sampling from a normal
distribution using the R function
rnorm() .

Doing data analysis is analyzing variables. We use the term “variables” because their data values vary. Co-
variability, or relatedness, of two or more variables is the topic addressed here.

The analysis of variability, of the values of a single variable, and co-variability, the extent to which the values of two or
more variables vary together.

How analyize variability and co-variability depends on if the variables are categorical or continuous. We begin
with the study of categorical variables.

Categorical VariablesCategorical Variables

Joint DistributionsJoint Distributions

Visualizations for two categorical variables, such as the bar chart, express the relation between the two
variables with a numerical variable. For example, how is salary related to an employee’s gender and the
department for which they work? If there is no relation between the categorical variables regarding salary,
then each group would have the same mean salary. If there are real differences in salary across the groups,
then these differences will be evident comparing the group means, such as visually with a bar chart.

As with the bar chart of a single variable, a bar chart for two categorical variables associates a numerical value
for each group. The distinction is that here each group is defined by a combination of levels of the two
categorical variables. As with the one-variable chart, the bar chart is constructed from that summary table,
either entered directly into the bar chart function or implicitly computed by the function.

The source of the numeric values associated with the groups can be anything, including random nonsense.
However, the summary table is usually computed from a data aggregation for the specified numerical variable.
As with the one categorical variable bar chart, compute the numerical value as an aggregation of either:

the count of the membership in each group
a statistic such as the mean of another numerical variable

An example summary (pivot) table follows of the 10 groups defined by the combination of two levels of
Gender and 5 levels of Dept. The summary table has its own name.

For two categorical variables, a summary table that lists the numerical value associated with each group.

Each group is associated with the group’s mean Salary. The joint distribution presented below is in data table
format with three variables, so it can be read into a data analysis application as the data for analysis. Or, the
bar chart function will compute this table from the original, raw data of measurements if that is input into the
analysis, such as the Employee data table of 37 employees for this example.

Gender Dept Salary_mean
 M ACCT 59626.19
 W ACCT 63237.16
 M ADMN 80963.35
 W ADMN 81434.00
 M FINC 72967.60
 W FINC 57139.90
 M MKTG 99062.66
 W MKTG 64496.02
 M SALE 86150.97
 W SALE 64188.25

In terms of the presentation of results, the comparisons of the numbers that define the joint distribution
become more straightforward in a table with one variable’s group means organized horizontally and the other
group means displayed vertically. Note, however, that this tabular presentation is not a data table that can be
directly read into a data analysis application (without extra programming).

 Gender
Dept M W
 ACCT 59626.195 63237.163
 ADMN 80963.345 81434.003
 FINC 72967.600 57139.900
 MKTG 99062.660 64496.022
 SALE 86150.970 64188.254

Of course, better than the preceding table of descriptive statistics is the corresponding bar chart constructed
from the information contained within the table.

Bar ChartsBar Charts

For each level of the first categorical variable, the levels of the second categorical variable are stacked, one on top of
the other.

Figure 1 shows a bar chart of mean salary for the employees in each department, each bar displaying the
relative numbers of men and women. All three variables present in the summary table are processed by the
bar chart function, in this example: Gender, Dept, and Salary_mean, the mean for each department that has
been previously computed.

BarChart(Dept, Salary_mean, by=Gender)

by : The second categorical variable. The by= is either required or it is suggested to include for clarity.

Note: The specification of the call to BarChart() is the same as the call for the one categorical variable
visualization except that the by variable is specified with the parameter name.

Note: Experiment interactively with different parameter settings of the two-variable bar chart for your chosen data
with the lessR function interact(“BarChart”).

>>> Parameters values, values_color, etc. now renamed to: labels, labels_color, etc.
 Old parameter names will stop working in the future.

Each bar in the stacked bar chart has the same height as if there were no by variable, but each bar’s interior is
now divided into the relative proportions of each by level or category.

Directly compare the levels of the first categorical variable across levels while observing the sub-division of the second
categorical variable within each level of the first variable.

In this example, the bars are the same height for the one-variable bar chart of Dept but are now subdivided
according to Gender.

Often, if not usually, the original, raw data table of measurements is entered into the bar chart function from
which it computes the summary table. In this situation, the same bar chart as in Figure 1 can be produced.
However, in this situation the function must compute the mean of the specified numerical variable. There
must be an added parameter that instructs the function for the chosen statistic for which to do the
aggregation, here to compute the mean of Salary.

BarChart(Dept, Salary, by=Gender, stat="mean")

by : Identify the second categorical variable. The parameter name is either required or suggested to include.

stat : Specify the statistic by which to aggregate the specified numerical variable.

>>> Parameters values, values_color, etc. now renamed to: labels, labels_color, etc.
 Old parameter names will stop working in the future.

The only distinction between the bar charts from the summary table was entered, Figure 1, and from when it
was computed from the original data of measurements, Figure 2, is the label on the vertical, y-axis. The
previously computed mean in the summary table entered as data is named Salary_mean. In the bar chart from
the original data, the output signals that the mean was computed for Salary. Of course, the data analysis
application will allow custom axis labels as well.

The alternative to the stacked bar chart is the unstacked version. The unstacked bar chart presents the same
information as the stacked bar chart but with a different emphasis.

For each level of the first categorical variable, plot the levels of the second categorical variable as separate bars
grouped together.

The unstacked bar chart presents the levels of the second categorical variable, the sub-categories, side-by-
side.

Directly visualize the differences between the levels of the second categorical variable at each level of the first
variable.

Figure 3 shows a bar chart of counts for the employees in each department, each bar displaying the relative
numbers of men and women. The comparison of average men and women’s salaries in each department is
straightforward, just compare the height of the adjacent bars.

BarChart(Dept, Salary, by=Gender, stat="mean", beside=TRUE, labels="off")

beside : If set to TRUE , indicates to create the unstacked version.

Note: If the bars are too thin to properly display the corresponding values, turn off the display by setting
labels="off" . [Before lessR 4.3.3, the parameter labels was called values .]

The unstacked bar chart makes the comparison of the mean Salary in each department explicit.

Interpretation. Men and women employees in accounting and administration, on average, have about the
same salaries. However, in finance and sales and even more so in marketing, on average, men make
considerably more. This discrepancy should be further investigated. The result may be benign, such as
perhaps many of the men there have simply worked longer at the company. Or, there may be overt or covert
discrimination.

When constructing a bar chart from counts, regardless of the analysis system that computes and displays the
bar chart, the numerical variable referenced in the visualization is the count of the number of occurrences in
each group.

Do men and women employees differ in their job satisfaction? Are gender and job satisfaction related? To
answer this question, employees were administered a self-report survey in which they rated their own job
satisfaction of a scale with three response categories: low, med, and high.

The resulting summary table of counts follows for the 35 employees who had data recorded for both
corresponding variables, Gender and JobSat.

 Gender
JobSat M W
 low 11 2
 med 4 7
 high 3 8

The joint distribution of counts, that is, frequencies, has its own name.

A table that lists the number of occurrences for each group defined by two or more categorical variables.

The name of the table comes from the meaning of the word tabulate, which means to count. When doing a
bar chart of counts, it is this from the numbers in this cross-tabulation table from which the bar chart is
constructed.

Figure 4 shows the two categorical variable bar chart for the number of employees in each department, for
both men and women.

BarChart(Gender, by=JobSat)

Note: No third variable, the numerical variable, is entered into the analysis, only the two categorical variables. The
numerical variable for the analysis, the Count of employees in each group, is obtained directly from an analysis of
the two categorical variables.

The largest response category is men with low job satisfaction, 11 or 31% of all employees. The next largest
response category is women with high job satisfaction, 8 or 23% of all employees. The smallest response
category is a woman with low job satisfaction, only 2 or 6% of all employees.

Interpretation. Job satisfaction and gender are related for the employees of this company. Men tend to have
lower job satisfaction than women among the 35 employees for whom data for both variables were recorded.

How to explain the relationship between gender and job satisfaction? That question cannot be answered by
these data but it is clearly a topic for further investigation by management.

In general, there are different numbers of observations in each category or level on the x-axis. In this example,
the numbers of men and women are almost the same, but the numbers can vary dramatically in other
situations. To compensate for unequal sample sizes, the 100% stacked bar chart compares the percentage of
the distribution of the by variable within each level of the x-variable.

A motorcycle clothing manufacturer sells jackets in three different thicknesses: Lite, Medium, or Thick. One
venue for selling is the motorcycle rally that features a specific motorcycle company. The clothing
manufacturer must decide on the product mix to bring to a rally, a motorcycle show. Different rallies have
different levels of attendance. The manufacturer must estimate attendance at a rally and then base the
inventory brought to the rally on the percentage of jacket types customers purchase at the rally?

To compare the product mix across different motorcycle brands, levels of the x variable, is difficult for different
sample sizes.

Consider how many Lite jackets to inventory at a BMW show. From the bar chart in Figure 5, we see that 9%
of all purchases are BMW owners buying a Lite jacket. However, this 9% applies to all the purchases in the
entire cross-tabulation table, also impacted by the number jackets purchased by Honda owners.

Instead, the interest is the percentage of observations within each level of the first categorical variable, each
motorcycle brand. The 100% stacked version of the bar chart facilitates the comparison of the second
categorical variable value across the different levels of the first variable by gathering the percentages
computed only within a single level.

Each bar’s height for this analysis accounts for the full 100% of all elements within each category, of the first
categorical variable. Figure 6 shows both the traditional and the 100% stacked bar charts for past sales of
rallies for two motorcycle brands. The data are from the lessR file Jackets.

BarChart(Bike, by=Jacket, stack100=TRUE)

stack100 : Set to TRUE to display the stacked 100% bar chart.

As with the traditional bar chart of two categorical variables, the analysis begins with the table of joint
frequencies, here also including the row and column sums.

 Bike
 Jacket BMW Honda Sum
 Lite 89 283 372
 Med 135 207 342
 Thick 194 117 311
 Sum 418 607 1025

From the joint frequencies, to construct the 100% stacked bar chart, calculate each cell proportion not as
divided by the overall sum but instead the corresponding column sum, the column marginal sum. For
example, the proportion of BMW riders who buy a Lite jacket:

Find the corresponding value of 21% at the bottom of the first bar in Figure 6, the percentage of Lite jacket
purchases at BMW shows.

Interpretation. When going to a show with most or all attendees BMW owners, bring about 21% of total
inventory for Lite jackets, 32% Medium jackets, and the remaining 46% Thick jackets.

The different product mixes likely follow from the riding style. The BMW bike is more of a sport bike than the
Honda bikes. The thicker jacket provides more protection in case of a spill.

BarChart AlternativesBarChart Alternatives

Similar to the way in which the one categorical variable bar chart generalizes to a bar chart of two categorical
variables, a treemap visualization also generalizes.

The values of the categorical variables determine the structure, the rectangular boxes that together define the tree
map, one box for each group. The numerical variable with a value for each group defines the size of the corresponding
box.

To illustrate, consider the following summary (pivot) table computed from the Employee data table that
contains two categorical variables, Dept and Gender, and several numerical variables.

 Dept Gender Salary_n Salary_na Salary_mean
1 ACCT M 2 0 59626.19
2 ADMN M 2 0 80963.35
3 FINC M 3 0 72967.60
4 MKTG M 1 0 99062.66
5 SALE M 10 0 86150.97
7 ACCT W 3 0 63237.16
8 ADMN W 4 0 81434.00
9 FINC W 1 0 57139.90
10 MKTG W 5 0 64496.02
11 SALE W 5 0 64188.25

First, as in Figure 7, create the treemap of the mean of salary distributed across departments according to
gender within each department.

library(treemap)
treemap(b, c("Dept", "Gender"), "Salary_mean")

First parameter: Data frame in summary table form. You have to have an existing data frame named b in this
example for your treepmap to work and b must be a summary table.
Second parameter: One or more categorical variables. If more than one, combine the variables as a vector
with the c() function, in this example c(“Dept”, “Gender”).
Third parameter: Numeric variable that sets the size of the rectangles within the treemap, Salary_mean in
this example.

Note: The treemap() function is from the package of the same name.

Note: Unlike most R functions, enclosed all variable names in quotes.

Second, create a treemap of the count of occurrences of each group using the variable n already computed in
the given summary table. Find the result in Figure 8.

The bubble plot displays a bubble for each group. Figure 9 shows the bubble plot for the number of
employees in each combination of department employed and gender.

Plot(Dept, Gender)

Note: Pass two categorical variables to Plot() to automatically create the bubble plot.

Note: Only applies to counts of the groups defined from the combinations of levels of the two variables.

Business ApplicationsBusiness Applications

The type of applications that apply to the one-categorical bar chart apply also to the two categorical variable
version, except in this situation the categorical variables are simultaneously analyzed.

SalesSales - Decision focus: Identify how different products are performing in different regions.
Plot sales results for each group defined the two categorical variables product and region.

MarketingMarketing - Decision focus: Understand which services are favored by different genders and where
improvements might be needed.
Plot customer satisfaction by service type, retail vs online, and gender.

MarketingMarketing - Decision focus: Understand market share by product category of our company and
competitors.
Plot market share by product category and company, our own and competitors.

MarketingMarketing - Decision focus: Evaluate when certain online marketing channels are most effective to
increase advertising effectiveness.
Plot online sales revenue by origin such as direct, referral, and social media, with time of day.

HRHR - Decision focus: Identify specific departments with high turnover rates and reveal any related gender
disparities related to employee turnover by department and gender.
Plot employee turnover by department and gender.

AdvertisingAdvertising - Decision focus: Evaluate different ad campaign styles, serious or funny, across multiple
online platforms, such as Instagram, Google, and Facebook, for return on investment.
Plot sales revenue by platform and style.

Continuous VariablesContinuous Variables

RelatednessRelatedness

Do the values of two variables tend to change together or separately?

As the value of one variable increases, the values of the other tend to either increase or decrease.

Two continuous variables are related if, as the values of one variable increase, the values of the other variable
tend to either systematically increase or systematically decrease. Relationships can be positive or negative.

The values of both variables tend to increase together.

For a positive relationship, the values of both variables tend to increase together. The more Years worked at
the company, the higher, on average, is the person’s salary.

As the values of one variable increases, the values of the other variable tend to decrease..

Whereas for a negative relationship, the values of the variables tend in opposite directions. The more a
student is absent from class, on average, the lower the student’s grade.

To illustrate the positive relationship of Salary and Years, consider once again the Employee data set. What is
the relationship, if any, between the number of Years employed at the company and Salary?.

The visual expression of the values of one or more selected variables for each row of data is a scatterplot. The
two-variable scatterplot includes two variables plotted with two axes, one for each variable. The scatterplot in
Figure 10 shows that working more Years tends to be associated with a higher Salary. Each plotted point
represents one employee’s data values for Years and Salary. There are 36 employees with data values for both
variables, so the scatterplot consists of 36 points.

Visualize RelationshipsVisualize RelationshipsVisualize RelationshipsVisualize Relationships

David Gerbing Jun 26, 2024, 01:40 pm
AUTHOR PUBLISHED

Data analysisData analysis

Joint distributionJoint distribution

Stacked Bar ChartStacked Bar Chart

Stacked bar chartStacked bar chart

lessR Stacked bar chart from the summary tablelessR Stacked bar chart from the summary table

Figure 1: Stacked bar chart of the mean Salary of employees in each department, further subdivided into Gender,
computed from the summary table as the data.

Purpose of the stacked bar chartPurpose of the stacked bar chart

lessR Stacked bar chart from the original datalessR Stacked bar chart from the original data

Figure 2: Stacked bar chart of the mean Salary of employees in each department, further subdivided into Gender,
computed from the original, raw data.

Unstacked Bar ChartUnstacked Bar Chart

Unstacked or grouped bar chartUnstacked or grouped bar chart

Purpose of the unstacked bar chartPurpose of the unstacked bar chart

lessR unstacked bar chartlessR unstacked bar chart

Figure 3: Unstacked bar chart of the count of employees in each department, further subdivided into Gender.

Charts from CountsCharts from Counts

Cross-tabulation tableCross-tabulation table

lessR two categorical variable bar chart from countslessR two categorical variable bar chart from counts

Figure 4: Visualization of the relation between gender and job satisfaction among employees.

100% Stacked Bar Chart100% Stacked Bar Chart

Figure 5: Regular stacked bar chart.

lessR stacked 100% bar chartlessR stacked 100% bar chart

Figure 6: 100% stacked bar chart.

89
418

≈ 0.2129

TreemapTreemap

Treemap characteristicsTreemap characteristics

R treemapR treemap

Figure 7: Treemap of Salary distributed over department and gender.

Figure 8: Treemap of counts over department and gender.

Bubble PlotBubble Plot

lessR Bubble plotlessR Bubble plot

Figure 9: Bubble plot of counts across department and gender.

Relationship of continuous variablesRelationship of continuous variables

Positive relationshipPositive relationship

Negative relationshipNegative relationship

lessR ScatterplotlessR Scatterplot

Table of contents
Categorical Variables

Joint Distributions
Bar Charts

Stacked Bar Chart
Unstacked Bar Chart
Charts from Counts
100% Stacked Bar Chart

BarChart Alternatives
Business Applications

Continuous Variables

Visualizations such as the bar chart
are of descriptive statistics. To
evaluate if the differences likely
generalize beyond a single sample
requires inferential statistics. The
inferential chi-square test of
independence evaluates the
independence of two categorical
variables with the null hypothesis
that the variables are unrelated or
independent.

The scatterplot in Figure 10 indicates a strong, linear relationship. As the number of Years employed increases,
the annual USD Salary also tends larger. This concept of a relationship leads to one of the essential concepts
in all of statistics and data analysis, including the foundation of the modern pursuit of machine learning.

Two variables are related to the extent that knowledge of the value of one variable provides information regarding the
value of the second variable.

The stronger the relationship, the more information about the value of Variable Y is provided regarding the
value of Variable X. In this example, knowing how many years an employee worked at the company provides
for a more accurate estimate of their salary than without this knowledge. To consider this point further,
consider the data ellipse. The 95% data ellipse centered over the scatterplot can enhance understanding this
essential concept.

Contains, on average across multiple samples, 95% of the points in a sample scatterplot of two normally distributed
variables.

Figure 11 illustrates the same scatterplot from Figure 10 but here with the 95% data ellipse included. A data
ellipse can be specified for any percentage but 95% is the typical value.

Building upon the information provided by the ellipse, we can illustrate the strength of the relationship
between Years and Salary according to how predictable Salary is from Years. Figure 12 highlights the section
of the scatterplot that applies to the value of 10 years.

Overall, Salary ranges from a low of $46,124.97 to the highest value of $134,419.20, a range of $88294.26.
However, just for employees who have worked 10 years at the company, the 95% expected range of salaries,
reading directly from Figure 12, is about from $49,000 to $102,000, a considerably reduced range of $53,000.

Knowing the value of Variable X, Years employed in this example, we have information regarding the value of
Variable Y, Salary. If we know the value of X, we do not know the value of Y precisely but we have more
knowledge regarding Y. As is always the case except for trivialities such as converting inches to centimeters,
the information is not perfect. Moreover, the stronger the relationship, the narrower the enclosing ellipse, and
so the more information provided regarding the value of Y.

Correlation CoefficientCorrelation Coefficient

Indicate the most widely encountered correlation coefficient, the Pearson product-moment correlation
coefficient, or, more simply, Pearson correlation, with . One feature of the Pearson correlation is that it is
impervious to a change in units. Measure Height in inches or measure Height in centimeters. The relationship
between Height and Weight is the same relation regardless of the arbitrary measurement units. Accordingly,
the Pearson correlation of Height with Weight is the same in either case.

A correlation of +1 denotes a perfect positive association with all points falling on a straight line. “Perfect”
means that if the value of X is known, the relationship provides the precise value of Y. A correlation of −1
indicates a perfect negative relationship. A correlation of 0 indicates no relationship between the two
variables.

The size of the correlation indicates the magnitude of a correlation. The closer to 1 or -1, the stronger the linear
relationship. The direction of the relationship is indicated by the sign of the coefficient, + or -.

Strength and direction are two independent concepts for evaluating a linear relationship with a correlation
coefficient. For example, correlation of -0.7 indicates a stronger linear relationship and a correlation of 0.5.

Linear or straight-line relationships are perhaps the most common but not the only type of relationship.

Variables can be strongly non-linearly related, such as a U pattern, and yet correlate near 0.0, so always examine the
scatterplot for linearity before interpreting a correlation coefficient.

There are several types of correlation coefficients, not covered here, that generalize to beyond linear
relationships.

The correlation between Years employed and annual Salary in USD, from the scatterplot in Figure 10, is high,
r=0.85, which indicates a strong linear relationship.

Two Unrelated VariablesTwo Unrelated Variables

Consider a scatterplot of two uncorrelated variables, here X and Y. Generate the data by simulating random
sampling from a normal distribution. Create these simulated data values for variables X and Y with a
population mean of 50 and standard deviation of 10. The values are randomly and separately sampled,
without any correlation between X and Y in the population.

Figure 13 shows the scatterplot, 95% data ellipse, and fit line for two unrelated variables. The obtained sample
correlation is r = -0.144, differing from the population value of 0 only by random fluctuations of sampling error.
The 95% data ellipse over the scatterplot of variables X and Y in Figure 13 is approximately a circle, indicating
that the variables X and Y are unrelated. As a result, the best-fitting line through the scatterplot is nearly flat.

The lack of a linear relationship between the variables indicates that for a specific value of X, the
corresponding value of Y is as likely to be larger than its mean near 50 as smaller than its mean. Increasing
the value of X leads to no increased predictability regarding the corresponding value of Y. If we know the
value of X, we have no information regarding the value of Y.

Add a Third VariableAdd a Third Variable

More information can be obtained from the visualization of the relationship between two continuous variables
by including a third variable. This additional variable may be categorical or continuous. Both possibilities are
discussed next.

The relationship of two continuous variables can be enhanced by including one or more categorical analysis
in the visualization. Examining relationships at different levels of a categorical variable, stratification faciltates
compairson across groups.

Points in a scatterplot can also be plotted with different colors and/or plotting symbol according to different
values of a third variable, here a categorical variable. Figure 14 shows the same scatterplot as Figure 10 except
that the plotted points for the strata of men and women are differentiated by color.

A plotted point as a small circle filled with color is only one possibility. Any character, letter of the alphabet or
digit, can be plotted as the shape of each point. Most visualization systems also offer special plotting symbols
with interiors that can be filled with color. The default symbol is usually the small circle. Figure 15 illustrates
other possibilities in which planet points from different levels of the categorical variable our represented both
by different colors and different shapes.

Interpretation

At this company, three of the highest four salaries are by men and three of the lowest four salaries are by
women. The scatterplot also reveals, however, that women tend to be concentrated at the lower end of the
number of Years employed. The eight employees with the least Years of employment are all women.

The previous example stratified on a categorical variable by plotting all the points on the same panel, that is,
the same set of coordinate axes. The alternative plots the points for each level on a separate panel, the Trellis
plot.

For categorical variables with four or more levels, the Trellis plot becomes more readable than plotting points and fit
lines for all of the levels on the same panel.

Figure 16 illustrates the Trellis scatterplot of Years and Salary stratified by the categorical variable Gender.

The previous examples in this section mapped a categorical variable as a third variable into one or more visual
aesthetics. Another possibility introduces a third variable that is continuous. Figure 17 illustrates a scatterplot
of a car’s price with horsepower. Bubbles replace the standard filled small circles. The size of the bubbles
indicate the car’s fuel mileage expressed as miles per gallon.

Interpretation

More inexpensive cars tend to have less horsepower but they also have the best fuel mileage. Relatively
expensive cars offer more horsepower but considerably less fuel mileage.

Big DataBig Data

What happens when there are many data values to plot in a scatterplot, the situation described somewhat
colloquially by big data? With big data there are thousands if not hundreds of thousands or millions of data
values to plot. The problem encountered with a scatterplot of many data values is overlapping points,
illustrated in Figure 18 with 5000 pairs of simulated data values.

Jittering points, the random vertical and/or horizontal movement of points, can help in moderate situations
but not with a massive number of points to plot. Plotting points with varying degrees of transparency can help
but again a limit is reached. Figure 19 shows the 5000 points plotted with almost complete transparency of
their interiors but still individual points cannot be distinguished from each other.

Plot(x, y, fit="lm", transparency=.95)

transparency : Specify the amount of transparency of the interior of plotted points as a proportion from 0, no
transparency, to 1, complete transparency.

One reasonable solution is plotting smaller sized points, shown in Figure 20.

Plot(x, y, fit="lm", size=.25)

size : Specify the size of a plotted point, from 0 to whatever. The setting is 0.25 in Figure 20.

A solution that works well is smoothing.

Transform a scatterplot of plotted points into a two-dimensional smoothed surface.

Analogous to transforming a histogram into a smoothed density curve, a two-dimensional scatterplot can be
transformed into a smoothed two-dimensional surface. Plotting outliers as individual points, however,
provides useful information.

Plot(x, y, fit="lm", smooth=TRUE)

smooth : Set to TRUE to smooth the scatterplot.

Patterns of CorrelationsPatterns of Correlations

Supervised machine learning is the process of constructing predictive models from information contained in
various variables. For example, how does choice of advertising media and number of advertisements impact
sales revenue? There are thousands more examples of these predictive models being applied daily across the
business spectrum.

The key to building these models is to leverage the relationships of variables. Of particular interest is finding
variables that are related to the target variable of interest, the value that is to be predicted from a set of other
variables called predictor variables or features. The key then, is understanding the relationships of all the
variables in a set with each other.

Square matrix with scatterplots of each pair of variables in the lower-triangular part of the matrix and the
corresponding correlations in the upper-triangle of the matrix.

Figure 22 shows the scatterplot matrix of the four continuous variables in the d data frame, which is the
Employee data set. Each scatterplot in the matrix corresponds to a specific correlation in the upper-triangle of
the matrix. For example, in the first row, the correlation of Salary and Years is shown to be 0.85, which
corresponds to the first scatterplot in the first column, with the strong least-squares line of best fit, the
regression line.

Plot(c(Salary, Years, Pre, Post), fit="lm")

x : To obtain the scatterplot matrix, specify only one expression in the first position, the x parameter. The variable
is a vector built with the R combine function, c() . List relevant variables within the combine function, separated
by commas.

In this 4x4 matrix, Salary and Years correlate much with each other, r=0.85. And, Pre and Post also correlate
strongly with each other, r=0.91. The variables in each paired set do not correlate with the variables in the
other paired set. For example, Salary only correlates r=.03 with Pre.

Interpretation. If we were to try to build a predictive model of an employee’s salary from the other three
variables, we can see that only the number of years employed would be a useful predictor of salary. Scores on
the pre-test before instruction on some topic, and the post-test after the instruction, are not related to salary
and so would not be effective predictors of that variable.

The heat map substitutes colored squares for individual correlation coefficients. An example appears in
Figure 23.

d <- d[, .(Salary, Years, Pre, Post)]
mycor <- cor(d, use="pairwise.complete.obs")
heatmap(mycor, symm=TRUE, Rowv=NA, Colv=NA)

Note: To get the heat map of the correlation matrix we first need the correlation matrix, here stored in the object
named mycor. Here the matrix is computed with the R function cor() . The function is not smart enough to filter
out the non-numeric variables in the given date frame, here the d data frame of the Employee data set. We must
do this selection manually, accomplished with the code between the square brackets [] , and then pass this
smaller data frame to the cor() function. The code is a bit of technical stuff that is not obvious without a
background in subsetting data frames. However, to apply to another data table, follow the same form, just
changing the data frame name if needed in the first line and the selected variable names.

use : Specifies how to do deal with missing data when computing the correlations. The value of
“pairwise.complete.obs” is a good selection unless there is much missing data for a variable, in which case it
should not be selected for which to compute the corresponding correlations.

Note: The R heatmap() functions then processes the stored data frame mycor. The symm parameter set to TRUE
informs the function that the input matrix is symmetric, which is true of a correlation matrix. The Rowv and Colv
parameters are there to tidy up the output.

The heat map presents the same information as in the numerical correlation matrix, such as presented in
scatterplot matrix, but with colored squares, the intensity of which indicate corresponding correlation period.
Using the color scheme that appears in Figure 23, the deeper the red color the stronger the correlation. The
paler the yellow color, the weaker the correlation. Salary and Years correlate strongly with each other, and so
do Pre and Post, so these respective correlations are indicated by dark red in the heat map. Other correlations
are weak, indicated by yellow colors.

Figure 10: Scatterplot of Years employed and Salary from the Employee data set.

Basis of supervised machine learningBasis of supervised machine learning

95% data ellipse95% data ellipse

lessR 95% data ellipse aned fit linelessR 95% data ellipse aned fit line

Figure 11: Scatterplot of Years employed and Salary from the Employee data set.

Figure 12: 95% expected range of salaries for employees who have worked 10 years at the company.

rxy

Magnitude and direction of the correlation coefficientMagnitude and direction of the correlation coefficient

The Pearson correlation coefficient only applies to linear relationshipsThe Pearson correlation coefficient only applies to linear relationships

lessR Correlation analysislessR Correlation analysis

Figure 13: Scatterplot of two variables with no linear relationship.

StratificationStratification

lessR Stratified single-panel scatter plotlessR Stratified single-panel scatter plot

Figure 14: Scatterplot of Years employed and Salary stratified on Gender by color.

lessR Stratified scatterplot by shapelessR Stratified scatterplot by shape

Figure 15: Scatterplot of Years employed and Salary stratified on Gender by shape.

When to prefer a Trellis plotWhen to prefer a Trellis plot

lessR Stratified Trellis scatter plotlessR Stratified Trellis scatter plot

Figure 16: Scatterplot of Years employed and Salary stratified on Gender as a Trellis plot.

ContinuousContinuous

lessR Bubbles scatter plotlessR Bubbles scatter plot

Figure 17: Scatterplot of a car’s median price with horsepower plotted as bubbles with size determined by city MPG.

Figure 18: Scatterplot of 5000 paired data values.

lessR Transparency of pointslessR Transparency of points

Figure 19: Scatterplot of 5000 paired data values, each point plotted with a mostly transparent interior.

lessR Scatterplot point sizelessR Scatterplot point size

Figure 20: Scatterplot of 5000 paired data values, each point plotted at a small size.

lessR Two-dimensional scatterplot densitieslessR Two-dimensional scatterplot densities

lessR Scatterplot smoothinglessR Scatterplot smoothing

Figure 21: Scatterplot of 5000 paired data values smoothed into a two-dimensional density plot.

Scatterplot MatrixScatterplot Matrix

Scatterplot matrixScatterplot matrix

lessR Scatterplot MatrixlessR Scatterplot Matrix

Figure 22: Scatterplot matrix of four employee variables.

Heat MapHeat Map

R Heat mapR Heat map

Figure 23: Heat map of four employee variables.

The data for each variable were
generated by simulating random
sampling from a normal
distribution using the R function
rnorm() .

❝ Life can only be understood backwards; but it must be lived
forwards. ❞

Søren Kierkegaard (1813 - 1855), Danish Philosopher

Project the Past into the FutureProject the Past into the Future
Every business must plan for the future. Many management decisions depend upon estimating the value of
one or more variables at some future time. What are the monthly sales projections for the next three months?
How many employees will our company have at this time next year? What is the estimated interest rate two
months from now? How large will the inventory be during the summer months? Some of these questions,
such as the estimated interest rate, involve forecasting a single value. Inventory, however, might consist of
thousands of different items, each requiring a specific forecast. Planning for the future in such a company
involves thousands of forecasts.

To forecast the future values of a variable, we need to understand the past. We need to understand the
pattern by which the values of the variable are generated over time. The following material describes a core
set of patterns with their visualizations that distinguish between the pattern and its realization as data.

ProcessesProcesses

The process is the core unit for organizing business activities and the basis for forecasting.

Structured set of procedures that generate output over time to accomplish a specific business goal.

A functioning business is a set of interrelated business processes that ultimately lead to the delivery and
servicing of the product or service. Managing a business is managing its processes, so evaluating on-going
performance of the constituent business processes is a central task for managers. To assess process
performance, consider variables that generate values over time such as:

Consider some examples of outcome variables for business processes.

Supply Chain: Ship Time of raw materials following the submission of each purchase order
Inventory: Daily inventory of a product
Manufacturing: Length of a critical dimension of each machined part
Marketing: Ongoing satisfaction measured with customer ratings
Production: Amount of cereal by weight in each cereal box
Order Fulfillment: Pick time, elapsed time from order placement until the order is boxed and ready for
shipment
Accounting: Time required to forward a completed invoice from the time the order is placed
Sales: Satisfaction rating of customers after purchasing a new product
Health Care: Elapsed time from an abnormal mammogram until the biopsy

The values for these variables vary over time. How can we predict the future values of these variables?

One way to predict a variable’s future value is to discover its pattern of variation over past time periods and extend that
pattern into the future.

Ongoing business processes generate a stream of data over time. Understanding how the process performed
in the past is the key to forecasting its future performance. If sales have been steadily increasing every month
for the last two years, and this trend is expected to continue, then a forecast of future sales can project this
trend into the next three months. Successful forecasting is the successful search for patterns from past
performance.

Randomness vs StructureRandomness vs Structure

Unfortunately, uncovering the underlying structure of previous time values is not always straightforward.

The analysis of the pattern of variation of a variable’s values over time must distinguish the underlining signal, the true
pattern, from the random noise, the random sampling variation, that surrounds the pattern.

Noise obscures the true pattern, but it is structure and pattern that can be projected into the future. The
construction of models by searching for pattern buried among noise and instability is not only central to
forecasting, it is crucial to statistical thinking in general.

To illustrate, consider a process as simple as coin flipping. Flip a coin 10 times. How many Heads will you get?
We predict five, but random variation ensures that the obtained value can vary anywhere from 0 to 10, with
five just the most likely value. In actuality, flipping a fair coin 10 times will result in five heads less than 1/4 of
each 10 flips. Usually, over 75% of each 10 coin flips, a value other than five Heads will be obtained.

The values of a variable at least partially vary according to random influences from one value to the next. Each
data value is determined by an underlying stable component consistent with the underlying pattern, such as
the fairness of a coin, and a random component that consists of many undetermined causes.

A data value results from the influence of the underlying pattern plus the error term, the sum of many undetermined
influences.

Random variability is pervasive, and its impact on data analysis is profound. Even if the structure of the
process is disentangled from the noise, the noise is always present. The exact next value cannot be known
until that outcome occurs.

For example, moving beyond coin flips, the hospital staff does not know when the next patient will arrive in
the emergency room until the patient arrives. Nor do they know how many patients will be admitted on any
one evening. A hospital may see 17 people admitted to the emergency room on one Saturday evening, and 21
people another Saturday evening. You do not know the amount of overtime hours in your department that will
occur next month until next month happens. And you only know how much the next tank of fuel will cost
once you again fill up the tank.

The opposite of randomness is pattern, stability and structure, the basic tendencies that underlie the observed
random variation. The same hospital that admitted 18 and then 21 patients to the emergency room on a
Saturday evening, admitted on the corresponding Wednesday evenings, 8 and 6 people. All four admittance
numbers – 17, 21, 8, 6 – are different, but the pattern is that more people were admitted on a Saturday evening
than on a Wednesday evening. Any capable forecasting algorithm would leverage this knowledge of the
differential pattern of arrivals.

The FutureThe Future

A central task of data analytics is to reveal and then quantify the underlying tendencies and pattern.
Sometimes the task of uncovering and quantifying structure is straightforward, and other times it involves is
as much intuition and skill including the formal application of sophisticated analytic forecasting procedures.
To delineate this stable pattern from the observed randomness, construct a set of relationships expressed as
a model.

Mathematical expression that describes an underlying pattern apart from the random variation exhibited by the data.

The outcomes of a process include a random component, but the model describes the underlying, stable
pattern. The data consist of this stability with the added randomness that to some extent obscures the
pattern. Projecting this pattern into the future includes the following steps.

The ability to accurately forecast is necessary to business success. Management decisions apply to the future.
Try running a business in which the forecasted sales never materialize.

1. Describe: Visually assess the inherent variation in the data
2. Infer: Build a model that expresses the knowledge of the underlying stable component that underlies this

variation
3. Forecast: From the model project this stable component into the future as the estimate of future reality
4. Evaluate: Wait for some time to pass and then compare the forecast to what actually happened

The knowledge obtained from this analysis begins with a description of what is, an inference of the
underlying structure that culminates in a forecasting model, followed by a forecast of what will likely be, and
then refinement of the model to improve the accuracy of the forecasts. The primary problem of identifying
patterns from the past is the presence of sampling error.

Visualize Patterns Over TimeVisualize Patterns Over Time
The data and visualization of the values of a variable over time result from an on-going process. Visualize the
data values of a variable to reveal the pattern of their variability over time in one of two fundamental ways: run
chart and time series visualizations, discussed next.

Run ChartRun Chart

Consider the time dimension of an ongoing process. Effective management decisions about when to change
the process, to understand its performance, to know when to leave it alone, to evaluate the effectiveness of a
deliberate change, require knowledge of how the system behaves over time. Evaluation of a process first
requires accurate measurements of one or more relevant outcome variables over time.

Plot of the values of a variable identified by their order of occurrence, with line segments connecting individual points.

Use the run chart to plot the performance of the process over time if the dates or times at which each point
was recorded are not available or not necessary. However, order the data values sequentially according to the
date or time they were acquired. The run chart lists the sequential position of each data value in the overall
sequence and the horizontal axis.

The ordinal position of each value in the overall sequence of data values, numbered from 1 to the last data value.

A run chart is a specific type of line chart. Display the values collected over time on the vertical axis. On the
horizontal axis, display the Index. A run chart may also contain a center line, such as the median of the data
values to help compare the larger values to smaller values.

As an example of a run chart, consider pick time, the elapsed time from order placement until the order is
packaged and ready for shipment. Pick time is central to the more general order fulfillment process, and
requires management oversight to minimize times and to detect any bottlenecks should they occur. The
variable is Hours, the average number of business hours required for pick time, assessed weekly, illustrated in
Figure 1. The data are available on the web as a text data file at the following location.

https://web.pdx.edu/~gerbing/data/pick.csv

First, read the data, which contains the variable Hours, into the d data frame.

d <- Read("https://web.pdx.edu/~gerbing/data/pick.csv")

Obtain the run chart and associated statistics with the lessR function Plot() to display the values in sequence.

Plot(Hours, run=TRUE)

run : Parameter to inform the function that the values should be plotted sequentially on the y-axis, in the order in
which they occur in the data table, with the Index plotted on the x-axis. Set the run parameter to TRUE .

Plot() automatically connects adjacent points with a line segment. The center line, the median, is automatically
added if the values of the variable tend to oscillate about the center.

What does the manager seek to understand from a run chart? A primary task of process management is to
assess process performance in the context of this random variation, to know:

The central level of performance of the process, mean or median
The amount of random variation about the central level inherent in the process

The next task is to actively manage process performance. We see from Figure Figure 1 a concerning trend for
pick time deteriorating toward the end of data collection. The last three data values are above the median,
and the maximum value of 6.70 is obtained as the last data value. Are these larger pick time values random
variation, or do they signal a true deterioration in the process? More data would answer that question, data
carefully scrutinized by management. Adjust the central level of performance up or down to the target level,
as needed. Continue to minimize the random variation about the desired average level of performance.

Process StabilityProcess Stability

Processes always exhibit variation but that variation can result from underlying stable population values of
the mean and standard deviation.

Data values generated by the process result from the same overall level of random variation about the same mean.

The run chart of a stable process displays random variation about the mean at a constant level of variability.

A stable process or constant-cause system produces variable output but with an underlying stability in the
presence of random variation. The output changes, but the process itself is constant. W. Edwards Deming
describes a stable process as follows.

There is no such thing as constancy in real life. There is, however, such a thing as a constant-cause system. The results
produced by a constant-cause system vary, and in fact may vary over a wide band or a narrow band. They vary, but they
exhibit an important feature called stability. … [T]he same percentage of varying results continues to fall between any
given pair of limits hour and hour, day after day, so long as the constant-cause system continues to operate. It is the
distribution of results that is constant or stable. When a … process behaves like a constant-cause system … it is said to
be in statistical control.

To illustrate this random, sampling error inherent in a sequence values generated over time, consider the
following four stable processes shown in Figure 2, Figure 3, Figure 4, and Figure 5. To better compare the
processes, their visualizations all share the same y-axis scale, from -3 to 3. In the following figure captions,
is the sample mean and is the sample standard deviation. For illustrative purposes, each run chart of each of
the four stable processes is illustrated with the median as the center line.

What differs across these four stable processes is their variability. All four processes are stable, but the
variability of their output differs. The sample standard deviation of these four stable processes varies from
0.0010 to 1.3364.

The definition of a stable process is not a small variability of output but rather a constant level of variability about the
same mean..

To create a forecast you first need to understand the structure of the underlying process. First, identify the
pattern to be projected into the future. If you view Figure 5 with the large amount of random error, realize that
the process is stable even if the outcomes are highly variable. Specifically, recognize that the fluctuations are
not the regular fluctuations of seasonality but instead are irregular with no apparent pattern. With no
seasonality and the same mean underlying all the data values, the forecast for the next value remains the
mean of the previous values.

Non-Stable ProcessesNon-Stable Processes

Some other patterns found in the data values for a variable collected over time are described next.

Of particular interest in the analysis of any set data values, including the outcomes of a process, is an outlier.

A data value considerably different from all or most of the remaining data values in the sample.

An outlier indicates the presence of a special cause in Deming’s terminology, a temporary event, which
resulted in a deviant data value. Figure 6 contains an outlier.

Given a process otherwise in control but with an outlier, the best forecast is not the average of all of the
values. Suppose it is established that an outlier occurred due to a data value sampled from a process distinct
from that which generated the remaining date values. Then, there is no meaning in analyzing all the data
values as a single sample. Figure 6 likely shows the results from two separate processes.

Understand why the outlier occurred and ensure the conditions that generated the outlier do not occur for the
forecasted values.

When observing an outlier, understand how and why the outlier occurred. This is almost always an essential
understanding because it often leads to a change in the procedure, presumably for the better. The most trivial
cause is a simple data entry error, not the type of data to base management decisions. Or, more
fundamentally, is a particular shipment of metal in the manufacturing process defective? Or is the output from
a specific machine defective?

Another pattern is a process in which some event occurs that shifts the level of the process up or down,
essentially transforming one process into another. Figure 7 illustrates a stable process without error, the
underlying structure free from random error, not the data, which then shifts to a different level.

The following figure illustrates this process as observed in reality. Random error partially obscures the
underlying stability followed by the upward shift of the process mean to define a new, stable process, shown
in Figure 8.

Once a process has changed, such as a level shift, the data values that occurred before the change are no longer
relevant for discerning the current underlying signal from which to generate a forecast.

Hopefully, there is enough data to discern the underlying structure after the level shift. Recognize that after
the level shift there is a new process, but, of course, that new process may be desirable. The process output
may be profitability or, applied to an industrial process, volume of output.

The amount of variability inherent in the system can also change over time. Consider an industrial assembly in
which the set up that manufacturer is a part is becoming more loose overtime, increasing the variability of the
dimensions of the output. Figure 9 illustrates this pattern.

Each data point in Figure 9 is sampled from a different process. Each successive process generates output
more variable than the previous process.

Another type of non-stability is trend, again, a desirable outcome if it is positive and the process describes
profitability.

The long-term direction of movement of the data values over time, a general tendency to increase or decrease.

The example in Figure 10 is a positive, linear trend with considerable random error obscuring the underlying
signal.

Without random error, a linear trend plots as a straight line, either with + slope or - slope.

Extend the trend “line” into the future.

The trend line can be an actual straight line, linear, or it can be curvilinear, such as exponential or logarithmic
growth or exponential decay.

Another typical, non-stable pattern in data over time is seasonality.

Pattern of fluctuations that repeats at regular intervals with the same intensity, such as the four quarters of a year.

This first plot, in Figure 11, is of the underlying structure, the signal without the contamination of random error.

In the plot in Figure 12, some random error is added to the additive seasonality.

The process illustrated in Figure 13 exhibits much random error that tends to obscure the underlying signal,
the additive seasonality.

The forecast for a data value that reflects seasonality with no pattern of increase or decrease, such as in
Figure 13, depends only on the season and the impact of a particular season on the deviation from the overall
mean of the process.

Estimate and apply the seasonal effect for the season at which the forecasted data value occurs.

As always, the more random error the more difficult to estimate the seasonal effects. How these seasonal
effects are estimated is discussed later. For God sake

Consider a successful swimwear company that generally experiences more robust sales each year but suffers
from relatively lower fall, especially winter sales. The highest quarter for sales is spring (probably most in late
spring) as customers prepare for summer, closely followed by Summer sales. Sales continue to grow every
year but generally comparatively less so for fall and winter.

The intensity of the regular seasonal swings up and down, which systematically increase or decrease in size forward

Visualize ProcessesVisualize ProcessesVisualize ProcessesVisualize Processes

David Gerbing Jun 26, 2024, 04:03 pm
AUTHOR PUBLISHED

Business processBusiness process

Forecast from past variationForecast from past variation

Signal vs. noiseSignal vs. noise

Random error termRandom error term

ModelModel

Run chartRun chart

IndexIndex

lessR Run ChartlessR Run Chart

Figure 1: Weekly average pick time.

Stable process or system in controlStable process or system in control

W. Edwards Deming, “Some Principles of the Shewhart Methods of Quality Control,”W. Edwards Deming, “Some Principles of the Shewhart Methods of Quality Control,”MechanicalMechanical
EngineeringEngineering, 66, 1944, 173-177., 66, 1944, 173-177.

m

s

Figure 2: Stable process with almost no random error: m=-0.0001, s=0.0010.

Figure 3: Stable process with a small amount of random error: m=0.0079, s=0.1146.

Figure 4: Stable process with an intermediate amount of random error: m=0.0957, s=0.6788.

Figure 5: Stable process with much random error: m=0.2576, s=1.3364.

Process variabilityProcess variability

1

OutlierOutlier

OutlierOutlier

Figure 6: Otherwise stable process with an Outlier.

Forecast from a process with an outlierForecast from a process with an outlier

Process ShiftProcess Shift

Level Shift

Figure 7: Structure of two stable processes, the second process a level shift of the first process.

Figure 8: Data recorded from two stable processes, the second process a level shift of the first process.

Forecast after a process changeForecast after a process change

Variability Shift

Figure 9: Structure of process that gradually becomes more variable over time.

TrendTrend

TrendTrend

Figure 10: Data recorded from a positive linear trend.

Forecast trendForecast trend

SeasonalitySeasonality

Additive seasonalityAdditive seasonality

Figure 11: Seasonal process with perfect structure, that is, without random error characteristic of data.

Figure 12: Seasonal process with some random error.

Figure 13: Seasonal process with much random error.

Forecast seasonalityForecast seasonality

Trend with Multiplicative SeasonalityTrend with Multiplicative Seasonality

Multiplicative seasonalityMultiplicative seasonality

Table of contents
Project the Past into the
Future
Visualize Patterns Over Time
Visualize Patterns as Time
Series

Example Data
One Time Series
Several Times Series

One Panel
Different Panels

Aggregate Time

W. Edwards Deming established
that a process must first be
evaluated for stability, which is
required to verify the quality control
of the process output. There is an
entire literature dedicated to this
proposition. Deming became
revered worldwide for his
contributions to quality control,
especially in Japan as it rebuilt its
industrial capabilities following
World War II.

 Assumptions of a stable process
are better evaluated from an
enhanced version of a run chart
called a control chart, essential for
the analysis of quality control.

1

http://localhost:5780/Processes.html#fn1

The intensity of the regular seasonal swings up and down, which systematically increase or decrease in size forward
across time.

Following is an example of the underlying structure of quarterly geometrical seasonality with an overall
positive, linear trend. Because there is no random error for the sales variable YStable, the plot in Figure 14 is of
the structure, not actual data, which is always confounded with random sampling error. To facilitate observing
the pattern of seasonality, the first of the quarterly seasons, Winter, is displayed on a vertical grid line in
Figure 14.

For example, consider Time 31, a Winter quarter. The sales are larger than for any season for the early years,
sales are low within the context of that given year. Sales then increase much at Time 32 for Spring, remain
high but diminish slightly for Time 33, Summer, and then diminish again for Time 34, the fourth quarter, Fall.
Winter sales then rise slightly compared to the Fall, perhaps to take advantage of sale prices or planning for
next summer.

Given data, structure plus sampling error, the underlying, stable pattern is obscured to some extent but
remains apparent.

With even more random error shown in Figure 16, it is easy to miss the seasonal sales signal and falsely
conclude that the up and down movements of the data over time is due only to random error, though the
trend remains obvious.

To help delineate the stable pattern, the signal, from the noise, Figure 17 highlights the groups of four
seasonal data values from Figure 16. It explicitly numbers their seasonality for three groups.

Project the trend “line” into the future and then add the seasonal effect for each corresponding forecasted value.

The process of forecasting is to discern the signal from the noise and then forecast from the signal. This is not
always straightforward, but it is always more accessible with more data. Fortunately, analytic methods exist to
disentangle the trend and seasonal components from each other and from random errors.

Here, the purpose is to visualize some of the various patterns in time-oriented data and to understand better
how the random error always present in data obscures the underlying pattern. The goal is to not only rely
upon analytic forecasting software but also to develop some visual intuition from examining these
visualizations. The more the analyst can discern structure from a visualization, such as trend with geometric
seasonality, often leads to more effective use and understanding of the results provided by the analytic
software.

Visualize Patterns as Time SeriesVisualize Patterns as Time SeriesVisualize Patterns as Time SeriesVisualize Patterns as Time Series
A time series orders the values of a variable by time, just as a run chart does. However, the time series also
provides the corresponding dates or times, usually plotted on the x-axis.

Plotted sequence of data values against the corresponding dates and/or times at which the values were recorded,
usually at regular intervals.

The time series is one of the basic concepts for forecasting. Examples include ship times and inventory levels,
any process that generates values over time. When forecasting a future value from past values of a variable,
discover the underlying structure from the past, disentangled from the random variation. Then, extrapolate
the past structure into the future.

Ultimately, we usually wish to use analytical forecasting methods to obtain a statistical forecast. However, the
analysis begins with a visualization of the time series. Before extracting structure analytically, view the
patterns present over time. The more you understand the structure of the time series before proceeding with
analytical forecasting methods, the better you can direct the forecasting methods to obtain the most accurate
forecast.

Example DataExample DataExample DataExample Data

The data for the following examples is the stock price of Apple, IBM, and Intel from 1985 through mid-2022,
obtained from finance.yahoo.com. The data were obtained from three separate downloads and then
concatenated into a single file. The data are available on the web as an Excel file at the following location.

https://web.pdx.edu/~gerbing/data/StockPrice.xlsx

Make sure to enclose the file reference in quotes within the call to the lessR function Read() .

Data Types
--
character: Non-numeric data values
Date: Date with year, month and day
double: Numeric data values with decimal digits
--

 Variable Missing Unique
 Name Type Values Values Values First and last values
--
 1 Month Date 1350 0 450 1985-01-01 ... 2022-06-01
 2 Company character 1350 0 3 Apple Apple ... Intel Intel
 3 Price double 1350 0 1331 0.10105 0.086241 ... 44.071625 43.389999
--

The output of Read() provides useful information regarding the data file read into the R date frame, here d.
Always review this information to make sure that the data was read and formatted correctly. The variable type of
the date/time variable Month was properly read as Date .

If the data file were stored as a text file, R would not automatically translate the character string of dates into a
variable of type Date . In a text file, all data values are character strings. However, R translates character strings
that are numbers into a numerical variable type when reading the data into an R data frame. Not so with dates,
which remain as character strings. The variable with these date fields must be explicitly converted to variable of
type Date with the as.Date() function. Storing the data as an Excel file avoids this extra step because Excel has
already done the conversion.

There are three variables in the data table: Month, Company, and Price. To plot a time series, there must be a
variable that contains the dates. If the date variable is present in the data file, it must be formatted as a
date/time variable.

In addition to variable types for text strings and numbers, data analysis systems typically provide a variable type
specifically for dates and times.

One advantage of storing the data table as an Excel file is that Excel does an excellent job recognizing and
classifying data values as date values instead of character strings when appropriate. Because the data file is
an Excel file in this example, this formatting has already been done. This formatting then typically transfers
over to the analysis system that will create the visualization.

The file contains 1350 rows of data, with 450 unique dates reported monthly. The dates are repeated for each
of the three companies. There is no missing data. The dates are stored according to the ISO 8601 international
standard, which defines a four-digit year, a hyphen, a two-digit month, a hyphen, and then a two-digit day.

Following are some sample rows of data. The first column of numbers are not data values but rather row
names.

The first four rows of data, which are the first four rows of Apple data.
The first four rows of IBM data, beginning on Row 451.
The first four rows of Intel data, beginning on Row 901.

 Month Company Price
1 1985-01-01 Apple 0.101050
2 1985-02-01 Apple 0.086241
3 1985-03-01 Apple 0.077094
4 1985-04-01 Apple 0.074045

 Month Company Price
451 1985-01-01 IBM 12.71885
452 1985-02-01 IBM 12.49734
453 1985-03-01 IBM 11.94072
454 1985-04-01 IBM 11.89371

 Month Company Price
901 1985-01-01 Intel 0.379217
902 1985-02-01 Intel 0.345303
903 1985-03-01 Intel 0.342220
904 1985-04-01 Intel 0.339137

With the data, we can proceed to the visualizations.

One Time SeriesOne Time SeriesOne Time SeriesOne Time Series

We can plot the time series for any one of the three companies in the data table. Because the data file
contains stock prices for three different companies, we need to subset the data with the process known as
filtering.

Extract a subset of the entire data table for the specified analysis.

Every analysis system provides a way for filtering the data. Set up the time series visualization by plotting
share Price vs. Month, filtering the data so that only the stock price for Apple is visualized.

Plot with the lessR Plot() function of the form Plot(x,y) . When the x-variable is a date, here named Month ,
Plot() creates a time series visualization instead of the x-y scatterplot. The y-variable in this example is Price.

Plot(Month, Price, rows=(Company=="Apple"))

rows : Parameter to specify the logical condition for selecting rows of data for the analysis. Note that in versions
of lessR prior to 4.3.3, this parameter was named rows .

To visualize the data for only one company, we need to select just the rows of data for that company. Select
specified rows from the data table for analysis according to a logical condition.

The R double equal sign, == means is equal to.
The == does not set to equality, it evaluates equality, resulting in a value that is either TRUE or FALSE .
The expression (Company==“Apple”) evaluates to TRUE only for those rows of data for which the data value
for the variable Company equals “Apple”.

size : Parameter to specify the size of the plotted points. By default, when plotting a time series, lessR , default
size of the points is 0. Set at a positive number to visualize the plotted points, which are by default connected with
line segments.

>>> Parameter rows renamed to: filter.
 Change to filter, rows will stop working in the future.

A desirable option that data visualization systems typically offer is the ability to fill the area under the curve to
highlight the form of the plotted time series, a visualization often referred to as an area chart.

Plot(Month, Price, rows=(Company=="Apple"),
 area_fill="slategray2", lwd=3)

area_fill : Parameter to indicate to fill the area under the curve. Set the value to on to obtain the default fill
color for the given color theme, or specify a specific color such as with a color name.

lwd : Parameter to specify the line width of the time series curve. In the accompanying plot it was set to 3 instead
of it’s default value of 1.5 to increase the thickness of the plotted line.

>>> Parameter rows renamed to: filter.
 Change to filter, rows will stop working in the future.

Visualization systems also offer many customization options such as for colors. We will not explore these
customizations here in any detail, but offer the following example.

style(sub_theme="black")
Plot(Month, Price, rows=(Company=="Apple"),
 color="steelblue2", area_fill="steelblue3", trans=.55)

style() : lessR function to set many style parameters. Here, set the background to black by setting the
sub_theme parameter. Styles set with style() are persistent, that is, they remain set across the remaining
visualizations until explicitly changed.

color : Parameter that sets the line color.

area_fill : Parameter that sets the color of the area under the curve.

transparency : Parameter to set the transparency level, which can be shortened to trans . The value is a
proportion from 0, no transparency, to 1, complete transparency, that is, invisible.

>>> Parameter rows renamed to: filter.
 Change to filter, rows will stop working in the future.

Several Times SeriesSeveral Times SeriesSeveral Times SeriesSeveral Times Series

The variable Company in this data table is a categorical variable with three values: Apple, IBM, and Intel.
Visualization systems typically offer options to stratify time series plots by a categorical variable such as
Company. One option plots all three times series plots the same panel.

Plot(Month, Price, by=Company)

by : Parameter that specifies to plot a different visualization for each value of a specified categorical variable on
the same panel.

Another option when plotting multiple times series on the same panel offered by some visualization systems
is to stack each time series on top of each other, what is often called a stacked area chart.

Plot(Month, Price, by=Company, stack=TRUE, trans=0.4)

Set the parameter stack to TRUE to stack the plots on top of each other. When stacked, the Price variable on the
y-axis is the sum of the corresponding Price values for each Company. The y-value for Apple at each date is its
actual value because it is listed first (alphabetically by default). The y-value for IBM is the corresponding value for
Apple plus IBM’s value. And, for Intel, listed last, each point on the y-axis is the sum of all three prices.

A Trellis plot, also called a facet plot, stratifies the visualization on the levels of a categorical variable by
plotting each level separately on a different panel.

Plot(Month, Price, by1=Company)

by1 : Parameter indicates to plot each time series on a separate panel according to the levels of the specified
categorical variable.

Enhance the Trellis plot with the transparent orange fill against the black background, shown in Figure 19.

Plot(Month, Price, by1=Company,
 color="orange3", area_fill="orange1", trans=.55)

Aggregate TimeAggregate TimeAggregate TimeAggregate Time

#d <- Read("https://web.pdx.edu/~gerbing/data/Superstore.xlsx") d <-
Read("~/Documents/BookNew/data/Superstore/Superstore.xlsx")

Consider three variables in the superstore data frame: Order.Date, Sales, and Profit. The variable Order.Date is
a variable of type Date . As can be seen from the data values for these three variables for the first 10 rows of
data, sales are reported daily and there can be multiple sales per day.

 Order.Date Sales Profit
1 2021-01-03 16.448 5.5512
2 2021-01-04 3.540 -5.4870
3 2021-01-04 11.784 4.2717
4 2021-01-04 272.736 -64.7748
5 2021-01-05 19.536 4.8840
6 2021-01-06 2573.820 746.4078
7 2021-01-06 5.480 1.4796
8 2021-01-06 12.780 5.2398
9 2021-01-06 609.980 274.4910
10 2021-01-06 31.120 0.3112

There is too much information to visually display this time series with the data in its present form. Instead,
aggregate the data. First, because there are multiple orders per day, the sales data needs to be collapsed to a
daily basis, presumably by summing. For example, on January 4, 2021, there were three sales for $3.54, $11.78,
and $272.74. Their sum represents the total sales for that day.

However, reporting a time series over three years on a daily basis is too much data to conveniently visualize.
Instead, aggregate the data by some larger time unit, such as quarters, with the time_unit parameter for the
Plot() function.

Plot(Order.Date, Sales, time_unit="quarters")

time_unit : Specify the time unit for the aggregation. Based on functions from the xts package, valid values
include “us” (microseconds), “microseconds”, “ms” (milliseconds), “milliseconds”, “secs” (seconds), “seconds”, “mins”
(minutes), “minutes”, “hours”, “days”, “weeks”, “months”, “quarters”, and “years”.

With aggregation by quarters, the overall increasing trend of sales is evident, as is the consistent seasonal
fluctuations.

[with functions from Ryan, Ulrich, Bennett, and Joy's xts package]

The time_unit parameter could take on a wide range of time intervals from nanosecond through years. In
the next example, aggregate by the largest available time unit, years.

Plot(Order.Date, Sales, time_unit="years")

Figure 21 shows the trend over the four years.

[with functions from Ryan, Ulrich, Bennett, and Joy's xts package]

Aggregating by years obscures the seasonal variations with any year but clearly shows the overall trend
across years. There was an initial downturn from 2022 to 2023, after which sells increased greatly.

We can compare Sales and Profit on the same visualization. Specify the variable, the second parameter, as a
vector, here of two variables Sales and Profit. To stack the second variable in the visualization, Profit, on top of
the first variable, Sales, set the stack parameter to TRUE .

Plot(Order.Date, c(Sales, Profit), time_unit="years", stack=TRUE)

[with functions from Ryan, Ulrich, Bennett, and Joy's xts package]

The visualization demonstrates that profitability always increased with sales increasingly so as sales
increased.

Figure 14: Perfect four seasons with a geometric growth pattern combined with trend.

Figure 15: Four geometric growth seasons with trend and random error.

Figure 16: Four geomentric growth seasons and trend with much random error.

Figure 17: Four geometric growth seasons with trend and much random error with some annotation by season.

Forecast trend with seasonalityForecast trend with seasonalityForecast trend with seasonalityForecast trend with seasonality

Time series visualizationTime series visualizationTime series visualizationTime series visualization

lessR data readlessR data readlessR data readlessR data read

d <- Read("https://web.pdx.edu/~gerbing/data/StockPrice.xlsx")

Date/time variable typeDate/time variable typeDate/time variable typeDate/time variable type

Data filteringData filteringData filteringData filtering

lessR filtered time serieslessR filtered time serieslessR filtered time serieslessR filtered time series

Time series of Apple stock price.

lessR area chartlessR area chartlessR area chartlessR area chart

Time series of Apple stock price with the default fill color.

lessR color customizationlessR color customizationlessR color customizationlessR color customization

Time series of Apple stock prices with a transparent fill color against a black background.

One PanelOne PanelOne PanelOne Panel

lessR stratified time series, same panellessR stratified time series, same panellessR stratified time series, same panellessR stratified time series, same panel

Time series of stock price for Apple, IBM, and Intel plotted on the same panel.

lessR stratified stacked area chartlessR stratified stacked area chartlessR stratified stacked area chartlessR stratified stacked area chart

Stacked time series of stock price for Apple, IBM, and Intel plotted on the same panel.

Different PanelsDifferent PanelsDifferent PanelsDifferent Panels

lessR Trellis time serieslessR Trellis time serieslessR Trellis time serieslessR Trellis time series

Figure 18: Trellis time series visualizations of stock prices for Apple, IBM, and Intel.

lessR customized Trellis time serieslessR customized Trellis time serieslessR customized Trellis time serieslessR customized Trellis time series

Figure 19: Trellis time series visualizations of stock prices for Apple, IBM, and Intel, with customized colors.

Read Tableau superstore dataRead Tableau superstore dataRead Tableau superstore dataRead Tableau superstore data

d[1:10, .(Order.Date, Sales, Profit)]

lessR time series time aggregation by QuarterslessR time series time aggregation by QuarterslessR time series time aggregation by QuarterslessR time series time aggregation by Quarters

Figure 20: Superstore data aggregated by quarters.

lessR time series time aggregation by YearslessR time series time aggregation by YearslessR time series time aggregation by YearslessR time series time aggregation by Years

Figure 21: Superstore data aggregated by years

Two stacked time series aggregated by yearTwo stacked time series aggregated by yearTwo stacked time series aggregated by yearTwo stacked time series aggregated by year

Figure 22: Two stacked time series with data aggregated by year.

ISO is the acronym for the
organization that sets global
standards for goods and services:
the International Standards
Organization, www.iso.org.

❝ Prediction is difficult, especially when dealing with the future. ❞

Danish Proverb

The ForecastThe Forecast

The Smoothing ParameterThe Smoothing Parameter

Exponential smoothing is perhaps the most widely used of the many available time series forecasting
methods. Exponential smoothing provides a set of weights for computing a forecast of the value of a variable
as a weighted average of what occurred for that variable at previous times, with increasingly diminishing
emphasis on more distant previous time periods: What happened two time periods ago has less influence
than what happened the last time period.

The exponential smoothing algorithm computes the forecast for the next time period by decreasing the
forecasting error from the previous forecast of the current time period.

Adjust the next forecast at Time t+1 to compensate for error in the current forecast at Time t.

If the current forecast is larger than the actual obtained value of , a positive difference, adjust the next
forecast smaller than the current forecast. On the contrary, if the current forecast is too small, a
negative difference, then adjust the next forecast upward.

The definition of forecasting error remains the same as with any forecasting situation: The difference between
what is and what was forecasted to be.

At Time t, the difference between the actual value of Y and the forecasted value, .

The error in any specific forecast consists of two components. One component is any systematic error
inherent in the forecast, systematically under-forecasting or over-forecasting the next value of Y. Exponential
smoothing is directed to adjust to this type of forecasting error.

The second type of error inherent in any forecast is purely random. Flip a fair coin 10 times and get six heads.
Flip the same fair coin another 10 times and get four heads. Why? Random, unpredictable fluctuation. There is
no effective adjustment to such variation. Indeed, trying to adjust in reaction to random errors leads to worse
forecasting accuracy than doing no adjustments.

As such, there needs to be some way to moderate the adjustment of the forecasting error from the current
time period to the next forecast. Specify the extent of self-adjustment from the current forecast to the next
forecast with a parameter named (alpha).

Specifies a proportion of the forecasting error that should be adjusted for the next forecast according to
.

The adjustment made for the next forecast is some proportion of this forecasting error, a value from 0 to 1.
Choose a value less than 1, usually considerably less than 1. Adjusting the next forecast by the entire amount
of the random error results in the model overreacting in a futile attempt to model the random error
component. In practice, typically ranges from about 0.1 to 0.3.

The exponential smoothing forecast for the next time period, , is the current forecast, , plus the adjusted
forecasting error, .

.

To illustrate, suppose that the current forecast at Time t, , and the actual obtained value is larger,
. Compute the forecast for the next value at Time t+1, with :

The current forecast of 128 is 5 below the actual value of 133. Accordingly, partially compensate for this
difference from the forecasted and actual values. Raise the new forecast from 128 by .3(133–128) = (.3)(5) = 1.50.
So the new forecasted value is 128 + 1.5 = 129.50.

A little algebraic rearrangement of the above definition yields a computationally simpler expression. In
practice, this expression generates the next forecast at time t+1 as a weighted average of the current forecast
and the forecasting error of the current forecast.

.

For a given value of smoothing parameter , all that is needed to make the next forecast is the current value
of Y and the current forecasted value of Y.

To illustrate, return to the previous example with , the current forecast at Time t, , and the
actual obtained value is larger, . Compute the forecast for the next value at time t+1 as:

Again, raise the new forecast by .3(133–128) = (.3)(5) = 1.50 to 129.50 to partially compensate for this difference
from the forecasted and actual values.

Smoothing the PastSmoothing the Past

Why is this model called an exponential smoothing model? The forecasts computed by the model smooth out
the random errors inherent in each Data value. The exponential reference is explained next.

As shown above, an exponential smoothing model expresses the value of Y for the next time period t for a
given value of only in terms of the current time period. However, a little algebra manipulation shows that
implicit in this definition is a set of weights for all previous time values.

The definition of an exponential smoothing forecast in terms of the values at the current time implies a set of weights
for each previous time period, an example of moving averages.

To identify these weights, consider the model for the next forecast, based on the current time period, t.

Now, shift the equation down one time period. Replace t+1 with t, and replace t with t-1.

We can substitute that expression back into the expression for in the previous equation. Apply some
algebra to this definition, as shown in the appendix, results in the following weights going back one time
periods, for Times t and t+1.

And, going back two time periods,

In each of the above expressions for the forecast , the forecast is a weighted sum of some past time
periods plus the forecast for the last time period considered. This pattern generalizes to all existing previous
time periods. The following table in Figure 1 shows the specific values of the weights over the current and 10
previous time periods for four different values of . More than 10 previous time periods are necessary for the
weights for lower values of , and , to sum to 1.00.

The reason for the word exponential in the name of this smoothing method is shown by Figure 2, Figure 3,
and Figure 4 of the smoothing weights for three different values of . Each set of weights in the following
three figures exponentially decreases from the current time period back into previous time periods.

As stated, the forecast of the value of Y at the next time period is computed according to only the value of the
current time period: () + (1 –) . These weights across the previous time periods are not actually
computed to make the forecast, but they are implicit in the forecast and would provide the same result if the
forecast was computed from all of these previous time periods.

Simple Exponential SmoothingSimple Exponential Smoothing

Refer to the exponential smoothing model described in the previous sections as simple exponential
smoothing or SES. Applying the smoothing to the data results in a self-correcting model that adjusts as
forecasts are made from the starting time point through the latest time period of the series. Figure 5 shows
the corresponding forecast applied to a stable process.

A time series is plotted from two variables, the dates as an R Date variable, generically labeled X, and the value of
the time series at each date, generically labeled Y. We have visualized a time series by plotting the X and Y
variables from within a data frame.

The R founders decided to provide another data format for representating time series data. They define this
format as a time series object with type ts , created with the R function of the same name, ts() . Many functions
that analyze time series data, including those we use here, analyze data as a ts object instead of two variables in
a data frame.

Construct a time series object from only a single variable, a column of continuous Y values, the numerical values
of the time series. The time series object specifies the date for each value of the time series without referring to
any dates in the data frame even if they exist. The time series format does have the advantage of not needing
access to dates in the data file, which do not need to be present.

First, read some stable process data into the d data frame.

d <- Read("http://web.pdx.edu/\~gerbing/data/Stable.xlsx")

There are four variables in this data table, each collected over time. We will focus on Variable Y3. There are no
dates in the data table.

 Y1 Y2 Y3 Y4
1 49.9994 50.0216 49.3042 47.5382
2 50.0002 50.1041 49.3760 48.8368
3 50.0006 50.0305 51.3605 51.6921
4 49.9990 49.9672 50.5292 49.7508
5 50.0022 49.9797 49.8766 50.1722
6 50.0013 50.1061 49.7658 49.6059

Using ts() to create a time series object centers on the time unit by which data were recorded. In this example,
the data were recorded as quarterly data, so the time unit is one year with four periods within each year. The time
unit is the length of time over which the time series data are organized that contains all of the periods (potentially
seasons) without repeating a period.

In this example, convert the data in the d data frame for the variable Y3 to a ts object, with the chosen
name Y_ts. Refer to the variable as d$Y3.
frequency : Parameter that indicates the number of periods in the time unit. In this example, four quarters
constitute the time unit of a year, so set to the value of 4.
start : Parameter that indicates the first date of the time series, which necessarily consists of two values:
The number of the first time unit, here the year, followed by the number of the period within that time unit,
here the quarter. The first value in this time series was collected in Year 2017, Quarter Number 1. If the value
of a parameter consists of multiple values, as it does for the start parameter, then define the multiple
values as a vector grouped by the R function that defines a vector: c() .

Y_ts <- ts(d$Y3, frequency=4, start=c(2017,1))

The time series object, Y_ts, is not in a data frame, so there is no d$ in front of the name of the time series object,
just the name Y_ts. It is data in the form of this time series object, Y_ts , from which the exponential smoothing
model is estimated as the basis for forecasting the value of future time periods.

R displays a times series object in tabular form with the data for each time unit, here a year, in each row. The
columns are the periods (seasons) within each time unit, here four quarters.

 Qtr1 Qtr2 Qtr3 Qtr4
2017 49.3042 49.3760 51.3605 50.5292
2018 49.8766 49.7658 50.5480 50.4216
2019 49.3139 50.5413 49.1228 50.7005
2020 50.4348 49.4026 49.2185 50.2647
2021 50.3357 50.3679 50.2961 50.2833
2022 49.4608 50.7655 51.4348 51.5651
2023 49.3184 49.9858 51.1899 50.6022
2024 50.1502 49.7412

The example above is for four quarters within a year. If the data are monthly, then specify a frequency of 12, etc.

The data are available on the web at:

http://web.pdx.edu/~gerbing/data/Stable.xlsx

To do exponential smoothing, we use the ets() function from the forecast package. As with all contributed
packages, the package must first be installed, such as with the RStudio Tools menu, Install Packages... .
Then, in any active R session in which you refer to this function, you need to first call library(forecast) .

To estimate the model, specify the time series object as the only required parameter for the ets() function. Save
the results in the object with the chosen name of fit .

1. Model estimation: fit <- ets(Y_ts)

From the estimated model, compute the forecast with the forecast() function, also from the forecast
package. Save the results in the object f. The parameter h specifies the number of time periods to forecast.

2. Compute the forecast: f <- forecast(fit, h=4)

Plot the time series and computed forecasts and prediction intervals from the information in the same object,
here named f . As options, specify an optional title with the parameter main . Specify the label on the y-axis with
the ylab parameter. You could delete both parameters if you wish.

3. Visualize results: autoplot(f, main=NULL, ylab="Y")

List the forecasted values and the prediction intervals as a table.

4. List results: f

Figure 5 also visualizes the 80% and 95% prediction intervals. The wider 95% prediction interval shows in a
light purple and the narrower 80% prediction interval shows in a darker shade of purple.

Estimated range of values that contains 95% of all future values of forecasted variable Y for a given future value of
time.

The 95% prediction interval is wider than than 80% prediction interval because it encompasses a larger range
of potential future data values. To be more confident that the prediction interval will contain the value of Y
when it occurs requires a larger prediction interval than if we are less confident. At the extreme, for data that
are in the range of this example, we would be 99.9999999% confident the data value will fall within the range
of -10,000 to 10,000.

In addition to the visualization, the precise forecasted values are also available along with their corresponding
80% and 95% prediction intervals.

 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
2024 Q3 50.19771 49.29586 51.09956 48.81845 51.57697
2024 Q4 50.19771 49.29586 51.09956 48.81845 51.57697
2025 Q1 50.19771 49.29586 51.09956 48.81845 51.57697
2025 Q2 50.19771 49.29586 51.09956 48.81845 51.57697

We see that the forecasted values from the SES model are equal to each other.

The problem is that the simple exponential smoothing model only accounts for the level of the forecasting
data, the forecast from the last time point for which the value of Y exists.

What value of should be chosen for a particular model in a particular setting? Base the choice of on some
combination of empirical partly theoretical considerations.

The theoretical reason for the choice of the value of follows from the previous table and graphs that
illustrate the smoothing weights for different values of .

The larger the value of , the more relative emphasis placed on the current and immediate time periods.

If the time series is relatively free from random error, then a larger value of permits the series to more
quickly adjust to any underlying changes. For time series that contains a substantial random error component,
however, smaller values of should be used so as not to “overreact” to the random sampling fluctuations
inherent in the data.

How to compare the utility of one value of another? The answer is based on the same technique for
evaluating models in general: How close is the predicted or forecasted value of Y to the actual value of Y? To
fully understand the extent of this forecasting error, we need to evaluate the model against these true
forecasts. How can the accuracy of a given model be evaluated when the future forecasted events have not
yet occurred? There is a bit of a trick we can use before we have access to these future values of the time
series. Apply the model to the data we already have, the data on which the model has been trained, that is,
estimated.

Existing data values from which the forecasting model has been estimated.

For each time period of the existing time series, that is, for data that have already occurred, we can compute
the value consistent with the model, the value fit by the model given previous data values that have already
occurred.

A fitted value is the value computed by the model that estimates the next value in the time series.

When applied to future events, the value fitted by (computed from) the model is a forecast. However, when
the model is applied to data that have already occurred, there is no forecast because we already know the
value of Y. With imprecise language, some people refer to these fitted values that have already occurred as
forecasted values. Better to be more precise. Retain the word forecast for computing the fitted value of Y from
the model to future values of Y.

Figure 6 shows both the data and the fitted values for both the training data and the forecasted data values.
The time series of the fitted values shows the smoothing effect of the exponential smoothing model applied
to the training data. Essentially, the model is used to act as if forecasting the next did the value in the time
series from the previous value, even though both values have already occurred

For each data point, the difference between the actual data value and the value fitted by the model is the
training error at that data value. The training error is computed the same as the forecasting error but applies
specifically to data values on which the model trained, the training data.

For example, the third data value is for the third quarter of 2015, 51.3605, visually represented by that
first peak that appears in Figure 6. The corresponding smoothed value fitted by the model, 49.6959, is
considerably below the corresponding data value. The model underestimates what occurred by 1.6646 units.

How do we develop a statistic that assesses the overall fit of the model to the training data? Each training
data value correspondence to a fitted value, which together determine a training error. To assess the overall fit
of the model to the training data, calculate this training error for each data value. The errors sum to 0 for the
optimal model, so to assess the overall extent of the error, square each error and sum the squared errors.
Refer to this sum as SSE, for the sum of squared errors. Because the sum depends upon the number of data
values that are in the sum, We could get a smaller SSE for a bad model computed from a small amount of data
than for a good model that fits the data well but is estimated from many data. So, typically convert the sum to
a mean, called MSE or mean squared error.

Because the errors were squared, to obtain a fit statistic consistent with the units in which the data values are
expressed, take the square root of the mean: . The result is what we call the root mean squared error
or RMSE. The RMSE is a commonly used fit statistic assesses the overall fit of the model to, in this situation,
the training data. No we have a guide for how we can choose the value of alpha, , when estimating the
exponential smoothing model.

Choose the value of that minimizes RMSE .

The discovery of the value of that provides this minimization is generally provided by the exponential
smoothing software. Forecasting software typically allows us to customize the value of alpha, but the value
computed by the software is often the value to use. The value of computed for the model visualized in
Figure 6 is 0.18521, which resulted in a RMSE of 0.68. This value of results in the smallest value of RMSE
possible for that Version of the exponential smoothie model for that data. For example, setting at 0.2 results
in a RMSE of 0.726. Increasing to 0.5 further increases RMSE to 0.802.

Unfortunately, assessing the fit of a model on the data on which it trained is a kind of cheating.

The model fits the training data too well, including modeling random fluctuations that do not generalize to new data
for which the forecasts are made.

We do not necessarily seek the very best fit of the model to the training data. An overfit model captures too
much random noise in the data. The most valid way of assessing fit is on new data. In this situation, the more
interesting question is not how well the model fits the training data but rather how well it fits forecasted data.
If the model is overfit, the forecasting errors will tend to be larger than the errors from the training data.

For example, are the fluctuations in the time series data regular, indicating seasonality, or are they irregular,
indicating random sampling fluctuations? Particularly for smaller data sets, not only can people see patterns
where none exist, so can the estimation algorithm. It is possible, for example, to submit data from a stable
process and have the estimation algorithm indicate the presence of some seasonality. If this seasonality is
extended into the future as a forecast, the forecasting errors will be larger if there is no seasonality in the
underlying structure. An advantage in fitting the training data is not necessarily an advantage for reducing
forecasting error.

More General ModelsMore General Models

Problem with SESProblem with SES

The simple exponential smoothing model, or SES, with its smoothing parameter, , only applies to stable
processes, that is, models without trend or seasonality.

Regardless of the form of the time series data, simple exponential smoothing provides a “flat” forecast function, all
forecasts take the same value derived the last fitted value of the time series at Time t.

This flatness is fine for data without trend or seasonality, as illustrated in Figure 5 for a stable process. The
problem arises when the data do possess trend and/or seasonality. Unfortunately, the simple exponential
smoothing forecasts are “blind” to the trend and seasonality in the data.

Figure 7 illustrates the unresponsive flatness of the forecast of a simple exponential smoothing model, here
applied to the time series data of positive trend and quarterly seasonality. The data are available on the web
at:

http://web.pdx.edu/~gerbing/0Forecast/data/Sales07.xlsx

The RMSE of the model is 0.394.

Forms of Exponential SmoothingForms of Exponential Smoothing

To adapt to structures other than that of a stable process, there are three primary components for defining
exponential smoothing models: error, trend, and seasonality. There are two primary types of expressions for
each of the three components: additive and multiplicative. The general characteristics of the resulting six
different types of models are described in Table 1.

To generalize the simple exponential smoothing model to accommodate trend and seasonality requires the
model to be expanded to include a trend parameter, respectively. Here, we will not pursue the formal
statement of these more sophisticated smoothing models. Stil, the concept of a smoothing parameter
remains the same, now applying not to the training error directly but to deviations from slope and seasonality
estimated from the data.

The most straightforward and perhaps the most common exponential smoothing models are entirely additive.
Next most common is to include a multiplicative seasonality. The accompanying reading/video illustrates
these models.

What type of model is exhibited by your data? The first step is to plot your data to visually search for an
underlying structure. The problem is that this structure is obscured by the random noise that contributes to
each data value. With your data visualized, that is, your time series plotted, try to see through the noise and
intuit the underlying structure. The better you can discern the underlying structure, the more you can guide
the analytical forecasting technique too more appropriately match the existing structure. Some forecasting
software will attempt to discover the additive or multiplicative structures. To better adapt to the underlying
data, virtually all exponential forecasting software allows custom values of all three smoothing parameters.

TrendTrend

To account for these deficiencies, the simple exponential smoothing models have been further refined.

Add a trend smoothing parameter to the model to account for trend in the data and the subsequent forecast.

This method provides for two smoothing equations, one for the level of the time series and one for the trend.
As with the simple exponential smoothing model, the level equation forecasts as a weighted average of the
current value, with weight and the current forecasted value with weight . Now, however, the
forecasted value is the level plus the trend.

Similarly, the trend gets its own smoothing parameter, (beta), which follows the same logic as the
smoothing parameter. The trend, , is a weighted average of the estimated trend at Time t based the previous
estimate of the trend. The result is that the forecast now accounts for trend, as shown in Figure 8 of the trend

Exponential Smoothing ForecastingExponential Smoothing ForecastingExponential Smoothing ForecastingExponential Smoothing Forecasting

David Gerbing Jun 26, 2024, 04:12 pm
AUTHOR PUBLISHED

Self-adjusting forecastSelf-adjusting forecast

Ŷt Yt

Ŷt+1 Ŷt

Ŷt+1

Forecasting errorForecasting error

Yt–Ŷt

α

Smoothing parameter Smoothing parameter α

α(Yt–Ŷt), 0 ≤ α ≤ 1

α

Yt+1 Yt

α(Yt − Ŷt)

Exponential smoothing forecastExponential smoothing forecast

Ŷt+1 = Yt + α(Yt − Ŷt), 0 ≤ α ≤ 1

Ŷt = 128
Yt = 133 α = .3

Ŷt+1 = Yt + α(Yt − Ŷt)
= 128 + 0.3(133 − 128)
= 128 + 0.3(5)
= 128 + 1.5
= 129.50

Exponential smoothing forecast computationExponential smoothing forecast computation

Ŷt+1 = (α)Yt + (1–α)Ŷt, 0 ≤ α ≤ 1

α

α = .3 Ŷt = 128
Yt = 133

Ŷt+1 = (α)Yt + (1–α)Ŷt

= (.30)133 + (.70)128
= 39.90 + 89.60
= 129.50

α

Moving averagesMoving averages

Ŷt+1 = (α)Yt + (1 − α)Ŷt

Ŷt = (α)Yt−1 + (1 − α)Ŷt−1

Ŷt

Ŷt+1 = (α)Yt + α(1 − α)Yt−1 + (1 − α)2 Ŷt−1

Ŷt+1 = (α)Yt + α(1 − α)Yt−1 + α(1 − α)2 Yt−2 + (1 − α)3 Ŷt−3

Ŷt+1

α

α α = .1 α = .3

Figure 1: The weights from exponential smoothing models for alpha = .1, .3, .5, .7 for the present value of Y and the previous
ten values of Y.

α

Figure 2: Smoothing weights with alpha = .5 for the forecast of the next time period.

Figure 3: Smoothing weights with alpha = .3 for the forecast of the next time period.

Figure 4: Smoothing weights with alpha = .1 for the forecast of the next time period.

α Ŷt α Ŷt

R time series objectR time series object

head(d)

Y_ts

R simple exponential smoothing of a stable processR simple exponential smoothing of a stable process

Figure 5: Simple exponential smoothing forecast applied to a stable process.

95% Prediction interval95% Prediction interval

Ŷt+1 = Ŷt+2 = Ŷt+3 = Ŷt+4 = 50.1977

Training DataTraining Data

α α

α

α

Influence of the value of Influence of the value of α

α

α

α

α

Training dataTraining data

Fitted valuesFitted values

Figure 6: Simple exponential smoothing forecast applied to a stable process that illustrates data (black line) and the fitted
values computed from the model (red line), which becomes the forecasted values at the end of the time series.

Assess Model FitAssess Model Fit

Y3 =
Ŷ3 =

√MSE

α

Choose the value of Choose the value of α

α = √MSE

α

α

α

α

α

OverfittingOverfitting

OverfittingOverfitting

α

Simple exponential smoothing forecastSimple exponential smoothing forecast

Figure 7: Inappropriate forecasts from additive trend and seasonality data with simple exponential smoothing.

Table 1: Classification of different additive and multiplicative exponential smoothing models.

AdditiveAdditive MultiplicativeMultiplicative

ErrorError The average difference between the
observed value and the predicted
value is constant across different
levels of the time series. The error
does not depend on the magnitude of
the forecasted value.

The average difference between the
observed and predicted values is
proportional to the level of the
forecasted value. As the forecasted
value increases or decreases, the error
also increases or decreases
proportionally.

TrendTrend The linear trend is upwards or
downwards, growing or decreasing at
a constant rate, which plots as a line.

The trend component increases or
decreases at a proportional rate over
time. The result is an upward sloping
or downward sloping curve at an
accelerating rate.

SeasonalSeasonal The intensity of each seasonal effect
remains the same throughout the
time series, adding or subtracting the
same amount from the trend
component along the time series.

The intensity of each seasonal effect
consistently magnifies or diminishes,
adding or subtracting a increasingly
larger or smaller amount from the
trend component along the time
series.

Holt’s adaption of exponential smoothing to trendHolt’s adaption of exponential smoothing to trend

α 1 − α

β α

β

Table of contents
The Forecast

The Smoothing Parameter
Smoothing the Past
Simple Exponential
Smoothing

More General Models
Appendix

One issue encountered when
computing the fitted values for an
exponential smoothing model from
the training data is that the current
forecast is needed to compute the
next forecast. What value should be
used for the forecast of the first
time period in which no previous
forecast exists? One technique is to
set the first forecast equal to the
first data value. Another technique
is to set the first forecast equal to
the average of the first four or five
data values.

https://web.pdx.edu/~gerbing/0Viz/Process/Process.html
https://web.pdx.edu/~gerbing/0Viz/Processes/Processes.html

estimate of the trend. The result is that the forecast now accounts for trend, as shown in Figure 8 of the trend
and seasonal data.

The ets() function from the forecast package has an optional parameter named model . If you do not specify
a value for the parameter, the function will do its best to classify your exponential smoothing model according to
the three basic components: error, trend, and seasonality. The function usually gets the classification correct, but
not always.

You can explicitly specify the model by specifying those three components in that order with the following codes:

"N" for no effect (except for the first component, the arrow component)
"A" for an additive effect
"M" for a multiplicative effect
"Z" for let the model decide.

For example, to specify a stable process model as in the previous example, specify a model with A dditive errors,
with N o trend and N o seasonality: "ANN" . Not specifying a value for the model parameter is the same as
specifying "ZZZ" , that is, have the model estimate the type of error component, trend component, and seasonal
component.

Specify an A dditive model with A dditive trend and N o seasonality with "AAN" .

Here, the time series object, sales_ts, has already been established.

1. Estimate the model: fit <- ets(sales_ts, model="AAN")

Use the accuracy() function to display several fit indices, including the root mean squared error, RMSE.

2. View fit indices [optional]: accuracy(fit)

3. Compute the forecast: f <- forecast(fit, h=4)

4. Visualize the forecast: autoplot(f, main=NULL, ylab="Y")

5. List the forecast: f

The precise fitted values and their corresponding prediction interval follow.

 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
2024 Q1 2.127114 1.717271 2.536956 1.500314 2.753913
2024 Q2 2.229282 1.819440 2.639124 1.602482 2.856082
2024 Q3 2.331450 1.921608 2.741293 1.704651 2.958250
2024 Q4 2.433619 2.023776 2.843461 1.806819 3.060419

The corresponding fit indices follow, including the root mean squared error, RMSE. The statistic ME is the
mean or average error, which should be close to zero. The statistic MAE is the mean absolute error, computed
by taking the absolute value of each error term for each row of data instead of squaring the error term before
summing and computing the mean. Taking the absolute value of a number just means dropping the negative
sign if it exists.

 ME RMSE MAE MPE MAPE MASE ACF1
Training set 0 0.277 0.26 -6.008 23.356 0.641 -0.073

The model improperly ignores the seasonality but does capture the underlying trend of the data. As such the
forecasted values for the next four quarters increase from 2.127 units to 2.434 units.

Trend and SeasonalityTrend and Seasonality

Good to account for trend, and an appropriate method for data without seasonality. Fortunately, the
exponential smoothing method has also been extended to account for seasonality.

Add a trend smoothing parameter and a seasonality smoothing parameter to the model to account for trend and
seasonality in the data and the subsequent forecast.

This adaption to exponential smoothing is referred to as the Holt-Winters seasonal method. This method is
based on three smoothing parameters and corresponding equations — one for the level, (alpha), one for the
trend, (beta), and one for the seasonality, (gamma).

Apply the model to trend and seasonal data in Figure 9.

The ets() function from the forecast package has an optional parameter named model . If you do not specify
a value for the parameter, the function will do its best to classify your exponential smoothing model according to
the three basic components: error, trend, and seasonality. The function usually gets the classification correct, but
not always.

You can explicitly specify the model by specifying those three components in that order with the following codes:

"N" for no effect (except for the first component, the arrow component)

"A" for an additive effect

"M" for a multiplicative effect

"Z" for let the model decide.

Specify an A dditive model with A dditive trend and A dditive seasonality with "AAA" .

Here, the time series object, sales_ts, has already been established.

1. Estimate the model: fit <- ets(sales_ts, model="AAA")

Use the accuracy() function to display several fit indices, including the root mean squared error, RMSE.

2. View fit indices [optional]: accuracy(fit)

3. Compute the forecast: f <- forecast(fit, h=4)

4. Visualize the forecast: autoplot(f, main=NULL, ylab="Y")

5. List the forecast: f

Get the numeric forecasts with their corresponding prediction intervals. These values can be presented as a
table or as a visualization.

The precise fitted values and their corresponding prediction interval follow.

 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
2024 Q1 1.838430 1.672782 2.004077 1.585094 2.091765
2024 Q2 2.433658 2.267122 2.600193 2.178963 2.688352
2024 Q3 2.635763 2.468341 2.803185 2.379713 2.891812
2024 Q4 2.190000 2.021694 2.358305 1.932598 2.447401

The corresponding fit indices follow, including RMSE.

 ME RMSE MAE MPE MAPE MASE ACF1
Training set -0.003 0.091 0.073 0.211 8.41 0.179 -0.436

With this more sophisticated model, although we have trend we also have seasonality where the fourth
quarter tends to be lower in value than the previous quarters. Here, although there is increasing trend, Quarter
#4 forecasted units are less than those forecasted for Quarter #3. Specifically, 2.636 and 2.190.

This more general model accounts for the trend and the seasonality. Because the time series is so well
structured, that is, a regular pattern with relatively small random error, the forecasts show relatively small
prediction intervals.

This Holt-Winters exponential smoothing forecast of this trend and seasonal data contrasts favorably with the
linear regression forecast of the same data. The advantage of the Holt-Winters technique is that it does not
rely upon the assumption of linearity, and so is more general. As such, it is one of the most widely used
forecasting techniques in business forecasting.

We can compare the fit of the different models, each to the same data with trend and seasonality, as in
Table 2.

The more the form of the model matches the structure of the data, the better the fit to the training data.
Although we do not have an estimate of true forecasting error, the same logic applies. The more data
structure and model specification align, the more accurate the forecast on new data.

AppendixAppendix
The exponential smoothing model for the forecast of the next time period, t+1 is defined only in terms of the
current time period t:

Now, project the model back one time period to obtain the expression for the current forecast ,

Now, substitute this expression for back into the model for the next forecast,

A little algebra reveals that the next forecast can be expressed in terms of the current and previous time
period as,

Moreover, this process can be repeated for each previous time period. Moving back two time periods from t+1,
express the model is expressed as,

Substituting in the value of into the previous expression for yields,

Working through the algebra results in an expression for the next forecast in terms of the current time period
and the two immediately past time periods,

R exponential smoothing with trendR exponential smoothing with trend

Figure 8: Inappropriate forecasts from additive trend and seasonality data accounting for trend only.

The Holt-Winters adaption of exponential smoothing to trend and seasonalityThe Holt-Winters adaption of exponential smoothing to trend and seasonality

α

β γ

R exponential smoothing with trend and seasonalityR exponential smoothing with trend and seasonality

Figure 9: Forecasts from additive trend and seasonality with Holt-Winter’s method.

Yt+3 = Yt+4 =

Table 2: RMSE across three models of the same trend/seasonal data.

StableStable TrendTrend Trend/SeasonalityTrend/Seasonality

RMSE 0.394 0.277 0.091

Ŷt+1 = (α)Yt + (1 − α)Ŷt

Ŷt

Ŷt = (α)Yt−1 + (1 − α)Ŷt−1

Ŷt

Ŷt+1 = (α)Yt + (1 − α) [(α)Yt−1 + (1 − α)Ŷt−1]

Ŷt+1 = (α)Yt + α(1 − α)Yt−1 + (1 − α)2 Ŷt−1

Ŷt−1 = (α)Yt−2 + (1 − α)Ŷt−2

Ŷt−1 Ŷt+1

Ŷt+1 = (α)Yt + α(1 − α)Yt−1 + (1 − α)2 [(α)Yt−2 + (1 − α)Ŷt−2]

Ŷt+1 = (α)Yt + α(1 − α)Yt−1 + α(1 − α)2 Yt−2 + (1 − α)3 Ŷt−3

To create the interactive maps shown here requires the contributed R packages: tidygeocoder , sf , maps ,
and mapview . As always, these packages must be installed once, such as with the RStudio Tools menu, and
then accessed with the library() function for each R session. Or, just run the following function call to
install.

install.packages(c("tidygeocoder", "sf", "mapview", "maps"))

Now access the packages from your R library with the following library() calls. With lessR , turn off the
suggestions to save space and focus on the primary content.

Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE

MapsMapsMapsMaps

ProjectionsProjectionsProjectionsProjections

The Earth is approximately spherical. We draw maps of the Earth on flat surfaces such as paper or a computer
screen. To create a map we must transfrom spherical coordinates, which describe specific locations on a
curved surface with three dimensions, into the two-dimensional x,y coordinates of a flat surface.

Flatten the coordinates of latitude and longitude that describe a position on the Earth’s three-dimensional surface into
two dimensions.

All maps of any part of the Earth are projections. Unfortunately, a flat surface cannot represent a spherical
object without distortion. There are many available competing projections, each with their own particular set
of flaws. A transformation to flatness cannot simultaneously retain all of the following: accuracy of area,
direction, distance, and shape. Each possible projection compromises at least one of these properties,
focusing on minimizing the distortion in the others. The larger the area mapped, the more distortion
encountered. A world map necessarily presents more distortion than a city map.

Figure 1 illustrates two different projections of the earth-s surface.

Figure 1: World maps created from the same data but two different projections.

Figure 1 (a) presents one of the most straightforward, simpler projections, the rectangular projection, which
linearly plots latitude and longitude directly into coordinates in the x-y plane. This projection renders the Earth
as a flat rectangle, necessarily resulting in much distortion. For example, the Antarctic is not many times larger
than North America.

The Mollweide projection in Figure 1 (b) renders a more sophisticated map of the Earth with much less
distortion of the sizes of the continents. However, there is some loss of accuracy of angles between the
continents and their shapes. The Mollweide projection follows from a non-linear transformation of the
spherical coordinates of latitude and longitude into the coordinates of the map’s x-y plane.

Map TypesMap TypesMap TypesMap Types

There are many types of maps. The following are among the most common types.

Political map or country map: shows political and administrative boundaries, such as countries and states
within countries, and cities within states, what Tableau calls a symbol map when plotted symbols
represent geographical entities such as cities and possible the size of the plotted symbol reflects the
extent of the value of some variable such as population. With a small enough area that shows streets and
highways, this map can be called a street map.
Choropleth map or thematic map: fill in different parts of the map with varying intensities of color, what
Tableau calls a filled map, where the color intensity reflects the value of some other variable
Physical map or terrain map: shows natural landscape features of the Earth, what Tableau calls a satellite
map when created from imagary of the world

We will use the mapview() function from the package of the same name to create maps in these three
styles.

Visualization ModesVisualization ModesVisualization ModesVisualization Modes

Store a digital image in one of two primary formats: vector or raster.

Composed of paths defined by mathematical formulas, including points, lines, and curves.

Vector images are resolution independent, so they scale perfectly from small to large with no distortion
because they consist of mathematical descriptions of objects. Viewing a vector image is viewing the display of
mathematical objects created at the given resolution. They are informally referred to as drawings, roughly
analogous to a human-created drawing with pen and paper that has the advantage of scalability. Common file
types are .pdf and .eps.

Vector images can scale perfectly, but without the finest level of detail and gradation that a photograph can
provide, which represents the other primary type of image.

Composed of a grid of pixels, each having a specific color value.

A photograph is a raster image, typically composed of a large number of tiny pixels or dots. The disadvantages
are that raster images can require much storage space compared to vector images and distort when scaled to
larger images. A raster image, however, at its native resolution, can achieve precise detail, detailed textures
with a gradation of colors. A raster image is also called a bit-mapped image or more informally, a painting or
photograph. Common file types are .jpeg or .jpg, and .png.

Figure 2 presents an example of each type of image.

Figure 2: Vector and raster images.

The key for map making is that historically raster images were required to construct detailed maps. Now,
quality maps also can be constructed from vector images. Raster maps can also be constructed from
visualization systems but given the successful development of the more flexible vector images, that is all that
will be covered here.

GeocodesGeocodesGeocodesGeocodes

Access the GeocodesAccess the GeocodesAccess the GeocodesAccess the Geocodes

If we wish to plot geographical objects such as cities on a map, to identify each object we need its location.

An object’s location in terms of longitude and latitude.

Obtain geocodes from location-based data, such as such as street addresses or place names. We have two
ways to obtain these geocodes. One method uses an online service for the specific addresses of places we
provide, and the other accesses data files on the web that include geocodes for existing geographical
features, such as cities around the world. Of course, the advantage of custom geocodes is that we can
customize the resulting map to the specific locations of interest.

Once the geocodes are obtained for the desired locations, creating the resulting map is straightforward.

Visualization systems typically provide multiple methods to obtain custom geocodes. For R, we will use the
geocode() function from the tidygeocoder package to obtain the geocodes. You can present the address
for each object as a single character string or divide it into separate variables that specify the street, city, state,
and ZIP Code.

One advantage of using this geocode() function is that the data file you submit to the function can contain
additional information that will remain part of the resulting geocoded file.

In addition to locations, your geocode data file can contain other information useful to visualize such as number of
employees for company locations, and financial data such as revenue, sales, and profitability.

Each of these different variables can be visualized on a map such as creating a bubble plot where the size of
the plotted point represents the intensity of the corresponding variable.

Figure 3 shows the information contained in an Excel file that will be input into the geocodes() function. The
variables can have any name. The only variable needed to get the geocodes is the address of each location.
Suppose we are a business that sells some service or product to the following locations.

Prepare to obtain the geocodes by first reading the address file into R, such as into the g data frame.

The call to geocode() is straightforward. The first parameter is the data frame of the addresses, followed by
the address parameter that references your column of addresses from the Excel worksheet. Several online
services provide the geocodes from which geocodes() will obtain that information. The geocoding service
used here is Open Street Maps, specified by the method parameter as "osm" .

Passing 3 addresses to the Nominatim single address geocoder

Query completed in: 3 seconds

A tibble: 3 × 6
 location addr sales profit lat long
 <chr> <chr> <int> <int> <dbl> <dbl>
1 PSU 1825 SW Broadway, Portland, OR 97201 12490 2942 45.5 -123.
2 Slabtown New Seasons 2170 NW Raleigh St, Portland, OR 97210 8027 984 45.5 -123.
3 Whole Foods Pearl 1210 NW Couch St, Portland, OR 97209 5482 3773 45.5 -123.

The revised data file contains the original information plus the geocodes, the longitude and latitude of each
location. You may wish to save the updated file with the geocodes for use with another visualization system
such as Tableau. to do so, use the lessR function Write() to write the information in the geocoded data
data frame to an external file with a format of your choice. Specify the date frame, the name of the file you
wish to write within quotes, which can include a full path name. The default format is csv . To write an Excel
file specify the value of the parameter format to "Excel" .

>>> Note: data is now the first parameter, to is second

[with the writeData function from Schauberger and Walker's openxlsx package]

The g data values written at the current working directory
 Geocoded.xlsx in: /Users/dgerbing/Documents/000/553/1Weeks/Week07/Maps

Unlike the base are right functions, Write() helpfully informs you as to where it wrote the file. If writing to an
Excel file, you can drop the format parameter and use the following abbreviation for the function call:
wrt_x() .

A free, public domain database that includes cities worldwide is available at simplemaps.com . Following is
the URL where you can download a free list of tens of thousands of the world’s most populous cities. Go to
this URL and click the Download button for the Basic , and free, database.

https://simplemaps.com/data/world-cities

Here, the data was downloaded to the data folder within the current folder from which this R session is
active. Within R studio, click on the files tab in the lower right corner window pane. To be consistent with the
file location specified in the following Read() statement, there should be a folder called data displayed. If
you click on that folder you should see the indicated file. Of course, you can place a file anywhere you wish on
your computer’s file system.

Data Types
--
character: Non-numeric data values
integer: Numeric data values, integers only
double: Numeric data values with decimal digits
--

 Variable Missing Unique
 Name Type Values Values Values First and last values
--
 1 city character 47868 0 44383 Tokyo Jakarta ... Hongseong Charlotte Amalie
 2 city_ascii character 47867 1 44155 Tokyo Jakarta ... Hongseong Charlotte Amalie
 3 lat double 47868 0 35697 35.6897 -6.175 ... 36.6009 18.342
 4 lng double 47868 0 38684 139.6922 106.8275 ... 126.665 -64.9331
 5 country character 47868 0 242 Japan ... U.S. Virgin Islands
 6 iso2 character 47868 0 241 JP ID IN ... KR KR VI
 7 iso3 character 47868 0 241 JPN IDN IND ... KOR KOR VIR
 8 admin_name character 47671 197 4042 Tōkyō Jakarta ... Chungnam Virgin Islands
 9 capital character 13023 34845 3 primary primary ... admin primary
10 population double 47656 212 31038 37732000 33756000 ... NA NA
11 id integer 47868 0 47868 1392685764 ... 1850037473
--

From the output of Read() , there are 11 variables and 47868 rows of data. Variables include the name of the
city, the name of the country, country abbreviations, the name of states or equivalent entities within countries,
and the latitude and longitude of each city.

The geocodes file is huge. Because the goal is to create a map of Italy with its largest cities plotted, subset the
data frame to just include rows that reference large Italian cities. As an option, we can also include the
relevant variables. Subset the data frame d of city information to just the Italian cities with more than 250,000
inhabitants.

Accomplish this subsetting of rows and columns of data frame d with the Base R function subset() . Save
the extracted data in a new data frame, named here cities, then list all 10 rows of data.

The first parameter of the subset() function is the data frame that will be subsetted, here d. The second
parameter is the logical condition for the subsetting. In this example, choose values of variable country that
simultaneously satisfy the two specified conditions:

the country is Italy
the population of the city is greater than 250,000

The double equal sign, == , indicates to logically evaluate the data values of the variable country and select
only those that equal Italy. It is not an assignment statement but a logical evaluation. The & means and, which
means that both conditions must be true simultaneously for the corresponding row of data to be extracted
from the full data file.

The subset reveals that data for only r nrow(cities)` cities were extracted from the original data frame d that
consists of 47868 rows of data.

There are several variables we do not need for this analysis included in the original geocodes data file. There
is no harm in keeping them, but working just with the variables we need is a little cleaner, especially as we
view our data to verify its integrity. To extract variables from the full data frame, we still use the subset()
function but now with the select parameter.

 city lat lng country population
288 Rome 41.8933 12.4828 Italy 2748109
567 Milan 45.4669 9.1900 Italy 1354196
841 Naples 40.8333 14.2500 Italy 913462
915 Turin 45.0792 7.6761 Italy 841600
1184 Palermo 38.1111 13.3517 Italy 630167
1327 Genoa 44.4111 8.9328 Italy 558745
1838 Bologna 44.4939 11.3428 Italy 387971
1945 Florence 43.7714 11.2542 Italy 360930
2209 Bari 41.1253 16.8667 Italy 316015
2314 Catania 37.5000 15.0903 Italy 298762
2630 Verona 45.4386 10.9928 Italy 255588
2684 Venice 45.4375 12.3358 Italy 250369

Usually, if we are also to extract variables as well as rows of data we would accomplish that with the same call
to subset() when we extracted the rows of data. Here, we do this separately to emphasize that the variable
extraction is an option.

We now have the location in terms of latitude and longitude of each Italian city with more than 250,000
residents and its population. This is the information we need to pursue the desired map of the 10 largest cities
in Italy.

The downloaded file contains the variable population. However, for your specific purposes, you may wish to add other
information to the file, such as financial information.

Adding additional variables to your geocodes data file can be straightforwardly accomplished with the Base R
merge() function. Or, read the geocodes file into Excel and add as many variables as desired. Then, read the
enhanced data file back into R and convert it to a special features data table.

Spatial DataSpatial DataSpatial DataSpatial Data

Geographers have developed a specific data table format for storing geographical data, from which maps are
created.

Data that describes geophysical features and locations such as the boundaries between countries, altitudes, and
shorelines.

The standard format for storing spatial data is independent of any one software system, though can be
adapted locally by any visualization system.

Uses geometric figures such as points, lines, or polygons to describe the features of geographical objects.

A simple features data table describes vector data. It is still a data table, with variables in the columns and
geographical objects in the rows. Each row of simple features data represents a single spatial object, such
as a point, associated data, such as size, and a variable that contains the coordinates that describe the object’s
shape.

To specify a location of a geographical object requires adopting a specific projection to define that location on
the flat map.

Define the projection that transforms locations on the surface of the Earth to the coordinates of a map.

Geographers have defined more than 7000 CRS’s. A commonly encountered CRS is identified by the number
4326. To understand how and when to choose a specific CRS becomes a deep dive into cartography, the
practice of map making. Fortunately, this CRS of 4326 is generally applicable to many different maps, which
typically defines the default projection for much mapping software.

To create a map, the standard data table must be converted to a simple features data table. Within R, the
function from the sf package, st_as_sf() , accomplishes this transformation. Reference a standard data
frame that includes the longitude and latitude of each geographical object, specified with the coords
parameter. List the longitude first, here with the abbreviated variable name lng, and then latitude, abbreviated
lat. Also, specify a CRS with the crs parameter.

With our Portland geocode data, note that the geocode() function creates data files with the abbreviations
long and lat for longitude and latitude, respectively. Refer to these variable names in the call to st_as_sf() .

Simple feature collection with 3 features and 4 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -122.6962 ymin: 45.51182 xmax: -122.6835 ymax: 45.5337
Geodetic CRS: WGS 84
A tibble: 3 × 5
 location addr sales profit geometry
* <chr> <chr> <int> <int> <POINT [°]>
1 PSU 1825 SW Broadway, Portland, OR 97201 12490 2942 (-122.6843 45.51182)
2 Slabtown New Seasons 2170 NW Raleigh St, Portland, OR 97210 8027 984 (-122.6962 45.5337)
3 Whole Foods Pearl 1210 NW Couch St, Portland, OR 97209 5482 3773 (-122.6835 45.52341)

The transformation to a simple features data frame, here g_sf, transforms the longitude and latitude given
in the original data frame, g, to a variable named geometry along with some preliminary information that
precedes the data per se. This simple features data frame will serve as the data from which we construct
maps.

Convert the standard cities data frame, cities, to the simple features version, cities_sf..

Simple feature collection with 12 features and 3 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 7.6761 ymin: 37.5 xmax: 16.8667 ymax: 45.4669
Geodetic CRS: WGS 84
First 10 features:
 city country population geometry
288 Rome Italy 2748109 POINT (12.4828 41.8933)
567 Milan Italy 1354196 POINT (9.19 45.4669)
841 Naples Italy 913462 POINT (14.25 40.8333)
915 Turin Italy 841600 POINT (7.6761 45.0792)
1184 Palermo Italy 630167 POINT (13.3517 38.1111)
1327 Genoa Italy 558745 POINT (8.9328 44.4111)
1838 Bologna Italy 387971 POINT (11.3428 44.4939)
1945 Florence Italy 360930 POINT (11.2542 43.7714)
2209 Bari Italy 316015 POINT (16.8667 41.1253)
2314 Catania Italy 298762 POINT (15.0903 37.5)

We now have two simple feature data frames from which we can construct maps.

Interactive Political MapsInteractive Political MapsInteractive Political MapsInteractive Political Maps
To create the interactive maps, we use the mapview() function from the package of the same name. This
technology provides an interface to the leaflet mapping system, the R package and function of the same
name. The relationship of mapview to leaflet is analogous to the relationship of lessR to R,
accomplishing the same amount of work but with much fewer computer instructions.

Example: PortlandExample: PortlandExample: PortlandExample: Portland

The simplest function call to mapview() only requires the simple features data frame with the relevant
information. Here, we get a map of the area of Portland referenced by our three locations. The mapview()
function automatically scales the map to include only the area that includes the relevant plotted points.

Right-click on the map to scroll up or down, right or left. The default, interactive map from this simple function
call includes the following features.

a layer control, just under the zoom buttons, to switch between 5 different base maps including a satellite
view (Esri.WorldImagery)
information on mouse cursor position and zoom level at the top left corner of the map
zoom control buttons, + and -
the input data of the active map layer in the bottom right corner of the map
a scale bar
Click a plotted symbol: a popup appears that lists the corresponding data
Hover over a plotted symbol, mouseover: the label of the plotted symbol appears

For the next map, invoke the following two parameters.

cex : Parameter to change plotted points to bubbles, the size of each bubble determined by the value of
the specified variable at that location. Or, specify a constant value for which to plot all of the points.
label : When hovering the mouse over a plotted point, display the name of the value of the specified
character variable at that location.
layer.name : Specify the name for the map, displayed in the upper right corner.
col.regions : Interior color of the plotted regions, here points.

In this example, the plotted bubble size varies according to the magnitude of the variable profit at each
location. Label each point according to its location when the mouse hovers over the point.

Example: ItalyExample: ItalyExample: ItalyExample: Italy

And, plot bubbles for cities based on population size.

Here, use parameter zcol to also color the bubbles according to population size.

Physical and Choropleth MapsPhysical and Choropleth MapsPhysical and Choropleth MapsPhysical and Choropleth Maps
The choropleth map visualizes different values of a variable across geographic regions. For example, we can

Visualize MapsVisualize MapsVisualize MapsVisualize MapsVisualize MapsVisualize MapsVisualize MapsVisualize Maps

David Gerbing May 14, 2024, 09:04 pm
AUTHOR PUBLISHED

suppressPackageStartupMessages(library(lessR))
style(suggest=FALSE)
library(tidygeocoder)
library(mapview)
library(maps)
library(sf)

ProjectionProjectionProjectionProjection

(a) Rectangular Projection. (b) Mollweide Projection.

Vector imageVector imageVector imageVector image

Raster imageRaster imageRaster imageRaster image

(a) Vector image. (b) Raster image.

GeocodeGeocodeGeocodeGeocode

Custom GeocodesCustom GeocodesCustom GeocodesCustom Geocodes

Custom information in your geocode data fileCustom information in your geocode data fileCustom information in your geocode data fileCustom information in your geocode data file

Figure 3: Locations for which we wish to obtain the corresponding geocodes for which we will create a map.

g <- Read("data/addresses.xlsx", quiet=TRUE)

g <- geocode(g, address=addr, method="osm")

g

Write(g, "Geocoded", format="Excel")

Geocodes on the WebGeocodes on the WebGeocodes on the WebGeocodes on the Web

Access the Geocodes Data

d <- Read("data/worldcities.csv")

Subset the Geocodes Data

cities <- subset(d, country=="Italy" & population > 250000)

cities <- subset(cities, select=c("city", "lat", "lng", "country", "population"))
cities

Add custom informationAdd custom informationAdd custom informationAdd custom information

Simple Features Data TablesSimple Features Data TablesSimple Features Data TablesSimple Features Data Tables

Spatial dataSpatial dataSpatial dataSpatial data

Simple features dataSimple features dataSimple features dataSimple features data

Coordinate reference system (CRS)Coordinate reference system (CRS)Coordinate reference system (CRS)Coordinate reference system (CRS)

Example: PortlandExample: PortlandExample: PortlandExample: Portland

g_sf <- st_as_sf(g, coords=c("long", "lat"), crs=4326)
g_sf

Example: ItalyExample: ItalyExample: ItalyExample: Italy

cities_sf <- st_as_sf(cities, coords=c("lng", "lat"), crs=4326)
cities_sf

mapview(g_sf)

mapview(g_sf, cex="profit", col.regions="red", label="location", layer.name="Portland Sales")

mapview(cities_sf, label="city", layer.name="Italian Cities")

mapview(cities_sf, cex="population")

mapview(cities_sf, cex="population", zcol="population", layer.name="My Map")

Table of contents
Maps
Geocodes
Interactive Political Maps
Physical and Choropleth Maps

Map Information
Physical Map
Choropleth Map

Summary

With modern computer technology,
you can view a variety of
projections or even create your
own.

The only annoying aspect of the
geocode() function is that it does
not return a standard R data frame.
Without getting too sidetracked
here, the RStudio people are trying
to take over R by introducing a
different dialect of R that works the
same without any clear advantages
in general. Their often effective
propaganda that their dialect is
superior is simply not true in
general. They do not even use
standard R data frames but instead
use something called a tibble ,
similar but different. To convert the
output tibble to a standard R
data frame, add the code g <-
data.frame(g) . However, this
conversion is not necessary as the
downstream functions must also
process tibbles for compatibility,
just as do my lessR functions.

++
−−

 g_sf

500 m
2000 ft

g_sf

Leaflet | © OpenStreetMap contributors © CARTO

++
−−

 Portland Sales

500 m
2000 ft

Portland Sales

Leaflet | © OpenStreetMap contributors © CARTO

++
−−

 Italian Cities

300 km
200 mi

Italian Cities

Leaflet | © OpenStreetMap contributors © CARTO

++
−−

 cities_sf

300 km
200 mi

cities_sf

Leaflet | © OpenStreetMap contributors © CARTO

++
−− 500,000

1,000,000
1,500,000
2,000,000
2,500,000

My Map

300 km
200 mi

My Map

Leaflet | © OpenStreetMap contributors © CARTO

http://projections.mgis.psu.edu/
http://flexprojector.com/
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
https://leafletjs.com/
https://www.openstreetmap.org/copyright
https://carto.com/attributions
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
https://leafletjs.com/
https://www.openstreetmap.org/copyright
https://carto.com/attributions
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
https://leafletjs.com/
https://www.openstreetmap.org/copyright
https://carto.com/attributions
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
https://leafletjs.com/
https://www.openstreetmap.org/copyright
https://carto.com/attributions
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
https://leafletjs.com/
https://www.openstreetmap.org/copyright
https://carto.com/attributions

The choropleth map visualizes different values of a variable across geographic regions. For example, we can
plot a choropleth map for sales revenue by state. For this example, we construct a choropleth map of the
United States to demonstrate different levels of income inequality as it varies across the individual states. We
use the Gini coefficient to indicate income inequality, a proportion that ranges from 0 to 1, with larger values
indicating more inequality.

Map InformationMap InformationMap InformationMap Information

To plot a map of the United States, as always we need the mapping information in a simple features data
table. This mapping information is available in various places, which we obtain here from the maps package.
The corresponding map() function extracts mapping information from much of the world. Setting its
database parameter to "state" extracts the states of the United States. Setting the fill parameter to
TRUE allows colors for the individual states to be filled in within each state boundary. As an option, set plot
to FALSE because we do not need the plot that is otherwise produced. After extracting the mapping
information, use the st_as_sf() function fo convert to a simple features data frame.

Physical MapPhysical MapPhysical MapPhysical Map

From this simple features data frame, states_sf, we can create a map of the United States. In the following
mapview() function call, specify a transparent fill for the states with alpha.regions set to 0, turn off the
legend, and specify only a single map type with parameter map.types . By default, the resulting interactive
map offers five different map types. Here, specify only one map type, a version of a physical map, the
topographic map alternative, OpenTopoMap .

The default map shows the states of the United States but the map contains information for the entire world.
Zoom out to see a larger geographical area.

Choropleth MapChoropleth MapChoropleth MapChoropleth Map

To create a choropleth map, we need a variable with a data value for each state of the United States. You can
choose any variable with values that vary across the states, and you can choose more than one variable to be
able to create multiple choropleth maps. Create a separate data file, such as an Excel file, that contains the
data values for one or more of these variables across states. The constraint is that the data values and variable
for the state names must exactly match the corresponding variable and state names in our simple features
date frame. So, check the structure of the simple features data frame, states_sf.

Simple feature collection with 6 features and 1 field
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -124.3834 ymin: 30.24071 xmax: -71.78015 ymax: 42.04937
Geodetic CRS: +proj=longlat +ellps=clrk66 +no_defs +type=crs
 ID geom
alabama alabama MULTIPOLYGON (((-87.46201 3...
arizona arizona MULTIPOLYGON (((-114.6374 3...
arkansas arkansas MULTIPOLYGON (((-94.05103 3...
california california MULTIPOLYGON (((-120.006 42...
colorado colorado MULTIPOLYGON (((-102.0552 4...
connecticut connecticut MULTIPOLYGON (((-73.49902 4...

We see that the variable with the state names is called ID, and all the state names are lowercase, the
structure we will mimic in our created data file with the variable(s) to visualize across states. The state Gini
coefficients are available at the census.gov website. I downloaded and organized the Gini information into
the following Excel file with only two columns. We also see that the geometry variable does not describe
individual points but individual polygons that define the state boundaries.

 ID Gini
1 alabama 0.4823
2 alaska 0.4392
3 arizona 0.4629
4 arkansas 0.4751
5 california 0.4924
6 colorado 0.4604

The Gini information and the mapping information reside in different data frames. We need to merge the Gini
information into the states_sf simple features date frame.

Both data frames to be merged need a common variable by which to align the two data frames.

To merge, use the Base R function appropriately named merge() . List the names of the two data frames to
merge, and then use the by parameter to specify the variable used for merging. The name of each state is
called ID in both data tables, so that is the variable on which the merge is organized.

Simple feature collection with 6 features and 2 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -124.3834 ymin: 30.24071 xmax: -71.78015 ymax: 42.04937
Geodetic CRS: +proj=longlat +ellps=clrk66 +no_defs +type=crs
 ID Gini geometry
1 alabama 0.4823 MULTIPOLYGON (((-87.46201 3...
2 arizona 0.4629 MULTIPOLYGON (((-114.6374 3...
3 arkansas 0.4751 MULTIPOLYGON (((-94.05103 3...
4 california 0.4924 MULTIPOLYGON (((-120.006 42...
5 colorado 0.4604 MULTIPOLYGON (((-102.0552 4...
6 connecticut 0.4985 MULTIPOLYGON (((-73.49902 4...

We now have the Gini coefficient by state and the state mapping information all combined into one simple
features data frame. Again, use the mapview() function, here to create the interactive choropleth map.
Specify the variable that shades the interior color of the individual states with the parameter zcol .

New York is the state with the largest discrepancy of income.

SummarySummarySummarySummary
Follow these steps to create a map. The purpose is to construct a simple features data frame that contains
the mapping data and all of the variables that should be visualized in the resulting maps.

1. If using custom locations, create a data file that contains your locations of interest, such as with Excel. If
you have the data values of variables you wish to plot in addition to location data, include those variables
as well.

2. Get the geocodes for your locations of interest.

If geocodes for custom locations, use geocode() from the tidygeocoder package.
Or, access an existing file, such as at simplemaps.com , that already contains the needed locations
and corresponding geocodes, then subset as needed.

3. Transform your geocoded data frame into a simple features data frame with st_as_sf() from the
sf package.

4. If you are creating a choropleth map:

extract the mapping information, such as for individual states, with map() from the maps package.
convert the mapping file into a simple features data frame with st_as_sg() .
create or access the data file with the variable of interest and a variable with the same name, such as
ID, as in the mapping file
merge the variable of interest to plot the common variable with the simple features mapping
information, such as with Base R merge() .

5. Use mapview() from the mapview package to create the map from the simple features data frame.

states <- map("state", fill=TRUE, plot=FALSE)
states_sf <- st_as_sf(states)

mapview(states_sf, alpha.regions=0, legend=FALSE, map.types="OpenTopoMap")

head(states_sf)

d_gini <- Read("~/Documents/000/521/521Content/03Choropleth/Gini2021byState.xlsx", quiet=TRUE)

head(d_gini)

Common variable by which to mergeCommon variable by which to mergeCommon variable by which to mergeCommon variable by which to merge

states_sf = merge(states_sf, d_gini, by="ID")
head(states_sf)

mapview(states_sf, zcol="Gini")

map() provides mapping
information for the world. For
example, get mapping information
for Italy: italy <- map("italy",
plot=FALSE, fill=TRUE) . Follow
the instructions below for a map of
Italy instead of the United States.

For a satellite view, choose the map
type of "Esri.WorldImagery" . Or,
leave off the map.types
parameter and revert to the five
interactive map possibilities.
Hundreds of map types are
available from many different
companies, including more free
options.

If common variable shared by the
two data frames by which to merge
have different variable names, then
use the by.x parameter for the
variable name in the first specified
date frame, and the by.y
parameter to specify the variable
name in the second specified date
of frame.

++
−−

500 km
300 mi

states_sf

Leaflet | Map data: © OpenStreetMap contributors, SRTM | Map style: © OpenTopoMap (CC-BY-SA)

++
−− 0.44

0.45
0.46
0.47
0.48
0.49
0.50
0.51

states_sf - Gini

500 km
300 mi

states_sf - Gini

Leaflet | © OpenStreetMap contributors © CARTO

https://www.investopedia.com/terms/g/gini-index.asp
http://leaflet-extras.github.io/leaflet-providers/preview/
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
https://leafletjs.com/
https://www.openstreetmap.org/copyright
http://viewfinderpanoramas.org/
https://opentopomap.org/
https://creativecommons.org/licenses/by-sa/3.0/
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
file:///Users/davidgerbing/Documents/000/553/1Weeks/Week07/Maps/maps.html#
https://leafletjs.com/
https://www.openstreetmap.org/copyright
https://carto.com/attributions

R_ValueBox.qmd Page 1

−−−
title: "Distribution of Salary"
author: "David Gerbing"
format: dashboard
−−−

```{r}
library(lessR)
style(suggest=FALSE, quiet=TRUE)  # turn off suggestions and text output
style(lab_cex=1.6, axis_cex=1.3)  # enlarge axis labels and value labels
```

```{r}
d <− Read("Employee")
```

Row {height="25%"}

::: {.valuebox icon="caret−right−fill" color="secondary"}
Default Bin Width

`r 13000`
:::

::: {.valuebox icon="caret−right−fill" color="success"}
Improved Bin Width

`r 13500`
:::

Row {height="75%"}

```{r}
Histogram(Salary)
```

```{r}
Histogram(Salary, bin_width=13500)
```


Distribution of Salary David Gerbing

Default Bin Width

13000
Improved Bin Width

13500

of

12

10-

8

6

4

2-

0

40000 60000 80000

Salary
100000 120000

file:///Users/davidgerbing/Documents/000/553/1Weeks/Week08/R_Dashboards/R_ValueBox.html#

We use the employee data set for examples throughout this section.

Describe ColorsDescribe Colors
Colors are organized according to Sir Isaac Newton’s 1666 creation of the color wheel. The
lessR function getColors() generates the version of the color wheel in Figure 1 for mixing
light, such as for computer screens. Generate 360 different colors based on the parameter n
to approximate the smooth transition between adjacent colors. Set the border parameter to
"transparent" to disable the border between colors.

Color ParametersColor Parameters

Colors are defined by their position on the color wheel. To personalize the colors in our data
visualizations, we assign chosen colors from this color wheel to specific objects. What are the
plotted objects that we wish to colorize? Figures such as circles, bars, triangles, and a state on
a map of the United States are polygons.

A closed geometric figure with straight sides.

We visualize a polygon’s color according to its interior and exterior. As such, we need matching
parameter names for their references. Unfortunately, we encounter a complication.

There is no standardized vocabulary for assigning colors across data visualization systems such as
those in R, Python, and Tableau.

R and Python each have multiple visualization systems accessible within those languages, and
even systems within the same language share no general agreement regarding the
vocabulary of color.

The commercial standard drawing app, Adobe Illustrator, uses the parameter fill to assign
the interior color of a polygon. The standard R programming data visualization app from the
RStudio people, ggplot2, also uses the fill parameter, as does lessR to maintain
compatibility.

[ggplot2, lessR] Describes the color of the inside of a polygon.

One use of the parameter color describes an object’s color when viewed from the outside.
This how is the ggplot2 system uses the parameter color , as does lessR . The parameter
color refers to the color a line segment, either by itself or as an edge of a polygon.

[ggplot2, lessR] Describes the perception of color viewed from the exterior of a polygon, or a line, its
appearance from the outside.

Tableau, however, uses the parameter color to describe the interior color of a polygon and
specifies the color of the exterior with the parameter border .

Color NamesColor Names

R identifies its 657 color names with the colors() function. Some of the more intriguing
color names include “chocolate”, thistle, “lavenderblush”, and “peachpuff”. The color names also
include the shades of gray, which vary from black, “gray00”, to white, “gray100”. However, the
listed color names do not show the corresponding colors.

To compensate for this shortcoming, the lessR function showColors() generates a pdf file
that contains all the color names and a sample of each color with its corresponding red, green,
and blue composition. Figure 2 displays a small excerpt from the PDF file from showColors() .

Figure 3 shows two customized bar charts. Figure 3(a) shows that specifying one color name
for fill yields a bar chart with all the bars of that same color. By default, the bars have no
borders other than the end of the fill color. The bars in Figure 3(a) have added black borders.
Figure 3(b) shows that to separately color each bar, specify a vector of colors for the fill
parameter, one for each bar, with the vector function c() .

Figure 3: Two bar charts with custom colors according to R color names.

Figure 4 shows customizing the color of each bar in a bar chart to highlight a specific bar. In
this example, highlight the bar with the highest average salary, the administration department.

The same fill and color parameters apply to histograms and scatterplots. For histograms,
fill also applies to the bars. For scatterplots, fill applies to the interior of the plotted
points and color to their borders.

Figure 5 highlights the data values for the administration department in the scatterplot for
years employed by the company with salary. Because of the relatively small number of plotted
points, the point size was enlarged from the default value of 1.0 to the value of 1.3.

This scatterplot straightforwardly demonstrates that two of the highest paid and most senior
officials in the company work in administration but the remaining four employees in that
department are newer employees with much lower salaries.

Color names are straightforward, but we need more control over the specific colors chosen for
a visualization.

RGB Color SpaceRGB Color Space

A color space enables the description of far more colors than does a limited set of color names.

Describe a color in terms of its coordinates across a set of color dimensions.

One essential color space, one set of dimensions, is the RGB color space, the language of
electronic screens such as TVs and computer monitors.

The RGB color space describes a color in terms of the combination of primary colors, its red, green,
and blue components.

Each of the many thousands of tiny dots on a TV or computer monitor, the pixels, are colored
according to their specific red, green, and blue constituent colors in various combinations.
Together, a screen full of pixels can generate all the colors on the color wheel in Figure 1.

The Base R rgb() function specifies colors in the RGB color space with parameters red ,
green , and blue . By default, the three or four values of the rgb() function are proportions,
which vary from 0 to 1. For example, rgb(0,0,0) is equivalent to the named color “black”,
rgb(1,1,1) is equivalent to the named color “white”, and rgb(1,0,0) is equivalent to the
named color “red”.

An optional fourth parameter, alpha , specifies the degree of transparency. The default alpha
value of 1 results in a fully opaque color, that is, no transparency.

Figure 6 repeats the bar charts from Figure 3, but here specify the colors according to the RGB
color space. For Figure 6(a), the bar chart colors from rgb() are scaled with the
maxColorValue parameter set to 255. For Figure 6(b), the bar chart colors use the native
rgb() parameter values, proportions from 0 to 1.

Figure 6: Two bar charts with custom colors specified according to RGB values.

A second way to represent RGB colors closely follows the structure of computer memory.
Internally, computers store and process information with binary digits, 0 and 1, which
represent off and on states for an electronic switch, the transistor. Describing long strings of
zeros and ones to map colors from computer memory to a computer monitor is tedious and
takes much space. Computer memory is more efficiently described by hexadecimal or HEX
notation.

Digits that vary from 0 through 9 then A through F to span 16 digits`, but where our usual Base 10
number 15 is represented with an F for the hexadecimal Base 16.

As illustrated in Figure 7, hexadecimal notation is much more compact than binary notation.
Express our usual number 15 with a single hexadecimal digit F in place of the four binary digits
1111.

Because RGB colors map to pixels on a computer screen, HEX notation provides an alternate
description of RGB colors. Find these color descriptions in web applications, R, Tableau, and
other visualization systems. The first two digits of a color’s hexadecimal representation
indicate the amount of red, the second two digits indicate green, and the last two digits
indicate blue.

For example, specify pure blue with no red and green components using the R rgb()
function, which evaluates to a hexadecimal number.

[1] "#0000FF"

In this example, the red and green components of the rgb() function call are both 0 with
blue at the maximum value of 1. This translates into the hexadecimal equivalent of 00 for red,
00 for green, and the largest hexadecimal value expressed as FF for blue, equal to our Base 10
value of 255. That is why most graphics design and visualization systems specify RGB colors
from 0 to 255, which is the hexadecimal range from 00 to FF.

The next example illustrates HEX notation for the fill parameter as part of a call to the
BarChart() function. If only one color is specified for the fill parameter in lessR data
visualizations, such as the bar chart, then all of the corresponding plotted objects, such as bars,
are plotted in that specified color. Figure 8 shows the default blue color obtained within
Tableau from its Color parameter setting (mark) and then plots the bars in Tableau`s default
blue color.

Figure 8: Default Tableau blue color and corresponding bar chart.

The RGB color space follows from the physical characteristics of how a computer screen
displays color. But computer screens are not people. Unfortunately, engineering specifications
of physical hardware do not directly translate into uniform human perception of colors. For
example, there is no straightforward way to systematically vary colors and maintain the same
levels of brightness with RGB colors. How we perceive color and how computer monitors
display color are two distinct processes, which suggests the need for another color space.

HCL Color SpaceHCL Color Space

The generally preferred specification of colors for data visualization is the HCL color space ,
defined by three values that express colors as we perceive color, according to:

1. Hue - the color name as positioned on a rainbow
2. Chroma - intensity of color from gray to saturated
3. Luminance - brightness

The primary advantage of the HCL color space is that different regions of a visualization
plotted in different hues, but the same levels of chroma and luminance can maintain the same
level of intensity. Steps of equal size across chroma and luminance correspond to
approximately equal perceptual changes in color. When all plotted objects, such as bars, have
the same chroma and luminance, there is no unintentional emphasis on the brighter, more
intense bars. Encouraging the person viewing the visualization to focus equally on all aspects
presents the results in a neutral and unbiased manner.

Lighter, brighter areas of a visualization appears to “irradiate” into an adjoining darker area.

Changing the red, green, or blue component each in an equal number of steps and then
displaying the result on a computer screen, unfortunately, does not uniformly change the
intensity of the perceived color. Some of the transformed colors will be brighter than the
others. The problem is that brighter, more intense colors tend to exaggerate the perceived size
of an area relative to more subdued colors. More intense, brighter regions bias the
interpretation as brighter colors visually are more apparent, larger, than darker regions.

The visualizations in Figure 9 leverage two pre-existing color sequences available from the
lessR getColors() function, rainbow from Base R and rainbow_hcl from the
colorspace package. Figure 9(a) illustrates the irradiation illusion. The red bar is more vivid
than the light green bar. Figure 9(b) demonstrates the visual consistency of HCL colors that
vary the hue while maintaining approximately the same chroma and luminance. These HCL
colors minimize the irradiation illusion and unintentional focus on part of the visualization to
the detriment of the rest.

Figure 9: Non-HCL color spectrum compared to HCL colors, all with chroma of 65 and a luminosity of 60.

For a continuous variable, avoiding the irradiation illusion contributes to the goal of perceptual
uniformity when mapping data values to colors.

Plotted colors change appropriate to the amount of change in the corresponding data values.

The colors in a perceptually uniform palette, such as displayed by HCL colors, appropriately
change corresponding to the changes in the magnitude of the data values. For example, the
palette is not uniform if a small change in data values leads to a large change in the displayed
colors. A perceptual non-uniform mapping of data to colors yields a distorted perception of the
corresponding changes in the underlying data values.

For categorical variables, visualizations such as bars in a bar chart, slices in a pie chart, or
points in a scatterplot that represent different levels generally should present all the colors
with the same level of chroma and luminance. Some areas of color should not be brighter than
others. Different colors should distinguish different areas that correspond to different
categories but not bias the visual attention of some areas relative to others.

Within R, express HCL colors with the Base R function, hcl() , more conveniently accessed
with the lessR color function getColors() . The parameter names for the three hcl()
coordinates are h , c and l . Chroma and luminance dimensions scale from 0 to 100.
Increasing c closer to 100 yields highly saturated, more vivid colors. Regardless of the value of
h , a value of 0 for c results in gray scale, from dark colors of gray for values of l close to 0
and lighter colors of gray as the value of l approaches 100.

Figure 10 shows three examples of perceptual uniformity achieved with the lessR function
getColors() applied to two pre-defined sets of colors. All three examples keep color
saturation high, with chroma at 95, but vary luminance from 35 to 75. Obtain vibrant, rich hues
from a high value of chroma and a low value of luminance, 35, as in Figure 10 (a). Obtain light,
airy pastels from a high value of chroma coupled with a high value of luminance, 75, as in
Figure 10 (c).

Figure 10: Three examples of perceptual uniformity across the rainbow of hues achieved with HCL colors
with chroma at 95 and varying luminosity.

Most visualizations, especially composites of visualizations such as dashboards, should generally
avoid overly bright, intense, harsh colors. Generally, use somewhat muted colors or add some
transparency to the displayed colors.

As shown in the next section, Figure 14 and Figure 13, you can access these color sequences
directly via the fill parameter.

Unfortunately, there is a problem displaying HCL colors: Translating human perceptual colors
to the screens of color monitors is not straightforward.

Not all of the colors in the HCL color space of human perception translate into the RGB color space of
computer monitors.

To display all HCL colors requires approximation of some of the colors translated to the RGB
color space of color monitors. Only moderate values of chroma and luminance render all hues
as precise HCL colors.

If using R to obtain HCL colors, set the parameter fixup to FALSE to show only precise HCL
colors among the generated colors. Colors that fall outside of the RGB color space of computer
monitors are displays as NA , that is, missing. By default, fixup is set to TRUE .

Color PalettesColor Palettes
Visualizations apply combinations of related colors, including shades of gray for grayscale.

A set of related colors, usually to provide consistent design such as data visualizations.

All visualization systems feature built-in color palettes. Users are also free to define any palette
they choose, either generated by specialized functions or manually entered.

Three basic types of color palettes appear in visualizations offered by any visualization system:
qualitative, sequential, and divergent.

Discussions of these three types of palettes follow. As we pursue generating palettes, realize
that the resulting palettes are applicable to any data visualization system that permits
customization of colors.

A standard color name, such as the hexadecimal representation of an RGB Color for a computer
screen, is applicable to any data visualization system that displays colors on the computer screen.

To store colors generated by getColors() , store the result in a vector. This example, the
vector of stored colors is named clr. The parameter output is set to false because there is no
need here to actually view the palette.

 [1] "#4398D0" "#B28B2A" "#5FA140" "#D57388" "#9A84D6" "#00A898" "#C97E5B"
 [8] "#909711" "#00A3BA" "#D26FAF" "#00A76F" "#BD76CB"

Apply this getColors() palette defined by hexadecimal color specifications to any
visualization system that allows custom colors displayed on a computer screen.

Qualitative PalettesQualitative Palettes

Nominal data are unordered data values of a categorical variable. Examples include State of
Residence and Gender. To plot resulting data values such as the count of the occurrence of
each data value, one option displays all levels, such as bars on a bar chart, with the same color.
To apply a color palette, however, the appropriate scale for the display of the levels of nominal
data is a qualitative palette.

Color palette of mixed hues applied to nominal data.

Preferably, different values of hues across the different bars, pie slices, or points should
generally have the same chroma and luminance.

The lessR function getColors() generates the colors for a wide variety of color palettes
and displays the resulting colors. The parameter list for getColors() begins with pal , for
palette. In addition to the available predefined palettes as shown in Figure 10, it is
straightforward to generate your own palettes.

The getColors() default value for pal is "hues" , which generates the specified number of
hues around the HCL color wheel, the default qualitative palette for the lessR visualizations.
The number of colors for the generated palette is n , with a default value of 12. The function
getColors() generates by default a rectangle, or specify a value of "wheel" for the
parameter shape . The resulting palette is divided into intervals of hues in the order they are
invoked in subsequent visualizations. Adjacent values were chosen to maximize hue
separation. The value of the hue is h , presented in the plot. The text output also provides the
hexadecimal and RGB information for each color.

Figure 11 indicates the getColors() text and visualization output for all default parameter
values.

 h hex r g b

 1 240 #4398D0 67 152 208
 2 60 #B28B2A 178 139 42
 3 120 #5FA140 95 161 64
 4 0 #D57388 213 115 136
 5 275 #9A84D6 154 132 214
 6 180 #00A898 0 168 152
 7 30 #C97E5B 201 126 91
 8 90 #909711 144 151 17
 9 210 #00A3BA 0 163 186
10 330 #D26FAF 210 111 175
11 150 #00A76F 0 167 111
12 300 #BD76CB 189 118 203

The ordering of the hues was chosen to maximize differences between adjacent hues,
arbitrarily beginning with blue (240), brown (60), green (120), red (0), and purple (275) for the
first five hues.

This default "hues" qualitative palette is implicitly generated by getColors() for each bar
chart that assumes the default value of the fill parameter. Also, a slight transparency is
added to further soften the displayed bars of the bar chart, shown in Figure 12.

Explicitly override the default by providing any qualitative palette for fill , including having
getColors() generate an alternative with different chroma and luminance values. Figure 13
shows deeper, bolder colors than provided by the default by lowering luminance to l=30 .

Visualize ColorsVisualize ColorsVisualize ColorsVisualize Colors

David Gerbing May 30, 2024, 12:53 pm
AUTHOR PUBLISHED

suppressPackageStartupMessages(library(`lessR`))
style(suggest=FALSE, quiet=TRUE)

d <- Read("Employee")

getColors(n=360, border="transparent", labels=FALSE, shape="wheel")

Figure 1: The color wheel for mixing light.

PolygonPolygon

No standardization of named color parametersNo standardization of named color parameters

Parameter: fillParameter: fill

Parameter: colorParameter: color

Figure 2: Excerpt from output of showColors() .

BarChart(Gender, fill="slategray3", color="black")
BarChart(Gender, fill=c("plum3", "seagreen3"))

(a) All bars the same color with black borders.
(b) Each bar separately custom colorized with no

border.

BarChart(Dept, Salary, stat="mean",
 fill=c("gray66", "rosybrown3", "gray66", "gray66", "gray66"))

Figure 4: Explicitly highlight one of the bars in the bar chart relative to the others.

Plot(Years, Salary, by=Dept, size=1.3,
 fill=c("gray66", "red3", "gray66", "gray66", "gray66"))

Figure 5: Explicitly highlight employees who work in administration in the scatterplot of years employed
with salary.

Color spaceColor space

RGB color spaceRGB color space

BarChart(Gender, fill=rgb(159, 182, 205, maxColorValue=255),
 color=rgb(0,0,0))
BarChart(Gender, fill=c(rgb(.804,.588,.804), rgb(.263,.804,.502)))

(a) All bars the same color with black borders.
(b) Each bar separately custom colorized with no

border.

Hexadecimal digitHexadecimal digit

Figure 7: Binary, decimal, and hexadecimal digits.

rgb(0,0,1)

BarChart(Dept, fill="#4E79A7")

(a) Tableau color chart for its default blue color.
(b) Default Tableau fill color for the bars of a bar

chart.

1

Irradiation illusionIrradiation illusion

getColors("rainbow")
getColors("rainbow_hcl")

(a) Non-HCL color spectrum. (b) HCL color spectrum.

Perceptual uniformityPerceptual uniformity

getColors("rainbow_hcl", c=95, l=35)
getColors("rainbow_hcl", c=95, l=55)
getColors("rainbow_hcl", c=95, l=75)

(a) chroma=95, luminance=35 (b) chroma=95, luminance=55 (c) chroma=95, luminance=70

Avoid overly bright colorsAvoid overly bright colors

Insufficient HCL to RGB translationInsufficient HCL to RGB translation

Color paletteColor palette

Types of color palettesTypes of color palettes

General applicability of color specificationsGeneral applicability of color specifications

clr <- getColors(output=FALSE)

clr

Qualitative scaleQualitative scale

HCL PalettesHCL Palettes

getColors()

Figure 11: Default output of getColors().

BarChart(Dept) or BarChart(Dept, fill=getColors())

Figure 12: Default output of getColors().

BarChart(Dept, fill=getColors(c=95, l=30))

Table of contents
Describe Colors

Color Parameters
Color Names
RGB Color Space
HCL Color Space

Color Palettes
Other Customizations

Use the Base R repetition function
rep() to replace the last three
“gray66” instances for the fill
parameter with rep("gray66",3) .

The R package colorspace
provides many functions for
exploring a variety of color spaces
and converting color coordinates
between them.

Most applications for color
manipulation in the RGB color
space typically specify colors with
values that range from 0 to 255 to
align more closely to how color
information is stored in digital
memory. To accommodate this
larger, more common range of
numbers, add the parameter and
value maxColorValue=255 to the
rgb() function call.

 More technically, the polar
coordinates of the CIE-LUV color
space

1

See the manual by entering ?
getColors into the R console to
identify other available pre-defined
sequences, such as also heat_hcl
and terrain_hcl plus others,
some of which are discussed later.

file:///Users/davidgerbing/Documents/000/553/1Weeks/Week09/Colors/colors.html#fn1
https://web.pdx.edu/~gerbing/0Viz/CatCont/CatContDV.html

Or minimize the color differences between the bars by dropping chroma to c=25 , as shown in
Figure 14, almost desaturating the colors.

One possibility creates a palette color-by-color. Enter multiple colors, applying getColors()
to experiment with different color combinations to choose the palette. One inspiration for
creating your custom palette is working with complementary colors or other related color
patterns.

For given color, the color on the opposite side of the color wheel.

Complementary colors paired together often form pleasing combinations for graphic design
and data visualization. Many free online sources are available from which to choose these
complementary and other related colors, here from canva.com, illustrated in Figure 15.

Specify the palette of multiple colors as a single unit with the vector function c() when
calling getColors() . Usually, each color would be specified with the same notation. However,
to demonstrate, this example uses multiple ways to specify colors. Store the resulting five
colors in a vector, here named clr, as shown in the function call that created Figure 16.

Figure 17 shows the bar cart constructed from this manually constructed palette, directly
references the clr vector.

Another possibility creates a palette from an image. For example, there could be official
corporate logos or photographs from which a palette could be extracted from one of many
online free services and then incorporated into subsequent data visualizations. Find the image
picker illustrated in Figure 18 at coolors.co. Drag the circles on the picture around to obtain
different colors. Drag a color to a different spot on the palette to rearrange the colors.

In this example, click on Export palette and choose Code , from which the following five
colors were copied and the bar chart created as shown in Figure 19.

In general, follow the principle that the colors of a qualitative palette should share the same
levels of chroma and brightness. Other possibilities, such as Figure 19, can also be considered
to achieve specific effects, including the palette discussed next.

Many people are susceptible to various forms of a color vision deficiency (CVD). The eye
contains receptor cells for the primary colors: red, green, and blue. The most common form of
CVD does not distinguish red from green, which results from either missing red or the green
color receptor cells in the eye. Accordingly, the two colors are often confused, so it can be
problematic to include both colors in the same palette. Less frequently, the blue color receptor
cells can also be missing, resulting in difficulty distinguishing between blue and yellow colors.

A qualitative scale of some popularity to address these forms of color vision deficiency are the
eight colors of the Okabe-Ito palette (Okabe and Ito 2008), shown in Figure 20. This palette is
directly accessible via lessR .

An illustrative bar chart that applies the first five colors of this palette appears in Figure 21.

The R package colorBlindness provides a variety of CVD palettes. It also provides functions
that emulate how different palettes are perceived with different types of CVD.

Sequential PalettesSequential Palettes

A sequential palette applies to a variable with ordered values, an ordinal categorical variable or
a continuous variable.

Systematically vary chroma or luminance at the same hue to generate a palette of colors.

Examples of creating a sequential palette appear in Figure 22 by keeping hue constant at h=0
for red and varying either chroma or luminance .

Figure 22: Two sequential palettes with constant hue but variable chroma or luminance.

Express the hues of the HCL color space in terms of degrees from 0 to 360 (and multiples
thereof) . Set the hue with the longest wavelengths of light, red, to zero degrees. Green and
blue, the other primary hues, display in 120-degree increments (120 and 240 degrees,
respectively). Figure 23 depicts the hues around the color wheel in 30-degree increments.
Color names are also provided; some are global, but all are recognized by the lessR color
management system.

The following call to getColors() generates the color wheel in Figure 23, without the color
names. The default values for chroma and luminance are c=65 and l=60 .

For convenience, getColors() provides a pre-defined sequential ranges for each
corresponding hue name. The names of the pre-defined ranges are the hue names from the
color wheel in Figure 23 expressed as the plural of the color name, that is, with an added “s”.
For example, the hue at 240 degrees, “blue”, defines a corresponding sequential range named
"blues" . Also included is a grayscale sequential palette defined by "grays" .

The getColors() function generates sequential palettes for the specified value of n and
adjusts the extent of the range of luminance according to the number of intervals generated,
so the fewer intervals, the less the range. Custom values of the start and end points of
luminance can also be specified with the l parameter.

Substitute "rusts" or "emeralds" or "purples" or any other plural version of the HCL
color wheel names from Figure 23 to access a corresponding pre-defined sequential color
scale, plus "grays" . Figure 24 shows three examples of these sequential scales.

Figure 24: Two lessR pre-defined sequential palettes.

The pre-defined palettes such as "blues" pre-select the hue as well as the chroma and
luminance. Include custom values for c and l in the call to getColors() to override the
provided default values. The default level of chroma for each pre-defined palette varies from
35 to 75. The default range of luminance depends on the number of intervals generated.

Consider the variable for job satisfaction in the employee data set, JobSat, which has three
levels: Low, Med, and High. As with any categorical variable, the first step in its analysis is to
formally declare it as a categorical variable, which in R is according to the factor() function.
Here, set the optional parameter ordered to TRUE , defining JobSat as an ordinal level
categorical variable.

Figure 25 shows the resulting bar graph. Because JobSat is ordinal, lessR automatically
applies a sequential pallet to color the bars.

Of course, use the fill parameter to indicate a sequential palette with other hues than the
default blue (for the existing color theme, explained later).

The most commonly applied sequential palette for color vision deficiency (CVD) is named
viridis (Rudis, Ross, and Garnier 2018). The viridis palette is free of red hues, directly
addressing the problem of red-green perceived color deficiency.

The viridis palette was developed according to the following principles.

Perceptual uniformity, so that similar data values similar have similar-appearing colors,
and data with discrepant values have more different-appearing colors, consistently across
the range of values

Span as wide a color palette as possible to accentuate differences in adjacent colors, with
outliers readily detected with dark blue

Robust to color vision deficiency, so that the above properties hold true for people with
unable to perceive the full color spectrum

The lessR function getColors() can directly display the viridis palette. The default value
for n , the number of intervals, is 12. A large value such as n=100 approximates continuity,
resulting in Figure 26.

The viridis palette spans a wide color gamut, from dark blue to bright yellow. One
implication is that extreme data values, large or small, shown as either dark blue or bright
yellow, are differentiated from the other data values. Regarding perceptual uniformity, no large
color steps intrude across adjacent color values. Instead, dark blue smoothly transitions from
to blue to blue-green to green to yellow.

As a sequential palette, the viridis palette is best applied to a variable with ordered levels of
magnitude, ordinal variables, and especially numerical variables with data values from a
continuum. An application is the default palette for producing choropleth maps with the
mapview() function, which is the viridis palette. An example is the Gini distribution map
shown in Figure 27.

As indicated, viridis excels at detecting extreme values. In Figure 27, the state with the
largest Gini coefficient, New York, is clearly distinguished from the remaining states with its
yellow color.

Divergent PalettesDivergent Palettes

Another form of a color palette diverges from two colors toward the neutral middle.

Each side of the palette is anchored by a different color, each fading to a central neutral color toward
the middle.

For lessR , the most straightforward method to define a divergent scale follows from the pre-
defined sequential palettes such as “reds” and “blues” based on the HCL color names from
Figure 23. The first parameter, pal , names the hue to be generated. If the scale is to be
divergent, it names the left side of the scale. The second parameter, end_pal , indicates
divergent. If present, it names the hue of the right side. An example of a divergent palette
appears in Figure 28.

To apply to a data visualization, we return to a different data set, the results of an attitude
survey with 20 items labeled from m01 one to m20. The Survey response to each item was on
a six-point scale from strongly disagree to strongly agree. The data table is included with
`lessR`, called *Mach4* .

The data are recorded numerically, each response from 0, strongly disagree, to 5, strongly
agree. Label the numerical responses with the corresponding category name using the lessR
factors() function, which can assign the factor levels and labels simultaneously to multiple
variables, here in the d data frame.

Set the fill parameter with a call to getColors() to define a divergent scale. With the
specification in Figure 29, a red color indicates a Disagree, and a blue color indicates an Agree.
Given six possible response categories, there is no one value precisely in the middle, so there
is no precisely gray bar.

We can view the responses to all 20 items on the default divergent scale by simply listing all
20 items as the data values to create the bar chart shown in Figure 30.

As an option, remove the labels displayed within each bar segment, shown in Figure 31. Also,
change from the default divergent scale Brown-Blue to Green-Violet.

With listing multiple one-column bar charts, BarChart() by default sorts the items by their
mean response. The average score for m09 is the highest of all 20 items. The average score for
m20 is the lowest.

Other CustomizationsOther Customizations

ThemesThemes

The values for each visual aesthetic, color or style option, can be pre-set as a group to define a
theme, a presumably harmonious blend of visual aesthetics. lessR offers a variety of pre-
defined themes, including their default themes.

The default lessR theme, “colors”, displays a relatively colorful palette. The lessR themes
present different color combinations called themes.

Pre-defined values for all visual aesthetics that apply to all visualizations when activated.

Change or tweak a lessR theme with the style() function. The theme argument is the first
argument in the parameter list for the function, so the first unnamed argument to style()
specifies the theme. The lessR theme names correspond to the predominant theme color.
Beyond the default of “colors”, lessR themes include “lightbronze”, “dodgerblue”, “darkred”,
“gold”, “darkgreen”, “blue”, “red”, “rose”, “slatered”, “green”, “purple”, “sienna”, “brown”, “orange”,
“white”, “light”, and “gray” for grayscale, set with style("gray") .

For additional flexibility, lessR also provides the sub_theme parameter. The sub_theme
“black” sets a black background for any of the primary themes, as shown in Figure 32.

Once the style has been set, it remains active until changed. So, the histogram in Figure 33
continues the same style settings set for Figure 32.

Now reset the style to the default for subsequent visualizations.

If a theme is only to be applied to a single visualization, invoke the theme parameter to
specify a theme different from the current theme.

Figure 13: A bar chart with high saturation, chroma set at 95, and little brightness, luminance at 30.

BarChart(Dept, fill=getColors(c=25, l=35))

Figure 14: A bar chart with low saturation, chroma set at 25, and low brightness, luminance at 35.

Manual PalettesManual Palettes

Complete Customization

Complementary colorsComplementary colors

Figure 15: Color wheel to derive complementary and other related colors, here from canva.com.

clr <- getColors(c("#63B99F", rgb(.35,.53,.71), hcl(40,60,70),
 "palevioletred2", "gray60"))

Figure 16: Manually constructed color palette with getColors().

BarChart(Dept, fill=clr)

Figure 17: A bar chart with a manually created qualitative palette.

From an Image

Figure 18: A palette derived from the colors of a burning candle.

BarChart(Dept, fill=c("#69503A","#A86E47","#F2C66F","#4A5967","#CA4A18"))

Figure 19: Bar chart from the burning candle palette.

CVD PalettesCVD Palettes

getColors("Okabe-Ito", n=8)

Figure 20: Okabe-Ito color palatte.

BarChart(Dept, fill="Okabe-Ito")

Figure 21: Bar chart based on the Okae-Ito CVD qualitative color palette.

DefinitionDefinition

Sequential paletteSequential palette

getColors(h=0, l=60, c=c(0,100))
getColors(h=0, c=80, l=c(90,20))

(a) Variable chroma. (b) Variable luminance.

Pre-defined PalettesPre-defined Palettes

getColors(n=12, shape="wheel")

Figure 23: HCL color wheel with annotated color names.

getColors("rusts")
getColors("aquas")
getColors("grays")

(a) “rusts” sequential palatte. (b) “aquas” sequential palatte. (c) “grays” sequential palatte.

d$JobSat <- factor(d$JobSat, level=c("low", "med", "high"),
 ordered=TRUE)

BarChart(JobSat)

Figure 25: Bar chart of an ordinal variable.

CVD Viridis PaletteCVD Viridis Palette

getColors("viridis", n=100, border="transparent")

Figure 26: The viridis palette.

Figure 27: Viridis is the default palette for the mapview() function.

Divergent color paletteDivergent color palette

getColors("reds", "blues", n=100, border="transparent")

Figure 28: Red-Blue divergent palette.

d <- Read("Mach4")

LikertCats <- c("Strongly Disagree", "Disagree", "Slightly Disagree",
 "Slightly Agree", "Agree", "Strongly Agree")
d <- factors(m01:m20, levels=0:5, labels=LikertCats, ordered=TRUE)

BarChart(m05, fill=getColors("reds", "blues"))

Figure 29: Created divergent scale anchored by red and blue.

BarChart(m01:m20)

Figure 30: A divergent scale for each of the 20 variables with similar reponses.

BarChart(m01:m20, fill=getColors("greens", "violets", n=6), labels="off")

Figure 31: A divergent scale for each of the 20 variables with similar reponses.

themetheme

style("slatered", sub_theme="black", quiet=TRUE)
BarChart(Dept)

Figure 32: Application of new style setting for a “slatered” theme and a “black” sub_theme.

Histogram(Salary)

Figure 33: Continuation of previous style settings.

style()

About 8% of men and 0.5% of
women experience some degree of
CVD, though the inability to
visualize any color is rare.

Okabe, Masataka, and Kei Ito. 2008.
“Color Universal Design (CUD): How
to Make Figures and Presentations
That Are Friendly to Colorblind
People.” https://jfly.uni-
koeln.de/color/.

Rudis, B., N. Ross, and S. Garnier.
2018. “The Viridis Color Palettes.”
https://cran.r-
project.org/web/packages/viridis/vignettes/intro-
to-viridis.html.

https://www.canva.com/colors/color-wheel/
https://coolors.co/image-picker
https://jfly.uni-koeln.de/color/
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

specify a theme different from the current theme.

Individual CharacteristicsIndividual Characteristics

Many characteristics of a data visualization do not depend directly on the data values. Want
green axis labels, extra large? A purple background? Want to customize almost any aspect of
your visualization? View the available lessR color and style options with a call to style() ,
setting the show parameter to TRUE .

Available Themes

colors lightbronze dodgerblue darkred gray gold darkgreen
blue red rose slatered green purple sienna brown orange
white light

Available Sub-themes

default black wsj

THEME
theme Theme color colors
sub_theme Sub-theme style ... default

BACKGROUND
window_fill .. Window fill color white
panel_fill ... Panel fill color white
panel_color .. Panel border color gray45
panel_lwd Panel border line width .. 1.0
panel_lty Panel border line type ... solid

DATA OBJECTS
bar_fill Bar fill color 67 152 208 255
trans_bar_fill ... Bar fill transparency 0.00
bar_color Bar border color 132 150 175 255
labels Form of bar or pie labels . %
labels_color Color of bar or pie labels . white
labels_size Size of labels on bars, pie NULL
labels_digits Decimal digits on bars, pie NULL
labels_position Position of labels in

pt_fill Point fill color 50 78 92 255
trans_pt_fill Point fill transparency .. 0.00
pt_color Point border color 50 78 92 255
out_fill Outlier point fill firebrick4
out_color Outlier point color firebrick4
out2_fill Extreme outlier point fill firebrick2
out2_color Extreme outlier point color firebrick2
violin_fill Violin fill color 116 133 151 90
violin_color Violin border color gray15
box_fill Boxplot fill color 65 155 210 255
box_color Boxplot border color gray15
fit_color Fit line_color 92 64 50 255
se_fill Stnd error fill color 26 26 26 25
ellipse_fill Ellipse fill color 146 128 111 40
ellipse_color Ellipse border color gray20
ellipse_lwd Ellipse border width 1.00
bubble_text_color Bubble text color 247 242 230 255
segment_color Line segment color gray40
heat Heat map color gray30

AXES
axis_color Color of axes gray15
axis_x_color ... Color of x-axis NULL
axis_y_color ... Color of y-axis NULL
axis_lwd Axis line width 1.0
axis_x_lwd Axis line width NULL
axis_y_lwd Axis line width NULL
axis_lty Line type of axes solid
axis_x_lty Line type of x-axis NULL
axis_y_lty Line type of y-axis NULL
axis_cex x and y axis text size 0.75
axis_x_cex x-axis text size NULL
axis_y_cex y-axis text size NULL
axis_text_color x and y axis values text color ... gray20
axis_x_text_color x-axis values text color NULL
axis_y_text_color y-axis values text color NULL
rotate_x Rotation of x axis text 0.00
rotate_y Rotation of y axis text 0.00
offset Offset of values text from axis .. 0.50

LABELS
lab_color Color of axis labels gray15
lab_x_color Color of x-axis label NULL
lab_y_color Color of y-axis label NULL
lab_cex Size of axis labels 0.98
lab_x_cex Size of x-axis labels NULL
lab_y_cex Size of y-axis labels NULL
main_color Color of plot label gray15
main_cex Size of plot title 1.00

GRID LINES
grid_color Grid color 222 217 205 255
grid_x_color .. Grid color, vertical NULL
grid_y_color .. Grid color, horizontal NULL
grid_lwd Grid line width 0.5
grid_x_lwd Grid line width, vertical NULL
grid_y_lwd Grid line width, horizontal NULL
grid_lty Grid line type solid
grid_x_lty Grid line type, vertical NULL
grid_y_lty Grid line type, horizontal NULL

TRELLIS STRIP
strip_fill Trellis strip fill color 127 127 127 55
strip_color Trellis strip border color ... gray40
strip_text_color Trellis strip text color gray15

ANNOTATION
add_fill .. Fill color of annotated figures .. gray20
add_trans .. Fill transparency 0
add_color .. Color of annotated lines gray30
add_cex ... Size of annotated text 0.75
add_lwd ... Line width of annotated lines 0.5
add_lty ... Line type of annotated lines solid

NON-GRAPHICAL
quiet Suppress console output for many functions .. TRUE
brief Reduce console output for many functions FALSE
suggest ... Suggestions for enhanced input TRUE
note Notes for enhanced input TRUE
width Column width 120
n_cat Largest number of unique, equally spaced
 integer values of a variable for which the
 variable will be analyzed as categorical 1

To illustrate, specify a new background color for the plot area of a panel, the rectangle defined
by the x and y coordinate axes with the panel_fill parameter. According to the listed
parameter values, set the color of the labels for each axis to “royalblue1” with the lab_color
parameter. The result is Figure 34.

The most straightforward function call to re-initialize the style settings is style() , which
resets all parameters to the default theme, the equivalent of style("colors") .

Drawing EditorDrawing Editor

Another possibility for editing that offers the most flexibility is to leave the data visualization
app entirely and complete editing in a standalone drawing editor, a vector graphics editor.
Since the 1990’s, the expensive and commercial standard for vector graphics is Adobe
Illustrator, rented on a monthly basis, $38 per month until the next price increase. Much more
affordable is Affinity Designer $70 for Windows and MacIntosh, and $18.49 for iPad, for a one-
time purchase. Inkscape offers the ultimate in affordability, providing an open-source, free, and
capable alternative with more than 20 years of development and an extensive developer and
support community. Other alternatives are available as well.

The key to using these drawing editors is to save the data visualization as a vector graphics
file, such as a PDF. Within the drawing application, each individual object of a PDF file is
selectable and then editable.

To demonstrate, consider the lessR bar chart saved as a PDF file from RStudio with the
following menu sequence:
 Plots –> Export -> Save as PDF...
The bar chart was opened in Affinity Designer, as shown in Figure 35.

Double-click on the desired bar to select it. Once selected, move to the color picker at the top
right and choose the color for the bar’s interior, as shown in Figure 36.

All objects are selectable. Figure 37 shows the selection of the axis labels. After the selection,
move to the color picker and choose a blue color.

Editing a visualization in a drawing application offers a wider range of options than available in
any data visualization application. The updated visualization can be saved in a variety of
formats and used in presentation software ranging from MS Word and PowerPoint to
RStudio’s Quarto.

style(show=TRUE)

style(panel_fill="slategray1", lab_color="royalblue1")
Plot(Years, Salary)

Figure 34: Customization of the vlsualization for non-data based characteristics, panel color and axis label
color.

Figure 35: lessR bar chart in Affinity Designer.

Figure 36: Change a bar color.

Figure 37: Change the axis labels color.

The Affinity company has recently
been purchased by Canva, which
operates an extensive, partially free,
website for data visualization and
graphics design.

https://www.adobe.com/products/illustrator/free-trial-download.html
https://affinity.serif.com/en-us/designer/
https://affinity.serif.com/en-us/designer/
https://www.canva.com/

