Machine Learning with Python
Jupyter Notebook Templates
GSCM 510/410

Summer 2021

David Gerbing
The School of Business
Portland State University

Table of Contents

Week 1 Read and Display an External Data File
Week 2 Wrangle Data
Pre-Process Data
Week 3 Summarize Data
Basic Multiple Regression
Week 4 Feature Selection

Supervised Machine Learning: Forecast with Multiple Regression

Week5 Supervised Machine Learning: Classify with Logistic Regression
Week 6 Supervised Machine Learning: Classify with Decision Trees
Week 7 Unsupervised Machine Learning: Cluster Samples into Groups

Course Text
Introduction to Machine Learning

http://web.pdx.edu/~gerbing/Books/ML/

~ Prepare for Python Data Analysis

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

v Set-up

Open a notebook, either a Jupyter Notebook on your computer from the Anaconda download or a Colab Notebook on Google
Colab. Then do the following, adapted to a specific analysis.

Python consists of the core language plus many packages that extend the core language with additional functions. However,
most of the analyses we pursue are not part of the core language, so we first import packages of needed functions before
analysis begins.

~ Time Stamp

Not needed, but useful to know the time and date at which you conducted the analysis. The now() function that provides this
information is not part of core Python, but is available from the datetime package, abbreviated here as dt. The datetime
package is not included with the original Python distribution, so separately access with the import method.

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-08-13 at 12:42

Refer to the package with its designated abbreviation dt. To run the now() function, refertoitas dt.run(), thatis, the
package name or abbreviation, a period, then the function name. This convention lets Python know where to locate the
corresponding function that is not included with the original Python distribution.

v Import Data Analysis Packages

The core language itself does not contain specialized data analysis functions, so first reference the packages that contain
these functions before doing data analysis.

Every data analysis invokes functions from at least two packages, pandas and numpy .

e pandas, a general package for reading, storing, and manipulating data in data frames, standard row x column data
tables
e numpy, a general package for numerical computations, upon which many other packages rely, including pandas

Data analysis usually involves some form of data visualization as well.

Find the basic data visualization functions in the matplotlib package, with increasing reliance upon the more
elegant seaborn, which is based on matplotlib.

https://www.anaconda.com/products/individual
https://colab.research.google.com/

e matplotlib, basic plotting library for data visualizations
e seaborn, more elegant, higher-level plotting library based on matplotlib

Access these packages with the import method. The optional as parameter provides an abbreviation from which to refer to
the package functions.

In this Jupyter Notebook, we only need the pandas package for reading a data file, but typically reference all four packages in
a complete data analysis. The abbreviations listed are traditional for data analysis with Python.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

Read and Display Data

There are two different situations when reading the contents of data files into a working Python program. Read the data from

e the web
¢ afile on a user's file directory, either locally or networked

To read data files from the web, specify the file's URL (web address) when calling a read function. This section explains the
default location of the reading and writing data files on your local or related computer file system.

To read and write data files, each notebook begins with a default location.

Current working directory: Folder (directory) in your computer's file system that is the default location where
Python reads and writes data files.

To read and write data files, the concept of a current working directory allows simplified references to data files without the
tedium and error-prone process of listing the full path name from the root level of your computer, such as C: on Windows.
Instead, reference the files relative to the folder (directory) from which the Python program is being run.

Place your data files directly into your current working directory. Then just specify the file name enclosed within quotes when
reading the file. Or, create a data folder inside your working directory, then place your data file inside that folder. Reference
the file with "data/file name".

File Directory

On Your Computer

Before opening a Jupyter Notebook, first create a folder to store all notebooks and data files. A suggestion is a folder called
Python in your Documents folder. The first screen after opening the Jupyter Notebook app is a listing of folders and files.
Click on the pocuments folder and then the Python folder to begin analysis from that location.

Path names that specify where to read a file and write a file begin with the current working directory as the "home" location.
For example, it may be convenient to store your data files in a folder named data, located at the top-level of your current
working directory. Then all path names to locate a data file stored in this data folder begin with data. The forward slash
indicates a sub-folder, that is, sub-directory.

List the current working directory with the getcwd() function from the os package.

import os

os.getcwd()

' /content'

This example was run on Google Colab, described next, so the current directory has neither a Windows or Macintosh file
reference.

On Google Colab

Colab is Google's free cloud computing enviornment. All that is needed to access is a Google account.

Colab Notebooks, essentially Jupyter Notebooks, do not access the files on your personal computer. Instead, they use Google
Drive as your file directory. For convenience, create a folder called data on your Google Drive and copy one or more data files
to that location. Colab will automatically create a folder called colab Notebooks on your Google Drive to store your Jupyter
Notebook files.

To access your Google Drive files requires the use of the mount () function in the google.colab package, imported here
with the abbreviation of drive, so the function reference is drive.mount () . Mount your Google Drive in the content
directory (folder) and the nested directory called drive . When you request to mount the drive you will be provided a link to
obtain an authorization code.

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

Mange the files on your Google Drive, such as storing a data file in a folder called data.

To read or write files to or from Google Drive, also include \MyDrive in the path name because that reference is to your
Google Drive. The full reference to your Google Drive essentially your current working directory:

'/content/drive/MyDrive/'

If you have a folder on the top level of myprive called data, and a file named employee.x1lsx in that folder, here is the full
path name to locate that file:

'/content/drive/MyDrive/data/employee.xIsx'

Note the path name is included with quotes.

Once drive is mounted so that you can access the data file, as well as any other existing files, you can also view the path
name for any file in the system. Click on the folder icon in the extreme left margin to explore your drive file directory (folder).
Click on myprive to access your Google Drive files. To can locate any specific file in that directory, hover the mouse over it,
and then click on the three displayed dots. From the displayed choices, choose copy path to get the exact path name to
reference that specific file.

Read

The pandas package defines the concept of a data frame and provides the needed functions for reading csv or Excel data
files (or many other formats) into a data frame. You are free to use any valid name for the data frame, but recommend to read
data into a data frame named d. The d stands for data, entered with only one keystroke. Within a Python analysis, reference
the data frame, not the file from which the data were read.

Read an Excel data file from your local file system into the pandas data frame named d with the pandas function
read_excel (). Comment out other lines of code with the Python (and R) comment symbol: #.

https://drive.google.com/

¢ In this example, run on Google Colab, the uncommented read statement is for the Excel data file stored in the data
folder created on Google Drive.

¢ The first commented read statement is to read the file on the web.

¢ The second commented read statement is for the same Excel data file, but for Python running on the user's computer,
stored on the user's data folder relative to folder that contains the running Python notebook.

d = pd.read excel('/content/drive/MyDrive/data/employee.xlsx')

#d = pd.read excel('http://web.pdx.edu/~gerbing/data/employee.xlsx")
#d = pd.read excel('data/employee.xlsx')
Display

When using Excel you always see your data. That part is good, but there is a huge downside from mixing data with code.
Much easier to write error-free, reproducible code when you separate your data from your code to manipulate that data. Data
analysis programming languages such as Python and R provide that separation.

However, when running Python you can still often view a summary of your data.

1. When first reading the data
2. After any data transformation
3. Whenever you encounter a programming error.

When in doubt, always LOOK! For example, after reading data into a data frame, always check what was just read.

Here, get the dimensions of the corresponding data frame. The dot notation, the period after the d indicates that the
corresponding reference to shape is for the d data frame. Each instance of the data frame object, here d, has an attribute
(property) called shape . Here retrieve the shape of d, rows by columns.

d.shape

(37, 9)

Most references to pre-programmed functions provide the option of passing specific parameter values within parentheses.
But even if all the default values are accepted, the parentheses must still be provided, even if empty. The head() function has
only one parameter, n, which is the number of rows of data to display. The default value is five. So following function calls
provide the same result:

¢ head()

* head(5)

¢ head(n=5)

d.head()
Name Years Gender Dept Salary JobSat Plan Pre Post

0 Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92
1 Wu, James NaN M SALE 9449458 low 1 62 74
2 Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97
3 Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62

4 Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86

Note that unfortunately (in my opinion) Python starts row numbering (and everything else) with 0 instead of 1. For example,
the row of data numbered 4 is the fifth row of data.

Also note that in the corresponding Excel file with the data read into the d data frame, the cell for variable Years for James Wu
is missing, it is blank. When read into the data frame, the corresponding cell displays the missing data code for pandas, NaN,
abbreviated from Not a Number.

Data Types

Computers store different types of data values differently. The biggest distinction is between numeric and non-numeric data.
With numeric data, further distinguish between data values that have no decimal digits, integers, and those with decimal
digits (even if all 0's), floating point values.

Data type: The way in which data values are stored in computer memory.

Other data types exist, but in this example, read each variable into one of three Python data types:

* integer (int64) for 64-bit integers, can be very, very large numbers
« floating-point (float64) for potentially very large numbers with decimal digits
¢ object for non-numeric values

When working with data frames, organize data by variables (columns). Show the type of each variable with the info()
function. In Python, methods and functions generally perform the same purpose, but methods are specified without trailing
parentheses.

d.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 37 entries, 0 to 36

Data columns (total 9 columns):

Column Non-Null Count Dtype

0 Name 37 non-null object
1 Years 36 non-null float64
2 Gender 37 non-null object
3 Dept 36 non-null object
4 Salary 37 non-null float64
5 JobSat 35 non-null object
6 Plan 37 non-null inté64

7 Pre 37 non-null int64

8 Post 37 non-null inté64

dtypes: float64(2), int64(3), object(4)
memory usage: 2.7+ KB

We see, for example, that Name is a variable that has non-numeric characters as data values. Salary is a variable with data
values that have decimal digits, and Pre is a variable with integer data values. For some reason, the variable Years also only
has integer values, but is represented as a float64 variable, that is, data values with decimal digits. Perhaps the missing
data value, 36 instead of 37 data values, triggered that designation.

~ Data Pre-Processing

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

1 Preliminaries

o 1.1 Packages
o 1.2 Read

2 Create Dummy Variables

3 Missing Data

o

3.1 Assess Amount of Missing Data
3.2 Show Rows with Missing Data
3.3 Delete rows with Missing Data

o

o

o 3.4 Impute Missing Data

4 Search for Qutliers
5 Transform Variables to Similar Scale

o 5.1 Min-Max Scaling

= 5.1.1 Apply to Original Data
= 5.1.2 Apply to New Data

o 5.2 Standardization Scaling
o 5.3 Robust Scaling

v Preliminaries

v~ Packages

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("$H:%M"))

Analysis on 2021-06-25 at 01:11
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

~ Read

#d = pd.read excel('data/employee.xlsx')
d = pd.read_excel('http://lessRstats.com/data/employee.xlsx"')

The data values in the Name column are not values per se to analyze, but instead serve as row identifiers, ID's. As such,
replace the default integer row labels with the values of the column Name. Do so with the set_index() function.

d = d.set_index('Name')

d.head()

Years Gender Dept Salary JobSat Plan Pre Post

Name
Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92
Wu, James NaN M SALE 94494.58 low 1 62 74
Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97
Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62
Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86

Create Dummy Variables

designateMachine learning procedures cannot directly process categorical variables with non-numeric values. For example,
consider a data set with two values of Gender, coded as M and F. The variable Gender with this non-numerical coding cannot
be entered into a machine learning analysis, which requires numerical variables only.

Categorical variables with non-numerical values, however, can be converted to numerical representations. Many such
conversions are possible. Here we consider the most widely used conversion.

Dummy Variable: A numerically encoded variable for each level of a categorical variable, with a value of 1 if the
level is present and 0 if not.

The Gender variable becomes two dummy variables, Gender_F and Gender_M. For example, if a person's Gender is listed as F,
then Gender_F is 0 and Gender_M is 1.

Pandas provides the function get dummies() to covert a categorical variable to a corresponding set of dummy values, one
for each category. The parameter columns designates the variables to be converted.

One adjustment is needed. If you know the value of Gender_F for an individual is 1, then you also know that Gender_M is 0. So
the value of either one of two dummy variables implies the value of the other. To avoid redundancy, in general, for k levels of
the categorical variables, the number of dummy variables retained in the analysis is kK — 1. For two levels of Gender, arbitrarily
retain 2 — 1 = 1 of the dummy variables in the analysis.

With get_dummies (), drop the first dummy variable with the drop first parameter setto True. Alphabetically, F comes
before M, so in the following analysis, Gender_F is dropped. The original Gender variable is replaced with Gender_M.

For JobSat with three levels - High, Low, and Med -- create three dummy variables, each corresponding to the one of the three
values. JobSat is then replaced by two dummy variables for the Low and Med values. For example, if you know the values of
JobSat_low and JobSat_med are both 0, then you know that the value of JobSat_High is 1. Knowing two values implies the
third, so retain only two dummy variables for JobSat in the analysis.

d = pd.get dummies(d, columns=["Gender", "JobSat"], drop first=True)
d.head()

Years Dept Salary Plan Pre Post Gender M JobSat_low JobSa

Name
Ritchie, 7.0 ADMN 53788.26 1 82 92 1 0
Darnell
Wu,

NaN SALE 94494.58 1 62 74 1 1
James

Usually which particular dummy variable is dropped for each categorical variable is irrelevant. If, however, it is desired to drop
a dummy variable other than the first, then run get_dummies() without the drop first parameter and manually drop the
specified dummy variable from the data frame.

Missing Data

Assess Amount of Missing Data

Machine learning functions generally do not work in the presence of missing data. Before machine learning analysis, examine
the data for missing data and adjust accordingly, either delete the row or column or impute the value.

A missing data value is indicated by the notation Nan, an abbreviation for Not a Number. Sometimes functions or discussion
of missing data refer to missing data as na, which means Not Available.

Here James Wu has a missing value for the number of years he worked at the company. Data values for James Wu occupy the
second row of data, identified by row index 1. The row definition of 1:2 (confusingly) also refers to the second row. However,
specifying the row as a range results in the output's more visually appealing horizontal placement.

d.iloc[1l:2, 0:5]

Years Dept Salary Plan Pre
Name

Wu, James NaN SALE 94494.58 1 62

The isna() function indicates if a data value is missing. Follow with the sum() function to sum the number of missing
values for a variable, here all variables in the d data frame because no specific variable is specified. Follow with a second
sum() function to sum the sums, that is, the total number of missing values in the entire data frame.

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Years 1
Dept 1
Salary 0
Plan 0
Pre 0
Post 0
Gender_ M 0
JobsSat_low 0
JobSat_med 0
dtype: inté64

Total Missing: 2

As a programming note, without using the print () function, the last row of code in a Jupyter cell that specifies output
generates the default output. If there is more than a single line of code that generates output, or if customization of the output
is desired, such as adding a descriptive label, then invoke print (), as in this example.

Show Rows with Missing Data

The code for viewing all rows of missing data begins with the isna() function, which returns True if a data value is missing.
The any() function evaluates the data frame column-by-column and then returns True if there are any True values in the
corresponding row. Putting the expression within d[1 selects only the rows with True, that is, with missing according to

isna() .

d[d.isna().any(axis='columns')]

Years Dept Salary Plan Pre Post Gender_M JobSat_low JobSat_n

Name

Wu,
NaN SALE 94494.58 1 62 74 1 1

James
Jones’ EN NiaNI RQ77D RQ 4 ;AR [~30] n n

Delete rows with Missing Data

The simplest method to address missing data deletes a row if it contains any missing data, what is called case deletion, or list-
wise deletion. The dropna() function deletes rows with missing data from d. It is also possible to apply the function to
columns with parameter axis, which indicates if the analysis applies to rows or columns. Often in Python coding people use
0 instead of the more descriptive 'rows'.

The process in this example removes the three rows with missing data, from 37 rows to 34 rows.

d.shape

(37, 9)

d = d.dropna()
d.shape

(35, 9)

The problem with dropping rows that contain missing data is that for some data sets much or most of the data can be
deleted. Appropriate if many data values in an entire row are missing, but perhaps not if just one missing data value across
data for many variables. Or, sometimes a single variable may contain many missing values, so better to delete the bad variable
than delete so may corresponding rows of data (cases).

To illustrate, re-display the variable names and the first five rows of data. In the original data frame, James Wu is missing
Years worked for the company, and Alissa Jones is missing the Dept worked in as well and the Job Satisfaction rating. Both
rows of data are now deleted from the revised data frame.

d.head()

Years Dept Salary Plan Pre Post Gender M JobSat_low JobSa

Name
Ritchie, 7.0 ADMN 53788.26 1 8 92 1 0
Darnell
Hoang, 15.0 SALE 111074.86 3 9 97 1 1
Binh
Downs, 70 FINC 57139.90 2 90 86 0 0

v Impute Missing Data

A data frame can contain many variables, including variables not relevant to a particular analysis. Later we show that when
doing machine learning, we isolate a relevant set of variables for a given model in their own data structure. In machine
learning, by tradition name this data structure X, the uppercase representation to indicate more than a single variable in
general.

To make this code more applicable to subsequent machine learning analyses, we subset the variables from the original data
frame into a data frame named X, the data that contains just the features (predictor variables) for the machine learning
analysis.

X = d.loc[:, ['Years', 'Salary', 'Pre', 'Post']]
X.head()
Years Salary Pre Post
Name
Ritchie, Darnell 7.0 53788.26 82 92
Hoang, Binh 15.0 111074.86 96 97

Downs, Deborah 7.0 57139.90 90 86
Afshari, Anbar 6.0 6944193 100 100

Knox, Michael 18.0 99062.66 81 84

type(X)

pandas.core.frame.DataFrame

Instead of deleting rows or columns with missing data, an alternative approach imputes missing data values. Provide some
reasonable guess regarding a missing data value and then set this value in place of the missing data code. Impute with the
simpleImputer () function. The mean of each variable is the default value to replace missing data for a variable. A typical
better choice replaces the mean with the median to avoid the impact of potential outliers.

Specify the median with the strategy parameter. The missing values parameter indicates the value defined as a missing
value, here NaN as indicated by the numpy array value of nan. To impute the median, only select variables with numerical
values.

Remember, first we have the Python language, then we have the numpy package built on top of base Python, then we have the
pandas package built on top of numpy . So when doing machine learning, we encounter functions from the original Python
plus from both numpy and pandas.

The fit() function computes the values to be used to fill in missing values. The transform() does the imputation.

from sklearn.impute import SimpleImputer

imp med = SimpleImputer (missing values=np.nan, strategy='median')
imp med = imp med.fit(X)
X = imp_med.transform(X)

The transform() function outputs an array from the original input data frame.

type(X)

numpy .ndarray
The missing data for James Wu for Years now has a value of 9.0, that is, the value in the second row and first column of d.

X[1,0]

15.0

The best way to impute missing data involves predicting each missing data value from the remaining non-missing data values.
This is more complex and requires much more computer time, so maybe not practical for very large data sets.

Search for Outliers

Sometimes some data values do not appear to part of the same distribution as the other data values.
Outlier: Value considerably different from most remaining values of the distribution.

Note that this definition of an outlier applies to the analysis of a single variable and so identifies what is called a univariate
outlier. However, the concept can also be applied to considering several variables simultaneously.

One motivation for outlier detection is that an outlier could represent a simple data collection or transcription error.
Alternatively, an outlier could represent a data value sampled from a population distinct from the population that generated the
remaining data values and therefore would bias the analysis regarding generalizations to what was intended to be the
population of interest. So, an essential aspect of the data analytic process first identifies and then explains the process that
generated the anomalous values.

One approach to identify outliers for a single variable follows from the interquartile range (IQR). To compute, sort the values of
the distribution from smallest to largest.

Quartiles: Three values that divide the entire sorted distribution of values into quarters, four-equal size groups.

The first one-quarter of the values lie between the smallest value and the first quartile. The second quartile is the median,
which occupies the middle spot between the smallest and largest values in the sorted distribution. The third quartile separates
the largest 25% of the values from the smaller values.

Interquartile Range (IQR): Range of values that contains the middle 50% of the values in magnitude, the positive
difference between the 3rd and 1st quartiles.

Boxplot: The body of the box extends from approximately the 1st to the 3rd quartiles, with a line through the
median and perpendicular lines called whiskers extending out from the edges, with outliers plotted beyond the
whiskers.

€« >

lowest 25% | next 25%| next 25% largest 25%
of the values | of the of the values | of the values
values
Iwhisker < IR > whisker i .
smallest va!ue lsf. median 3rd. largest valnfe outlier
not an outlier quartile quartile not an outlier

Values far from the edges of the box are labeled as outliers. The classic definition is that data values beyond 1.5 IQR’s and 3
IQR’s beyond the 1st and 3rd quartiles are labeled as potential outliers and outliers.

To plot a boxplot with seaborn, use the function boxplot () . By default, the boxplot is quite high. Can use the figure
function with the figsize parameter to specified a more narrow height.

plt.figure(figsize=(6,1.5))

sns.boxplot(x=d['Salary'], color='steelblue')
plt.xlabel('Annual Salary (USD)', fontsize=14)
plt.show()

|
'
|

60600 80600 100600 120b00
Annual Salary (USD)

Identify the row of data that has the maximum value for Salary with the idmax () function. The index is the pandas name for
the row names, which in the d data frame are the actual employee names, not integers. and display just the value of Salary
instead of all the data values for that row (case). (Another approach would be to use filter rows expression from the data
wrangingly notebook and list all records larger than about 125,000 or something.)

d['Salary'].idxmax()

'Correll, Trevon'

round(d['Salary'].loc[d['Salary'].idxmax()], 2)

134419.23

The implication for data analysis is to examine the process that generated this anomalous data value. Is the person making
that large salary a high-level manager with the other salaries are for hourly workers? If different processes generate the
salaries, then the outlier should be deleted from further analysis, and the results of further analyses generalized to the
appropriate population, that of hourly workers, in this example.

Transform Variables to Similar Scale

Machine learning algorithms tend to generate more useful results when the variables on which they operate are all on about
the same scale. That means the data values for each of the variables have about the same range at least, and maybe even
about the same mean and standard deviation. Variables with the values as they originally exist do not generally arrive for

analysis sharing the same scale. Weight in pounds, for example, is scaled in entirely different units than Height in inches, or
Annual_Income in USD.

Transform the data values of variables with different scaling to obtain similar scales. The re-scalings discussed here are all

linear.

Linear transformation: Does not change the shape of the underlying distribution, nor its relations with other
variables, just its scale.

After the re-scaling, an approximately normal distribution remains approximately normal, and a skewed distribution remains
skewed.

For a linear transformation, multiply each data value by a constant and add another constant. That is, transform variable x to y
with y = a + bx. An example is converting measurement of length in feet to inches in which the data values are divided by
12, thatis, b = 1/12 and a = 0. That is, to convert feet to inches, divide each data value expressed in feet by 12.

The Python package for machine learning, sklearn, module preprocessing, provides several rescaling possibilities. Need
to import the module.

from sklearn import preprocessing

Specify the variables to transform in their own data frame.

As a programming note, subsets (slices) of data frames by default do not create clean copies. Changes to the values of X can
lead back to changes in the original data frame from which X was derived. To make X completely independent of d, invoke the
subset slice with the copy () function.

X = d[['Years', 'Salary', 'Pre']].copy()
X.loc[:,'Pre'] = X.loc[:, 'Pre'].astype('float64’')

X.head()
Years Salary Pre
Name
Ritchie, Darnell 7.0 53788.26 82.0
Hoang, Binh 15.0 111074.86 96.0

Downs, Deborah 7.0 57139.90 90.0
Afshari, Anbar 6.0 69441.93 100.0

Knox, Michael 18.0 99062.66 81.0

How do know what (if any) preprocessing methods to choose? There are some guidelines, but the most general answer
follows the typical machine learning approach: Try the various possibilities and choose the algorithm that provides the most
accurate forecasting.

Suppose we wish to explain a score on a post test from years worked at the company, annual salary, and scores on a
corresponding pre-test. In the following examples, isolate those three variables into a data structure called X.

Min-Max Scaling

A common rescaling used in machine learning transforms the variables to have the same minimum and maximum values.

Min-Max Scaling: Convert all data values for a variable so that the minimum value is 0 and the maximum value is
1.

Write this transformation for the value of x in the i row of data values of variable x as:

_ x; — min(x)
yi= max(x) — min(x)
Express as a linear function with a = —(min(x)/range(x)) and b = 1/range(x).

The MinMaxScaler provides the needed transformation from the minimum and maximum values of each variable to which
the transformation is applied. Here instantiate as mm_scaler.

from sklearn.preprocessing import MinMaxScaler
mm_scaler = preprocessing.MinMaxScaler ()

Apply to Original Data

At this point, X is a (pandas) data frame.

type(X)

pandas.core.frame.DataFrame

The fit() function calculates the needed information to provide the rescaling: the minimum and maximum needed for each
variable. The transform() function performs the rescaling using this information. Combine both methods with a single
invocation of fit transform().

The MinMaxScaler works with and retains missing data. Any entered non-numeric variables, however, cannot be processed
and cause the routine to terminate.

Xmm = mm_scaler.fit transform(X)

After processing by the MinMaxScaler and transformed, X is now a (numpy) array. This is one of the complications of Python
applied to data analysis, the need for external packages, here both numpy and pandas . Unfortunately, sometimes, as in this
example, data structures are created that conform to those of another package than what was input. A numpy array is the
equivalent data structure to a pandas data frame.

type (Xmm)

numpy .ndarray

Some statistical computations use panda data frames instead of numpy arrays. The default display of the data frame also is
more aesthetic than the array. Convert the transformed X back to a data frame. The column names also have to be manually
added as the numpy array deletes the original names.

Examine the first five rows of the data frame. The values of each of the variables Years, Salary, and Pre were initially on
discordant scales, but now have values that range from 0 to 1.

Xmm = pd.DataFrame(Xmm, columns=['Years', 'Salary', 'Pre'])
Xmm.head ()

Years Salary Pre
0 0.260870 0.086793 0.560976
1 0.608696 0.735607 0.902439
2 0.260870 0.124753 0.756098
3 0.217391 0.264082 1.000000

4 0.739130 0.599560 0.536585

Confirm the success of the transformations of the three variables by using the pandas data frame methods min and max.

Xmm.min()

Years 0.0
Salary 0.0
Pre 0.0
dtype: floaté64

Xmm.max ()

Years 1.0
Salary 1.0
Pre 1.0
dtype: float64

Can transform any data with the same values from the previous application of fit() . Here manually transform the second
row of data in X.

mm_scaler.transform([[15.0, 111074.86, 96.0]11])

array([[0.60869565, 0.73560716, 0.90243902]])

You can also transform manually. The linear equation by which each data value is transformed is available from the computed
scale_ and min_ data structures. Each computed data structure contains one value for each variable in the data frame that
is transformed.

print('Multiplier:', mm scaler.scale .round(3))
print('Additive:', mm scaler.min .round(3))

Multiplier: [0.043 0. 0.024]
Additive: [-0.043 -0.522 -1.439]

To illustrate, manually compute the transformed value of Salary for the second row of data in X, which equals the
corresponding value in the above display portion of the X data frame.

mm_scaler.scale [1]*111074.86 + mm scaler.min [1]

0.7356071617792598

Apply to New Data

The purpose of supervised learning is to develop a model for forecasting from the values of the feature variables. If the data
have undergone a scaling transformation such as Min-Max, then any new data must undergo that same transformation before
generating a forecast.

The new data can be transformed manually, as in the immediately previous example. Or, apply the information already
obtained from the fit() function encoded in mm_scaler to the transformation with the transform() function.

In this example, suppose an employee has worked at the company for 8 years, has a salary of 76,492 USD, and scored an 89
on the pre-test. Next, compute the person's forecasted salary.

X_new [[8,76492, 89]]
X new = mm_scaler.transform(X_ new)
X_new

array([[0.30434783, 0.34392983, 0.73170732]])

In this example, only a single line of values for the three features was processed. Of course, the number of rows of X_new can
be a full data frame of new values, all processed at once.

Standardization Scaling

Another linear transformation of the data values converts the original data values to z-scores, this one taught in all
introductory stat courses.

Standard score: The number of standard deviations a data value is from the mean.

Write the transformation of the data values for variable x as:

Xi—m

zZi= ——
N

To standardize, for each data value of a variable, for the i’ row of data, subtract the mean of the data and divide by the
standard deviation of the data. The result, a distribution of z-scores, has a mean of 0 and a standard deviation of 1.

For this linear transformation, set a = —(m/s) and b = 1/s, where s is the sample standard deviation and m is the sample
mean.

The standardscaler provides the computations for standardization of variables. IF (not a requirement for standardization) a
variable is normal, then most values will be within 2.5 or 3 standard deviations from the mean, that is, standard scores of less
than 3.0 and greater than -3.0.

from sklearn.preprocessing import StandardScaler
s_scaler = preprocessing.StandardScaler()

Get the mean and standard deviation of each variable with the £it () function. Do the rescaling with the transform()
function. Combine both with the fit transform() function.

Xst = s_scaler.fit transform(X)
Xst = pd.DataFrame(Xst, columns=['Years', 'Salary', 'Pre'])
Xst.head()

The success of the transformation is shown by examining the mean and standard deviation of the three transformed, now
standardized, variables.

round(Xst.mean(), 4)

Years 0.0
Salary 0.0
Pre -0.0

dtype: floaté64

round(Xst.std(), 4)

Years 1.0146
Salary 1.0146
Pre 1.0146

dtype: float64

The range of the data roughly approximates that of normal data, though skewed right. In a perfectly normal distribution the
standardized values would range from about -2.5 to 2.5.

Xst.min()
Years -1.500617
Salary -1.282158
Pre -1.779224

dtype: floaté64

Xst.max()

Years 2.553063
Salary 2.811947
Pre 1.752154

dtype: float64

Can transform any data with the same values from fit().

s_scaler.transform([[15.0, 111074.86, 96.0]])

array([[0.96684042, 1.72949472, 1.4076293]])

Can also transform manually. The computed values by which each data value is transformed is available from the computed
scale and mean_ data structures. Each computed data structure contains one value for each variable in the data frame that
is transformed.

print('mean:', s _scaler.mean)
print('sd:', s_scaler.scale)

mean: [9.51428571e+00 7.37762411e+04 7.96571429e+01]
sd: [5.67385698e+00 2.15661941e+04 1.16101996e+01]

To illustrate, compute the transformed value of Salary for the second row of data in X.

(111074.86 - s_scaler.mean [1]) / s_scaler.scale [1]

1.7294947196040262

X.head()

Years Salary Pre

Name
Ritchie, Darnell 7.0 53788.26 82.0
Hoang, Binh 15.0 111074.86 96.0

Downs, Deborah 7.0 57139.90 90.0
Afshari, Anbar 6.0 69441.93 100.0

Knox, Michael 18.0 99062.66 81.0

v Robust Scaling

Robust scaling resembles standardization, except it is more robust to the presence of outliers. The presence of outliers does
not dramatically change the resulting scaled values as much as standardization in which an outlier can have a significant
impact on the mean and an even bigger impact on increasing the size of the standard deviation (which depends on squared
deviation scores).

Robust scaling accomplishes this robustness by replacing the mean in the standard score formula with the more robust
median and the standard deviation with the more robust interquartile range. The median is the second quartile, and the IQR is
the difference between the third and first quartiles. Unlike the mean and standard deviation, no matter how extreme a few
values are in a distribution, the quartiles remain the same.

Robust scale score: The number of IQR's a data value is from the median.

Write the transformation of the data values for variable x as:
x; — median
IOR
That is, to do a robust scaling, for each data value of a variable, for the i’ row of data, subtract the median of the data and
divide by the IQR of the data.

robustscore =

from sklearn.preprocessing import RobustScaler
r _scaler = preprocessing.RobustScaler()

Xrb = r_scaler.fit transform(X)
Xrb = pd.DataFrame(Xrb, columns=['Years', 'Salary', 'Pre'])
Xrb.head()
Years Salary Pre
0 -0.250 -0.554057 0.108108
1 0.750 1.459989 0.864865
2 -0.250 -0.436222 0.540541
3 -0.375 -0.003715 1.081081

4 1125 1.037672 0.054054

The specific characteristics of the transformed variables differ from standardization, but the general results remain. The
means are somewhat close to 0. The standard deviations are less than 1 but certainly much closer to 1 than from the original

distributions. The minimum and maximum values are less than the range of the standardized variables but roughly similar,

round(Xrb.mean(), 4)

Years 0.0643
Salary 0.1487
Pre -0.0185

dtype: floaté64

round(Xrb.std(), 4)

Years 0.7196
Salary 0.7693
Pre 0.6367

dtype: float64

round(Xrb.min(), 4)

Years -1.0000
Salary -0.8235
Pre -1.1351

dtype: floaté64

round(Xrb.std(), 4)

Years 0.7196
Salary 0.7693
Pre 0.6367

dtype: float64

~ Data Wrangling

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

Data in the real world typically does not arrive ready for analysis. Instead usually manipulate the data in various ways to derive
a nice, clean, tidy data frame of rows by columns with all the data values in a column of the same type, such as character
strings, integers, or floating point numbers (i.e., with decimal digits).

Data Wrangling: The process of cleaning, tidying, and otherwise preparing data for analysis.

The following examples demonstrate some useful data manipulations that are applicable to all data analysis: subsetting a
data table, converting variable types, and variable transformations. Merging data frames, another common data manipulation,
is shown elsewhere.

This task of data wrangling is where most data scientists spend most of their time, up to 80% is a common understanding.
Larger organizations have added a new job category called data engineer, a specialist in data wrangling and other aspects of
handling data, such as data collection.

The material in this and related notebooks covers some of the basic, and most common, data wrangling procedures.

v Preliminaries

v Packages

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%3m-%d"), "at", now.strftime("$H:%M"))

Analysis on 2021-06-27 at 14:06
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

v Read

#d = pd.read excel('data/employee.xlsx')
d = pd.read_excel('http://lessRstats.com/data/employee.xlsx"')

d.shape

(37, 9)

d.head()

Name Years Gender Dept Salary JobSat Plan Pre Post

0 Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92
1 Wu, James NaN M SALE 94494.58 low 1 62 74
2 Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97
3 Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62
A P NAharnh -n c oA E74000n inh A an on

v Data Frame Row ldentifiers

Columns in a data frame represent the variables in the analysis. Columns can be identified by the corresponding variable
name or by their numerical position in the data frame.

Index: An integer that specifies the numerical row or column position.

Unfortunately (in my opinion), Python begins all counting with 0 instead of 1. However, the principle of identifying a row or a
column by the corresponding integer remains.

In the d data frame that contains the read data, as shown above, the default row identifiers are the row indices. However, if
there is column of unique identifiers in the data table, that column can be designated as the row identifiers.

In the above d data table, the Name column appears as any other variable in the data frame. However, Name is not a variable
per se to analyze but an ID field, with a unique value for each row. Replace the default integer row labels with the values of the
column Name with the set_index() function.

Note that data manipulation methods typically do not change the original data frame. To save changes, explicitly save the
manipulation into a variable, such as below, where the change to the d data frame is saved back into the d data frame. If there
is no assigned variable for the output, the output is directed to the console. You will be able to view the output, but no changes
are saved.

d = d.set_index('Name')

d.head()

Years Gender Dept Salary JobSat Plan Pre Post

Name
Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92
Wu, James NaN M SALE 9449458 low 1 62 74
Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97
Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62
Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86

Or, set the row names as the data values directly when read with a function such as read _excel() . Use the parameter
index_col to set the column index. The variable Name in the original data frame is in the first column, that is, Column 0.

d = pd.read excel('http://lessRstats.com/data/employee.xlsx', index col=0)
#d = pd.read excel('data/employee.xlsx', index col=0)
d.head()

Years Gender Dept Salary JobSat Plan Pre Post

Name
Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92
Wu, James NaN M SALE 9449458 low 1 62 74
Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

v Subset Rows and Columns

A data frame is the Python representation of a rectangular data table with rows and columns. In many situations, we wish to
view or analyze just a portion of the entire data frame, a subset, an extraction from the original. Many possibilities of
subsetting exist: a single data value (cell), a single row, a single column, and a range of rows or columns.

Express all references to data values in a data frame in terms of those rows and columns. Reference data values within data
frame d by its rows and columns:

d[row_reference, column_ reference]

The reference can be a corresponding name of a row or column or its associated integer index. If referencing location by
name, use the .loc() method for "location". Reference the integer index with the .iloc() method for "integer location" or
"index location". The "weird" part, as with all Python counting, is that counting rows or columns starts with 0 instead of starting
at1.

Note: There is no assignment of the sub-setted information to the new data frame in the examples below, just a display of the
requested information.

v Select a Single Cell

We see from the original data table that Binh Hoang's salary is $111,074.86.

To display the data value stored in a single, specific cell, specify a single row reference and a single column reference. Here
reference the location of the data value by the row name and column name, so use the 1oc method for "location".

Note that the output is not assigned to another data frame, so the output is directed to the space right below where the cell is
located.

d.loc['Hoang, Binh', 'Salary']

111074.86

Or, reference the location of the data value by its row and column index according to their integer positions in the data frame
with iloc. The data for Binh Hoang are in the third row, Row 2 because Python starts counting at 0. The variable Salary is in
the fourth column, Column 3.

d.iloc[2,3]

111074.86

v Select Multiple Cells

A colon, :, indicates a range of either rows (before the comma) or columns (after the comma).

d2 = d.loc['Wu, James':'Jones, Alissa', 'Gender':'JobSat']

d2.head()
Gender Dept Salary JobSat
Name
Wu, James M SALE 94494.58 low
Hoang, Binh M SALE 111074.86 low
Jones, Alissa F NaN 53772.58 NaN

When subsetting row or column indices in pandas with the colon operator, :, always reference the counting system that
begins with 0. And then reference the row after the last row you wish to select.

For example, to select the second through the fourth row, the pandas row indices are 1 through 3. So specify a row range of
1:4. To select the second through fourth columns, specify a column range of 1:5. (Why do the Python people have to
complicate such a simple issue as counting?)

To illustrate, show here again the first five rows of the d data frame.

d.head()

Years Gender Dept Salary JobSat Plan Pre Post

Name
Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92
Wu, James NaN M SALE 9449458 low 1 62 74
Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97
Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62
Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86

With iloc now select the second through the fourth rows, getting three rows indicated by indices 1 through 3, and the second
through the fifth columns, getting four columns, indicated by indices 1 through 4.

d2 = d.iloc[1l:4, 1:5]
dz2

Gender Dept Salary JobsSat

Name
Wu, James M SALE 94494.58 low
Hoang, Binh M SALE 111074.86 low
Jones, Alissa F NaN 53772.58 NaN

v Subset Rows

v Select a Single Row

The : by itself after the comma, that is, no columns specified, indicates to retrieve all columns for the specified row(s). The
colon for columns is optional, but good practice to include.

d.loc['Hoang, Binh', :]

Years 15
Gender M
Dept SALE
Salary 111075
JobSat low
Plan 3
Pre 96
Post 97

Name: Hoang, Binh, dtype: object

Unfortunately, Python's specification of row and column ranges with the : is unnecessarily complex. The straightforward way
to proceed is to identify each row or column with its ordinal position, that is, counting from 1. Instead, Python starts counting
from 0, so the index of the first column and of the first row is 0.

Another complication is that the range itself indicates the beginning index but does not include the ending index. To illustrate,
a range of 2:3, if placed before the comma, references only Row Index 2, which is the third row.

d.iloc[2:3, :]

Years Gender Dept Salary JobSat Plan Pre Post
Name

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

Specify a row without a range results in the vertical listing of the information for that row, here Row 3.

d.iloc[2, :]

Years 15
Gender M
Dept SALE
Salary 111075
JobSat low
Plan 3
Pre 96
Post 97

Name: Hoang, Binh, dtype: object
Subset Rows by Data Values

Retrieve just those rows of data that match a logical condition. Here identify all rows of data for employees with a Salary more
than $100,000 per year. The first example only displays the result. The second example creates a new data frame with the
result, and then displays the subset data frame.

This first example invokes the most straightforward method of selecting rows that satisfy a logical condition: The query ()
function. Note the logical condition is enclosed in quotes.

d.query('Salary > 100000")

Years Gender Dept Salary JobSat Plan Pre Post

Name
Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97
Correll, Trevon 21.0 M SALE 134419.23 low 1 97 94
James, Leslie 18.0 F ADMN 122563.38 low 3 70 70

The query() function may be more straightforwared, but there is another expression for the extraction that many people use.
This expression involves repeating the name of the data frame, which becomes awkward for long data frame names and a
logical expression that involves multiple variables. Still, this form is frequently encountered in pandas data manipulation.

dd = d[d['Salary'] > 100000]

dd
Years Gender Dept Salary JobSat Plan Pre Post
Name
Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97
Correll, Trevon 21.0 M SALE 134419.23 low 1 97 94
James, Leslie 18.0 F ADMN 122563.38 low 3 70 70
Capelle, Adam 24.0 M ADMN 108138.43 med 2 83 81

Here query all Males in Finance. The amperssand, &, indicates "and". Because the entire expression is enclosed in single
quotes, ', enclose character constants within the string with double quotes, " .

d.query('Dept == "FINC" & Gender == "M"'")

Years Gender Dept Salary JobSat Plan Pre Post

Name
Sheppard, Cory 14.0 M FINC 95027.55 low 3 66 73
Link, Thomas 10.0 M FINC 66312.89 low 1 83 83
Cassinelli, Anastis 10.0 M FINC 57562.36 high 1 80 87

The str.contains() function selects values that contain a specified character string. However, the method only works with
complete data, so first remove missing data values in d with the dropna() function.

d2 = d.dropna()
d2[d2['Dept'].str.contains('FI')]

Years Gender Dept Salary JobSat Plan Pre Post

Name
Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86
Sheppard, Cory 14.0 M FINC 95027.55 low 3 66 73
Link, Thomas 10.0 M FINC 66312.89 low 1 83 83
M

Cassinelli, Anastis 10.0 FINC 57562.36 high 1 80 87

v Subset Columns

The easiest way to subset variables, select columns, is with the filter () function.

d.head()

Years Gender Dept Salary JobSat Plan Pre Post

Name
Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92
Wu, James NaN M SALE 9449458 low 1 62 74
Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97
Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62
Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86

In many situations in data analysis, we wish to refer simultaneously to multiple values instead of a single value. With Python in
general and pandas specifically, define a vector of values using square brackets [7.

Vector: A variable that consists of multiple values.

Note to R users: R uses the c() function to accomplish the same result.

In this example, create a vector of two variable names. To emphasize the definition of a vector, define the vector separately
from the call to the filter () function.

d2 = d.filter(['Gender', 'Salary'])

d2.head()

Gender Salary

Name
Ritchie, Darnell M 53788.26
Wu, James M 9449458
Hoang, Binh M 111074.86
Jones, Alissa F 53772.58
Downs, Deborah F 57139.90

To emphasize the definition of a vector, define the vector of variable names separately from the call to the filter() function.

my vector = ['Gender', 'Salary']
d2 = d.filter(my_vector)
d2.head()

Gender Salary
Name
Ritrhie Darnell M RR78K 2A

To select variables by their names can also use the more general 1oc () function. Need to specify both rows and columns with
loc, separated by a colon : . If not simulateounsly selecting rows, put nothing before the : .

d2 = d.loc[:, ['Gender',6 'Salary']]

d2.head()

Gender Salary

Name
Ritchie, Darnell M 53788.26
Wu, James M 9449458
Hoang, Binh M 111074.86
Jones, Alissa F 53772.58
Downs, Deborah F 57139.90

Or, can use iloc for "index location" if specifying the relevant numerical index.

d2 = d.iloc[:, [1,3]1]

d2.head()

Gender Salary

Name
Ritchie, Darnell M 53788.26
Wu, James M 9449458
Hoang, Binh M 111074.86
Jones, Alissa F 53772.58
Downs, Deborah F 57139.90

v Select by Variable Type

The select function for selecting by variable types is select dtypes(), either with the parameter exclude or include.

d num = d.select dtypes(exclude=['object'])
d num.head()

Years Salarv Plan Pre Post

d obj = d.select_dtypes(include=['object'])
d_obj.head()

Gender Dept JobSat

Name
Ritchie, Darnell M ADMN med
Wu, James M SALE low
Hoang, Binh M SALE low
Jones, Alissa F NaN NaN
Downs, Deborah F FINC high

~ Chained Functions

Likely the most straightforward to accomplish data frame subsets is with the query() and filter() functions. However,
when doing multiple function calls, one after the other, you can chain these calls into a single call. This chaining elucidates a
complex, multi-step data manipulation process with highly readable, structured code.

To specify a set of chained functions, include the entire expression within parentheses (), then separate each function call on
its own line. In this example, subset by rows, then by columns, then sort on the Salary column with the sort values()
function.

(d

.query('Salary > 100000")

.filter(['Gender', 'Salary'])
.sort_values(['Salary'], ascending=False)

)

Gender Salary

Name
Correll, Trevon M 134419.23
James, Leslie F 122563.38
Hoang, Binh M 111074.86
Capelle, Adam M 108138.43

v Delete Rows or Columns

v Delete a Row

Start with 37 rows of data.

d.shape

(37, 8)

Use the drop() function to delete a row by row name, to result in 36 rows.

d2 = d.drop('Wu, James')
d2.shape

(36, 8)

Delete a row by row index, here the second row, to result in 36 rows.

d2 = d.drop([d.index[1]])

d2.shape

(36, 8)

The data for James Wu is gone.

d2.head()

Years Gender Dept Salary JobSat Plan Pre Post

Name
Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92
Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97
Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62
Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86
Afshari, Anbar 6.0 F ADMN 69441.93 high 2 100 100

v Delete a Column

The function drop() deletes a row or column from the data frame, as specified by the axis parameter. The default value of
axis iS 'rows', so if dropping a column, need to explicitly specify. Here drop the variable Plan from the resulting data frame
of only numeric variables because it is an integer coded categorical variable. Dropping that variable leaves only continuous
variables.

d num = d2.drop(['Plan'], axis='columns')
d_num.head()

Years Gender Dept Salary JobSat Pre Post

Name
Ritchie, Darnell 7.0 M ADMN 53788.26 med 82 92
Hoang, Binh 15.0 M SALE 111074.86 low 96 97
Jones, Alissa 5.0 F NaN 53772.58 NaN 65 62
Downs, Deborah 7.0 F FINC 57139.90 high 90 86
Afshari, Anbar 6.0 F ADMN 69441.93 high 100 100

v Other Issues

A kind of "weird" issue exists (especially if you are used to R). Subsets (slices) of data frames by default do not create clean
copies. The new data frame is still linked to the original data frame. Changes to the newly created data frame change the
original as well! Modifications to the data or indices of the copy are reflected back to the original object.

To make the subset data frame completely independent of d, what pandas calls a deep copy, invoke the subset extraction with
the copy() function. This function is not needed if there will not be further manipulation of the contents of the newly created
data frame. Unless memory is an issue for very large data sets, or you know that there will be no further modification, using
copy() is a good practice.

d2 = d.loc[:, 'Salary'].copy()

d2.head()
Name
Ritchie, Darnell 53788.26
Wu, James 94494.58
Hoang, Binh 111074.86
Jones, Alissa 53772.58
Downs, Deborah 57139.90

Name: Salary, dtype: floaté64
A short-hand specification to select a column does not call any method or function and only includes the names of the
relevant columns. When learning a language, better to focus on the more complete implementation of a concept. However,

there is a need to know this abbreviated form because it appears often in real-world applications.

d2 = d['sSalary']

d2.head()
Name
Ritchie, Darnell 53788.26
Wu, James 94494.58
Hoang, Binh 111074.86
Jones, Alissa 53772.58
Downs, Deborah 57139.90

Name: Salary, dtype: floaté64

Variable Transformation

Transform the values of a numerical variable with an equation, a function that specifies how each value is to be transformed.
Transform the values of a categorical variable with a recoding that specifies how each individual value is to be replaced with a
new value.

Numeric Variable

To transform the values of a numeric variable is straightforward: Enter the corresponding equation that defines the
transformation. Refer to a variable within a data frame with the data frame name, such as d, and then the variable name within
quotes and square brackets. For example, the refer to the Salary variable in the d data frame: d['salary'].

This example creates a new variable, Salary000, defined as the original Salary variable with values divided by 1000, rounded to
two decimal digits. The new variable is added to the already existing variables in the d data frame. Running the equation
creates the values of the new variable for all rows of data in the data frame.

d['Salary000'] = round(d['Salary'] / 1000, 2)
d.head()

Years Gender Dept Salary JobSat Plan Pre Post Salary000
Name
Ritchie, 7.0 M ADMN 53788.26 med 1 8 92 53.79
Darnell
Wu,
NaN M SALE 9449458 low 1 62 74 94.49
James
Hgf‘n"hg’ 15.0 M SALE 111074.86 low 3 9 97 111.07
Jones,

A=A A

—~ ——

v Categorical Variable

The function replace() recodes individual values of a categorical variable. Parameter to_replace indicates the values to
be replaced, and parameter value indicates the replacement value. Here replace across the entire data frame. Here recode

both values of Gender with one statement.

d.dtypes
Years float64
Gender object
Dept object
Salary float64
JobSat object
Plan inté64
Pre int64
Post inté64
Salary000 float64

dtype: object

This way to recode with replace() replaces any 'F' and 'M'in the entire data table, which turns out to be just for the values of
Gender in this example.

d obj = d.replace(to_replace=['F', 'M'], value=['Female', 'Male'])
d obj.head()
Years Gender Dept Salary JobSat Plan Pre Post Salary000
Name
Ritchie,
7.0 Male ADMN 53788.26 med 1 82 92 53.79
Darnell
Wu,
NaN Male SALE 94494.58 low 1 62 74 94.49
James
H;?nnhg, 150 Male SALE 111074.86 low 3 9 97 111.07
Jones, _—, = Aat mmmea A . A n R

This following use of replace() targets just values of the variable Gender. The curly brackets { and } indicate a specific
pandas data type called a dictionary. As with any dictionary, there is a keyword, and then the meaning. For example, the
keyword 'F' has meaning 'Female'.

This example presents a dictionary within a dictionary. The keyword Gender as meaning 'F' and 'M', which each has their own
meaning.

aa = a.replace({ senaer : { r 3 remalte , M2 Male (})

dd.head()
Years Gender Dept Salary JobSat Plan Pre Post Salary000
Name
Ritchie,
7.0 Male ADMN 53788.26 med 1 82 92 53.79
Darnell
Wu,
NaN Male SALE 94494.58 low 1 62 74 94.49
James
H;?nnhg, 150 Male SALE 111074.86 low 3 9 97 111.07
Jones, ., e N . - ~n ———

v Rename a Variable

Use the rename () function, which allows to specify both the old name and the new name. If defining a new data frame, safer
to add the copy() function to make sure it is a clean copy with no relation to the original data frame. Or, if wishing to just
change the names in the current data frame, no need to set d to another data frame. Set the inplace parameterto True
instead.

In this example, a Python dictionary defines the values to replace each specified individual value. That is, replace the variable
name Dept with Section, and JobSat with Satisfaction.

d2 = d.rename(columns = {'Dept': 'Section',
'JobSat': 'Satisfaction'}).copy()
d2.head()
Years Gender Section Salary Satisfaction Plan Pre Post Sal
Name
Ritchie, 7, M ADMN 53788.26 med 1 82 92
Darnell
Wu,
NaN M SALE 94494.58 low 1 62 74
James
Hoang, 5, M SALE 111074.86 low 3 9 97
Binh
Jones, -~ - Mt e A a ~m ~n

v~ Convert to Category Variable Type

In any data analysis, always be aware of two fundamental types of variables: Numerical and categorical.
Categorical variable: A variable that consists of only a relatively small number of unique values.

An example of a categorical variable is the department in which an employee works, such as sales, marketing, etc. Another
example is eye color, with values of Blue, Green, Brown, Black, and Gray. The values of categorical variables may also be
integers, such as the responses to an attitude question on a survey from Strongly Disagree to Strongly Agree encoded as as
integers from 1 to 7.

To represent the values of a categorical variable, Python presents the category variable type. Variables with character string
values are initially read as type object . Variables with integer values are initially read as type int64 . If the variable is
categorical, then best to convert the variable to type category. This conversion saves memory, and can change the order of
the display of the categories (values).

Assign a new variable type with the astype() function.

d = pd.read excel('http://lessRstats.com/data/employee.xlsx', index col=0)
#d = pd.read excel('data/employee.xlsx')

d.Gender =

d.Dept = d.Dept.astype('category')

d.JobSat =

d.Plan = d.Plan.astype('category')

d.dtypes

Years
Gender
Dept
Salary
JobSat
Plan
Pre
Post
dtype:

Loop: A computer instruction that repeats until a specified condition is reached.

Python has a type of loop called a for loop, which processes one or more expressions over a range of values.

Here use a for loop to consider each variable one at a time instead of a separate equation for each variable, as was done in
the previous cell. The loop applies the astype() function to each of the specified variables, beginning with Gender. The
expression d[col] refers to each specified variable, one at a time, beginning with Gender and ending with Plan.

d.Gender.astype('category')

d.JobSat.astype('category')

float64
category
category
float64
category
category
int64

inté64

object

d = pd.read excel('http://lessRstats.com/data/employee.xlsx"')
#d = pd.read excel('data/employee.xlsx')

for col in
d[col]
d.dtypes

Name
Years
Gender
Dept
Salary
JobSat
Plan
Pre
Post
dtype:

d.head()

['Gender',

'Dept ',

'JobSat’,

= d[col].astype('category')

object
float64
category
category
float64
category
category
int64
inté64
object

Name

0 Ritchie, Darnell

2
3

Wu, James
Hoang, Binh

Jones, Alissa

4 Downs, Deborah

~ Binning

Years Gender

7.0
NaN
15.0

5.0

7.0

'Plan']:
Dept Salary
ADMN 53788.26
SALE 9449458
SALE 111074.86
NaN 53772.58
FINC 57139.90

JobSat Plan

med 1
low 1
low 3

NaN 1

high 2

Pre Post
82 92
62 74
96 97
65 62
90 86

Pandas function gcut () bins a continuous variable into discrete categories according to the specified quantiles. The optional
labels parameter provides names for the bins, otherwise integers numbered from 0.

d2['sal bin'] = pd.qcut(d2['salary'], g=[0,.25,.50,.75,1],
labels=['Low', 'Med', 'High', 'Top'])

d2.head(6)
Years Gender Section Salary Satisfaction Plan Pre Post Sal
Name
Ritchie, 7.0 M ADMN 53788.26 med 1 8 9
Darnell
Wu,
NaN M SALE 94494.58 low 1 62 74
James
Hoang, 5, M SALE 111074.86 low 3 9 97
Binh
Jones, 5.0 F NaN 53772.58 NaN 1 65 62
Alissa

+ Summarize Data

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

v Preliminaries

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-07-01 at 19:02

After the data are prepared as a tidied data table and read into the analysis system such as Python, the first analysis step
summarizes the data with descriptive statistics and visualizations. As always in data analysis, distinguish between
categorical variables and continuous variables in the analysis.

If reading data from your computer's file system or a networked computer, identify the current working directory. This folder is
the reference point in your file system for which file references begin. Then import the needed libraries and read the data for
analysis.

As an option, list the current working directory, which, by default, is where this Jupyter notebook file is located. Your current
working direction is the default location for reading and writing files. The working directory of /content is from running on
Google Colab.

import os
os.getcwd()

' /content'

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

Display matplotlib visualizations in the notebook. Not needed for Colab. If using, remove the # comment, the first character in
the following code.

#%matplotlib inline
Can also display standard HTML links. For example, here view a list of all available color names to use when creating a

visualization.
named colors with a sample of each color

Can read the data from the Excel data file employee.xIsx on the web. Or, download to your computer or Google Drive and read
from there as described the previous week, especially if going to be working on your computer without internet.

d = nd.read excel('httn://lessRatats.com/data/emnlovee._xlax')

https://matplotlib.org/mpl_examples/color/named_colors.hires.png

Lo — - - e - - e e . ey - o o

#d = pd.read excel('data/employee.xlsx')

Always verify that the data were read as you intended.

d.shape
(37, 9)

d.head()

Name Years Gender Dept Salary JobSat Plan Pre Post

0 Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92
1 Wu, James NaN M SALE 94494.58 low 1 62 74
2 Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97
3 Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62
4 Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86

v Categorical Variables

v Counts

v One Categorical Variable

Compute the counts of categorical data values with pandas function value counts(), here categorical variable Dept within
data frame d. Multiple ways to specify a variable as part of a data frame. First specify with the . notation.

d.Dept.value counts()

SALE 15
ADMN 6
MKTG 6
ACCT 5
FINC 4

Name: Dept, dtype: inté64

Alternatively, use the [] notation.

d['Dept'].value counts()

SALE 15
ADMN 6
MKTG 6
ACCT 5
FINC 4

Name: Dept, dtype: inté64

Yet a third notation to get the counts. lllustrated here to highlight that virtually any operation can be done multiple ways. If you
are used to one way of coding an analysis, do not be surprised if someone else does it differently.

d.value counts('Deot')

Dept

SALE 15
MKTG 6
ADMN 6
ACCT 5
FINC 4

dtype: inté64

And a fourth way to get the counts, just to emphasize that there is typically no standard one way to do an analysis. Also, note
that value counts() isa pandas function, but when preceded by a data frame name and a dot in the function call, the
leading pd. is not needed. A data frame is a pandas object, so the reference to pandas is understood. But when by itself,
the pd. must precede the function call.

pd.value_counts(d.Dept)

SALE 15
ADMN 6
MKTG 6
ACCT 5
FINC 4

Name: Dept, dtype: int64

To obtain the relative frequencies or proportions instead of the frequencies or counts, set the normalize paramaeter to

True.

d.Dept.value counts(normalize=True)

SALE 0.416667
ADMN 0.166667
MKTG 0.166667
ACCT 0.138889
FINC 0.111111

Name: Dept, dtype: float64

The categorical variable JobSat has categories 'low', 'med, and 'high'. Python does not understand the English language, and
so has no way of knowing how these categories should be ordered. Python does not know that 'low' is less than 'high’, for
example. Instead, use the categorical() function to explicitly define a variable as categorical with the option to specify the
ordering of the categories when accessed in subsequent analyses.

In this example, JobSat is converted from type object as read to type category.

d['JobSat'] = pd.Categorical(d['JobSat'], categories=['low', 'med', 'high'], ordered=True)

d.dtypes
Name object
Years float64
Gender object
Dept object
Salary float64
JobSat category
Plan int64
Pre inté64
Post int64

dtype: object

v Two Categorical Variables

Use the pandas function crosstab() for cross-tabulation, to compute two-way frequency distributions for categorical
variables. Can refer to the variables with the . notation.

pd.crosstab(d.Dept,d.Gender)

Gender F M

Dept
ACCT 3 2
ADMN 4 2
FINC 1 3
MKTG 5 1
SALE 5 10

Alternatively, use the [] notation in the call to crosstab() .

ct = pd.crosstab(d['Dept'], d['Gender'])
ct

Gender F M

Dept
ACCT 3 2
ADMN 4 2
FINC 1 3
MKTG 5 1
SALE 5 10

v Bar Charts

The primary data visualization package for Python data analysis is matplotlib. A more recent development is the seaborn
package which builds upon matplotlib, designed to provide more elegant graphics with less work. Most of the examples
presented here are from seaborn, with the abbreviation sns. They could also be replicated with matplotlib, continuing the
theme that almost always, there is more than one way to proceed.

seaborn offers the function countplot() to count the number of occurrences for each category of a categorical variable.
The function requires to include the parameter name with the value of each parameter, not relying upon the position of the
value in the parameter list. For example, a positional system would not require the parameter name for the first parameter
listed in the function definition.

¥ One Categorical Variable

sns.countplot (x='JobSat', data=d)

<matplotlib.axes._ subplots.AxesSubplot at 0x7ff22a56e390>

12

10 1

count
(=]

[=2]

44

2 4

If the categorical variable was not defined as an ordered categorical variable with the function categorical(), you can
specify the ordering of the categories in the call to countplot().

sns.countplot(x=d['JobSat'], order=['low', 'med', 'high'])

<matplotlib.axes. subplots.AxesSubplot at 0x7££229479090>

12

10

count

JobSat

With parameter y, request that the categories be placed on the y-axis, that is, a horizontal bar chart. With parameter color,
specify a custom color.

sns.countplot(y='JobSat', data=d, color='darkred')

<matplotlib.axes. subplots.AxesSubplot at 0x7f£228f£f8410>

low

JobSat
i
a

high

The seaborn package has multiple functions that yield bar charts. The previously illustrated countplot() function plots the
height of the bars according to the count (frequency) or proportion (relative frequency) of each category. The function named
barplot() applies to one categorical variable and then a numerical variable that defines the height of the bars.

By default, the mean of the numerical variable for each category is plotted, along with a corresponding error bar that
illustrates the 95% confidence interval.

sns.barplot(x='Dept', y='Salary', data=d)

<matplotlib.axes._ subplots.AxesSubplot at 0x7££f228£122d0>

100000 A

80000

60000

Salary

40000

20000

FINC
Dept

The default statistic plotted for the height of the bars is the mean of the numerical variable. Use the parameter estimator to
specify another statistic. The numpy package defines these statistics, so precede the statistic's name with np. when calling

the barplot() function.

sns.barplot(x='Dept', y='Salary', data=d, estimator=np.median)

<matplotlib.axes._ subplots.AxesSubplot at 0x7f£f22a05b8d0>
120000 A

100000 A

80000 1

60000

Salary

40000 A

20000

0 -

Dept

v Two Categorical Variables

The bar chart of two categorical variables is presented in one of two basic forms, stacked or unstacked. This first example is
unstacked, with the bars separated for the levels of the second variable, Gender, at each level of the first variable, Dept.

sns.countplot(x='Dept', hue='Gender',6 data=d)

<matplotlib.axes._ subplots.AxesSubplot at 0x7ff228e0f£f50>

Gender
N ="
The seaborn version of the stacked form of the bar chart, indicated by the dodge parameter, does not appear to work. The
bars for categories SALE and FINC work, but the remaining bars do not show the Male counts.
g | | [| I

sns.countplot(x='Dept', hue='Gender', dodge=False, data=d)

10

<matplotlib.axes._subplots.AxesSubplot at 0x7ff228e8a790>

10 A Gender
- M
. F

count

ADMN SALE FINC MKTG ACCT
Dept

Go to the foundational matplotlib with its plot() function to get the stacked bar chart to work. Indicate a bar chart with
the kind parameter and set stacked to True. For matplotlib we need to feed the output of crosstabs(), which we
previously called ct, into the plot() function to visualize the cross-tabulation table as a bar chart of two categorical
variables. Add some optional colors with the color parameter. Find a full list of named colors.

One way to use plot() is to enter the cross-tabulation matrix into the analysis. Do so by beginning the function call with the
name of the matrix, here ct.

ct.plot(kind='bar', color=['thistle', 'skyblue'], stacked=True)

<matplotlib.axes._ subplots.AxesSubplot at 0x7££228cd3490>

Gender
14 1 F
M
12.
10 1
B.
6_
4_
2.
0 T T T T
5 e gy
s =] = & &

Dept

The 100% bar chart for these two categorical variables shows the percentage of Gender distributed across each department.

This visualization compares the second categorical variable, here Gender, across the levels of the first variable, particularly
useful when there are unequal group sizes.

Specify the grouping of the categorical variables with the pandas function groupby () . The key to getting the 100% stacked
bar chart is to set the normalize parameterto True, which, as shown previously, converts the counts to frequencies. With

https://matplotlib.org/mpl_examples/color/named_colors.hires.png

matplotlib, plot the 100% stacked bar chart, where each bar goes the complete 100%. This example uses the chain method
explained in the previous week, where each function call appears on a separate line.

(d

.groupby('Dept')['Gender']
.value_counts(normalize=True)
.unstack('Gender')

.plot.bar (stacked=True)

)

<matplotlib.axes._ subplots.AxesSubplot at 0x7f£f228c6d6d0>

101 Gender
0.8 1
0.6 -
0.4 A
0.2 -
0.0 -

S

ACCT
ADMN
FINC

Dept

Here apply barplot() to two categorical variables, specified with parameters of x and hue . Specify the numeric variable for
analysis with parameter y.

sns.barplot(x='Dept', y='Salary', hue='Gender', data=d)

<matplotlib.axes._subplots.AxesSubplot at 0x7f£f228bfcl190>

Gender
- M
. F

100000 A

80000 1
£ 60000 1
&

40000

20000

0 -

Dept

v Continuous Variables

v Statistics

Methods are available for individual statistics.

Calculate the mean of a variable with the pandas function mean() .

d["Salary"].mean()

73795.55675675675

Usually better to also invoke the round() function to not have so many decimal digits. In this example, save the mean in its
own variable, m, then round to two decimal digits.

m = d["Salary"].mean()
round(m, 2)

73795.56

The pandas function describe() computes summary statistics of continuous variables over the entire data frame.
Unmodified it applies to all the continuous variables. The basic summary statistics that describe the sample values of a
continuous variable: number of non-missing values (count), mean (mean), standard deviation (std), minimum (min), first
quartile (25%), median (50%), third quartile (75%), and maximum (max).

d.describe()

Years Salary Plan Pre Post

count 36.000000 37.000000 37.000000 37.000000 37.000000
mean 9.388889 73795.556757 1.783784 78.783784 81.000000
std 5.723524 21799.533464 0.712396 12.037292 11.592622
min 1.000000 46124.970000 1.000000 59.000000 59.000000
25% 5.000000 56772.950000 1.000000 70.000000 72.000000
50% 9.000000 69547.600000 2.000000 80.000000 84.000000
75% 13.000000 87785.510000 2.000000 90.000000 91.000000

max 24.000000 134419.230000 3.000000 100.000000 100.000000

Or, apply to one or more selected variables, here the variable Salary.

d.Salary.describe()

count 37.000000
mean 73795.556757
std 21799.533464
min 46124.970000
25% 56772.950000
50% 69547.600000
75% 87785.510000
max 134419.230000

Name: Salary, dtype: float64

v Pivot Tables

Summarizing numerical data over different sub-groups of a data set is a standard analysis technique. Calculate descriptive
statistics across groups of data.

Aggregation: Summarize a numerical variable with descriptive statistics computed over combinations of groups
defined by one or more categorical variables.

The analysis aggregates statistics across the numerical variables grouped by levels of one or more categorical variables.
Excel refers to a table of aggregated statistics as a pivot table.

One possibility for aggregation is the pandas function groupby (), applied to data frames. Here compute the mean of the
different groups for all numerical variables in the data frame across the levels of Dept.

Note: Available functions include count(), sum(), mean(), median(), min(), max(), mode(), std(),and var() .

Note: This is easier than all that clicking and mousing to get the same result with the Excel pivot table function. (Can also
easily write the results back to Excel with function to_excel().)

d.groupby('Dept').mean()

Years Salary Plan Pre Post

Dept
ACCT 5.600000 61792.776000 2.00 76.600000 78.600000
ADMN 10.166667 81277.116667 2.00 80.833333 82.000000
FINC 10.250000 69010.675000 1.75 79.750000 82.250000
MKTG 9.833333 70257.128333 2.00 79.666667 84.000000

SALE 10.285714 78830.064667 1.60 79.000000 81.133333

To define a two-way grouping, provide a vector of variable names to groupby () .

d.groupby (['Dept', 'Gender']).mean()

Years Salary Plan Pre Post

Dept Gender

ACCT F 4.666667 63237.163333 2.000000 73.333333 77.333333
M 7.000000 59626.195000 2.000000 81.500000 80.500000

ADMN F 7.500000 81434.002500 2.250000 80.000000 79.750000
M 15.500000 80963.345000 1.500000 82.500000 86.500000

FINC F 7.000000 57139.900000 2.000000 90.000000 86.000000

M 11.333333 72967.600000 1.666667 76.333333 81.000000

MKTG F 8.200000 64496.022000 1.800000 79.400000 84.000000
M 18.000000 99062.660000 3.000000 81.000000 84.000000

SALE F 6.600000 64188.254000 1.600000 76.200000 78.600000
M 12.333333 86150.970000 1.600000 80.400000 82.400000

Use the agg() function to aggregate the values of multiple numerical variables. With this function, need to precede the
function names with np. as they are functions defined in the numpy package.

Here write the code for the aggregation in chain function notation.

(d
.groupby (['Dept', 'Gender'])
.agg([np.mean, np.median])

)

Years Salary Plan Pre

mean median mean median mean median mean

Dept Gender
ACCT F 4.666667 3.0 63237.163333 71084.020 2.000000 2.0 73.3(
M 7.000000 7.0 59626.195000 59626.195 2.000000 2.0 81.5(
ADMN F 7.500000 5.0 81434.002500 71058.595 2.250000 2.0 80.0(
M 15.500000 15,5 80963.345000 80963.345 1.500000 1.5 82.5(
FINC F 7.000000 7.0 57139.900000 57139.900 2.000000 2.0 90.0(
M 11.333333 10.0 72967.600000 66312.890 1.666667 1.0 76.3
MKTG F 8.200000 8.0 64496.022000 61356.690 1.800000 2.0 79.4(
M 18.000000 18.0 99062.660000 99062.660 3.000000 3.0 81.0(
SALE F 6.600000 8.0 64188.254000 56508.320 1.600000 2.0 76.2(
M 12.333333 13.0 86150.970000 82442.740 1.600000 1.0 80.4(

Of course, as seen before, there are multiple ways to proceed. Another possibility uses the pandas function pivot table()
for aggregating (pivoting) the values of one or more continuous variables over different groups defined by one or more
categorical variables.

Specify the continuous variables over which to aggregate with the values parameter. The index parameter specifies the
categorical variables that define the groups. The aggfunc parameter specifies the statistic for the aggregation, here the
mean. Note that the calculation of the mean here is from the numpy package, abbreviated np upon which pandas depends.

pd.pivot_table(d, values=['Years', 'Salary', 'Plan', 'Pre', 'Post'],
index=['Dept', 'Gender'], aggfunc=np.mean)

Plan Post Pre Salary Years

Dept Gender

ACCT F 2.000000 77.333333 73.333333 63237.163333 4.666667
M 2.000000 80.500000 81.500000 59626.195000 7.000000

ADMN F 2.250000 79.750000 80.000000 81434.002500 7.500000
M 1.500000 86.500000 82.500000 80963.345000 15.500000

FINC F 2.000000 86.000000 90.000000 57139.900000 7.000000

M 1.666667 81.000000 76.333333 72967.600000 11.333333

MKTG F 1.800000 84.000000 79.400000 64496.022000 8.200000
M 3.000000 84.000000 81.000000 99062.660000 18.000000

SALE F 1.600000 78.600000 76.200000 64188.254000 6.600000
M 1.600000 82.400000 80.400000 86150.970000 12.333333

If you do not specify the values parameter, then all numeric variables are analyzed.

pd.pivot table(d, index=['Dept', 'Gender'], aggfunc=np.mean)

Plan Post Pre Salary Years
Dept Gender

ACCT F 2.000000 77.333333 73.333333 63237.163333 4.666667

M 2.000000 80.500000 81.500000 59626.195000 7.000000

ADMN F 2.250000 79.750000 80.000000 81434.002500 7.500000
M 1.500000 86.500000 82.500000 80963.345000 15.500000

FINC F 2.000000 86.000000 90.000000 57139.900000 7.000000
M 1.666667 81.000000 76.333333 72967.600000 11.333333

MKTG F 1.800000 84.000000 79.400000 64496.022000 8.200000
M 3.000000 84.000000 81.000000 99062.660000 18.000000

LY YN - 4 AANNANAN A AAANNANA TR ANANNA N A400 AFANAN [alataVaVaVaVel

~ Visualizations

The distribution of a continuous variable can be presented several different ways. Perhaps the two most encountered
visualizations are histograms and box plots.

¥ Histogram

seaborn provides two functions for generating histograms, histplot() and displot() . Here we focus on the later.

sns.displot(d, x='Salary')

<seaborn.axisgrid.FacetGrid at 0x7f££228bf4d10>

12 A

Count

60000 80000 100000 120000
Salary

Reference the parameter color for a custom color. Specify the number of bins with the bins parameter. Could also use the
binwidth parameter.

sns.displot(d, x='Salary', color='slategray', bins=8)

<seaborn.axisgrid.FacetGrid at 0x7£f£228c03el0>

The seaborn package provides more advanced plots. For example, easily overlay a smoothed frequency-type curve, called a
density plot, on the histogram with the function displot() .

sns.displot(d, x='Salary', color='slategray', bins=8, kde=True)

<seaborn.axisgrid.FacetGrid at 0x7££f228a9f250>

Salary

from numpy.random import normal
sim_data = normal(size=1000)
sns.displot(x=sim_data)

<seaborn.axisgrid.FacetGrid at 0x7ff2lel6ac90>

120 I
Throughout the various seaborn functions, generate multiple visualizations on the same panel according to different groups

with the hue parameter.
I S

sns.displot(d, x='Salary', hue='Gender')

<seaborn.axisgrid.FacetGrid at 0x7ff21el5f210>

8

Gender
/M
CF

Count

[

L

80000 100000 120000
Salary

A closely related visualization to a histogram is a frequency polygon, which may provide a helpful portrayal of the distributions
for overlapping distributions. For example, in the above histogram, overlapping values are shown in gray. In the frequency
polygon version, the polygons overlap as a blending of their respective colors.

Specify with the element parameter.

sns.displot(d, x='Salary', hue='Gender', element='poly')

<seaborn.axisgrid.FacetGrid at 0x7£ff21e131910>

8

\ Gender
M
C3F

Count
s

0+ T T T T T T T T
50000 60000 70000 80000 0000 100000110000120000130000
Salary

v Box Plot

The box plot has already been demonstrated in an earlier notebook, but included here for completeness as a standard
visualization of a distribution, emphasizing detecting outliers. Use the seaborn function boxplot() . The height of the box
plot is not relevant, and by default is quite large, so set to a small number, 1.5, with the matplotlib figure() function.

plt.figure(figsize=(6,1.5))
sns.boxplot(x=d['Salary'], color='steelblue')
plt.xlabel('Annual Salary (USD)', fontsize=14)

Text(0.5, 0, 'Annual Salary (USD)')

60000 80000 100000 120000
Annual Salary (USD)

The box plot is an excellent way to visualize the distribution of a continuous variable across levels of a categorical variable.

Here compare Salary across the different Dept or departments of a company.

sns.boxplot(x='Dept', y='Salary', data=d)

<matplotlib.axes._ subplots.AxesSubplot at 0x7f£f228c73e50>

L

120000 -

100000 -
ol
-]
]

80000 -

AD'MN SA'LE FIP'JC MK'TG AC'CT
Dept

Can go one step further and specify a second categorical variable at each level of the first categorical variable. Here, with the
hue parameter, show box plots for Gender at each Dept. Change the colors from the default blue and orange with the

palette parameter.

plt.figure(figsize=(8,6))
sns.boxplot(x='Dept', y='Salary', hue='Gender', palette=['steelblue', 'gold'], data=d)

<matplotlib.axes._ subplots.AxesSubplot at 0x7ff21deb3850>

[Gender
e M
mm F

120000 -

...... T

v Correlational Structure

80000 { I . i |
The correlational structure refers to the (linear) relations among the variables, pairwise, that is, two at a time. The sample or
population correlation varies between -1 and 1, which respectively indicate perfect - or + linear relationship. A correlation of 0
indicates no linear relationship.

v Scatterplot

The classic visualization of the relation between two numerical variables is the scatterplot, which plots each pair of values for
the two variables for a row of data as a point. The coordinates of the plotted point are the values of the two variables for that

row of data.

A seaborn scatterplot functionis relplot().The aspect parameter controls the ratio of height and width.

sns.relplot(x='Years', y='Salary', data=d, aspect=1.2)

<seaborn.axisgrid.FacetGrid at 0x7££22022e8d0>

a
=
120000 -
=
=
100000 - B
> P ¢ .
o
Lﬁ =
a
80000 - °
a
=) L4 .
= =3
60000 - g ®
E e L g
= =
a ° s
=
0 5 10 15 20 5

Years

Consistent with other seaborn functions, introduce a grouping variable with the hue parameter. Control the size of the
points with the s parameter.

sns.relplot(x='Years', y='Salary', hue='Gender', s=60, data=d, aspect=1.2)

<seaborn.axisgrid.FacetGrid at 0x7ff21dce4890>

L]
@
120000
o
L]
100000 o
®
E N ® Gender
& . e M
° F
80000 - o o
s} o ° .
o L
®
o o
60000 A : . . pe
v Correlation matrix
0 5 10 15 20 2

The correlation coefficient varies from -1 for a perfectly negative or inverse relationship, to 0 for no relationship, to +1 for a
perfectly positive relationship.

Get correlations with the pandas function corr() . Here calculate the correlation between number of Years worked for the
company and annual Salary. Clearly an employee's salary is related to the length of time working for the company.

d['Years'].corr(d['Salary']).round(2)

0.85

The correlation matrix in traditional form, a square matrix that, given a list of variables, contains the correlation for each
variable in the list, twice, because the correlation coefficient is the same regardless of the order of the two variables:

rip = rp1. 1'srun down what is called the principle diagonal, indicating that each variable correlates with itself a perfect 1.0.
It is distracting and generally useless to display more than two decimal digits for each of the displayed correlations.

d.corr().round(2)

~ Heat map

The heat map visualizes the correlation matrix, color coded according to the intensity of each correlation. Get the heat map
with the seaborn function heatmap () . Specify the parameter annot for annotation to be True to also provide the numerical
value of the correlations. Here use the 10c method to select the variables for the heat map.

keep vars = ['Years',6 'Salary', 'Pre', 'Post']
d2 = d.loc[:, keep_ vars]
sns.heatmap(d2.corr().round(2), linewidths=2.0, annot=True)

v Scatterplot matrix

The scatterplot matrix has the form of a correlation matrix, but replaces each correlation with the corresponding scatterplot.
The diagonal elements of the correlation matrix are replaced with a plot of the distribution of the variable.

Get the scatterplot matrix with the seaborn function pairplot().

Can also use the kind parameter to specify a regression line for each scatterplot, and the diag_kind parameter to specify
kernel density plots (kde) in the diagonal. If there is no hue parameter, the default is a histogram for each diagonal element.

sns.pairplot(data=d, vars=["Years", "Salary"], kind="reg",
diag_kind="kde")

The pairplot can be obtained for multiple levels of a categorical variable. The parameter hue specifies a categorical variable
from which to map its levels to different colors in scatterplot matrix.

sns.pairplot(d, vars=["Years", "Salary", "Pre", "Post"], hue='Gender')

~ Regression Analysis with One Predictor

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

Table of Contents

1 Preliminaries

2 Read the Data

3 Form X and y Data Structures
4 Model Analysis

o 4.1 Estimation
o 4.2 Fit

5 Postscript

This template shows how to do regression analysis with a single predictor with the statsmodel package.

v Preliminaries

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("$H:%M"))

253
import os
os.getcwd()

' /content'

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

v Read the Data

The data consist of variables based on regions of Boston from some decades back, with a focus on houses and housing
prices.

#d = pd.read csv('data/Boston.csv')
d = pd.read csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

d.shape

(506, 15)

d.head()
Unnamed; crim zn indus chas nox rm age dis rad tax ptr
0 1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296
1 2 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242
2 3 0.02729 0.0 7.07 0 0469 7.185 61.1 4.9671 2 242
3 4 0.08237 0.0 2.18 0 0.458 6.998 458 6.0622 3 222
4 5 0.06905 0.0 2.18 0 0.458 7.147 542 6.0622 3 222

Do not need the first column, so drop.

d = d.drop(["Unnamed: 0"], axis="columns")

d.head()
crim zn indus chas nox rm age dis rad tax ptratio blac
0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 156.3 396.9
1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.9
2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.8
3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.6
4 0.06905 0.0 2.18 0 0.458 7.147 542 6.0622 3 222 18.7 396.9

Do a missing data check before analysis.

zZn 0
indus 0
chas 0
nox 0
rm 0
age 0
dis 0
rad 0
tax 0
ptratio 0
black 0
lstat 0
medv 0
dtype: inté64

No missing data here, so can proceed as is.
v Form X and y Data Structures

Build a model that forecasts/explains the median house price, medv in terms of the average number of rooms, rm.

e medv: Median value of owner-occupied homes in $1000's
¢ rm: Average number of rooms per dwelling

Store the features, the predictor variables, of which there is only one in this example, in data structure X. Store the target
variable in data structure y. The uppercase X is used because in real-world applications, X invariably contains multiple
variables.

y = d['medv']
d['rm']

>
]

A technical point, but one worth considering when doing data analysis, is to understand the type of data structures created
throughout an analysis. The data as read are read into a pandas data structure called a dataframe. However ,when the data
frame is sub-setted into X and y, both of which consist of only a single variable in this example, the result is a one-dimensional
pandas data structure called a series. Actually, a dataframe consists of columns, and each column is a series. Thatis
why reduction of the data frame to a single column results in a series.

For this particular analysis pursued here, being aware of this distinction is not necessary. But, in general, always good to know
the underlying data structures. Thinking the data is of one type, when it is actually of another type, in many situations leads to
programming errors.

To check the type of a variable, use the Python function type() .

print("d: ", type(d))
print("X: ", type(X))
print("y: ", type(y))
d: <class 'pandas.core.frame.DataFrame'>

X: <class 'pandas.core.series.Series'>
y: <class 'pandas.core.series.Series'>

Understand the distribution of the target variable, medv, to make sure that the distribution is not too weird. Show the
distribution with its histogram and density estimate (smoothed histogram), obtained with the seaborn method distplot() .

DUD ¢ ULDPLUL AT WSUV ; LUluUL— D\.cclblue', kde=True, data=d)

<seaborn.axisgrid.FacetGrid at 0x7£1527210al0>
<Figure size 324x360 with 0 Axes>

70 1
. I
/|
50 4
54 /=
IS}
30 4
20 1 —
10 1 B
o LILL . . . |
10 20 30 40 50
medv

Before doing linear regression, first make sure that the relationship between the variables is at least roughly linear. Check via a
scatterplot with the seaborn function relplot().

ax = sns.relplot(x="rm", y="medv", data=d)

50 @ e o e o .o:n..:.
L
40 1 : °

medv

20 1

10 A

Can also use the pandas function corr() to get the correlation between predictor and target.

d['rm'].corr(d['medv']).round(2)

0.7

The variables are highly correlated with » = 0.70, and the scatterplot indicates an apparent linear relationship. The only
"weird" issue is that apparently housing prices over 50,000 USD are truncated and listed at 50,000 USD. Probably a good idea
to filter these rows of data out of the data table and generalize the results to houses with less than that value, but we will leave

Saved successfully

~ Model Analysis

v Estimation

For some reason, by default, the estimation procedure assumes a y-intercept of 0 unless there is constant value in the feature
data. To compensate, before estimating the model, explicitly add a column of 1.0's to the X data structure so that the
estimated model will have a y-intercept, and therefore fit better without requiring the assumption of a value of 0. Add the
constant with the statsmodels package add constant() function.

import statsmodels.api as sm

from statsmodels.regression.linear model import RegressionResults
X = sm.add_constant(X)

X.head()

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/ testing.py:19: Fu
import pandas.util.testing as tm

const rm

0 1.0 6.575

1 1.0 6.421
Specify the model with the oLs () function from the statsmodel package. OLS means ordinary least squares, the default and

usual estimation procedure for regression models. Specify the target variable first, followed by the data structure with the
features. Do the least-squares regression analysis of the defined model by applying the £it () function.

Save the results of this regression analysis to a statsmodel data structure we name results. The summary() function
summarizes the main results of the analysis.

model = sm.OLS(y, X)
results = model.fit()
print(results.summary())

OLS Regression Results

Dep. Variable: medv R-squared: 0.484
Model: OLS Adj. R-squared: 0.483
Method: Least Squares F-statistic: 471.8
Date: Wed, 30 Jun 2021 Prob (F-statistic): 2.49e-74
Time: 21:53:24 Log-Likelihood: -1673.1
No. Observations: 506 AIC: 3350.
Df Residuals: 504 BIC: 3359.
Df Model: 1
Covariance Type: nonrobust
coef std err t P>t [0.025 0.975]
const -34.6706 2.650 -13.084 0.000 -39.877 -29.465
rm 9.1021 0.419 21.722 0.000 8.279 9.925
v 102.585 Durbin-Watson: 0.684
0.000 Jarque-Bera (JB): 612.449
0.726 Prob(JB): 1.02e-133
KUrTOS1S: 8.190 Cond. No. 58.4
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The primary results of the model are in this section:

coef std err t P>|t]| [0.025 0.975]
const -34.6706 2.650 -13.084 0.000 -39.877 -29.465
rm 9.1021 0.419 21.722 0.000 8.279 9.925

The estimated values of the intercept, by and b; are -34.67 and 9.10, respectively. So write the estimated model as:

Vmedv = —34.67 + 9.10(x,.,)
In this data set only, for each increase in the average number of rooms, the average selling price increases by 9,102 USD. We
do, however, need inferential statistics to generalize to the population as a whole.

Hypothesis test: The p-values for the #-statistics for each of the two estimated coefficients, p>|t|, are well below the cutoff
of @« = 0.05. For the slope, assuming that there is no relationship between rm and medyv, then the probability of getting an
estimated slope coefficient as large as 9.10 is an extremely improbable event, indistinguishable from 0 to three decimal digits.

So reject the null hypothesis of no relationship, and conclude there is a positive relationship between rm and medv. As rm
increases, so does medyv.

Confidence interval: Accordingly, the 95% confidence interval for the slope, which contains the plausible values of the true,
population value of the slope coefficient, is, with 95% confidence, in the interval from 8.279 to 9.925. That is, with 95%
confidence, for each increase in the average number of rooms, the average selling price increases somewhere between 8,279

Fit

The seaborn plotting function regplot() automatically plots the scatterplot and the regression line through the scatterplot.
Also provided is the confidence interval of the regression line (values computed over hypothetical repeated samples). Values
of X futher from the middle have more variability, analogous to a teeter-tottor in which each end swings further than a place on
the teeter-tottor closer to the middle, the fulcrum.

ax = sns.regplot(x="rm", y="medv", data=d)

- o - . o .. '

" “tlooks reasonable. There is, of course, scatter about the line, but not so much.
Saved successfully

To evaluate fit of the model with statistics, access various values computed by the fit() function, here stored in the
structure called results. Use the functions ssr(), mse resid(),and rsquared() . The RMSE or standard deviation of the
residuals is not provided directly, so compute as the square root of the MSE. Use the function sqrt () from the numpy
package. All values are rounded to two decimal digits with the round() function.

print("Sum of squared residuals:", results.ssr.round(2))
print("Mean squared error:", results.mse resid.round(2))
RMSE = np.sqrt(results.mse resid)

print("Stdev of residuals:", RMSE.round(2))

res_range = 4 * RMSE

print("95% range of residuals:", res range.round(2))
print("R-squared:", results.rsquared.round(2))

Sum of squared residuals: 22061.88
Mean squared error: 43.77

Stdev of residuals: 6.62

95% range of residuals: 26.46
R-squared: 0.48

The sum of the squared residuals is provided for reference, upon which the more meaningful fit indices are derived. The
standard deviation of the residuals, consistent with not too much scatter about the scatterplot, is fairly small, indicating
reasonable fit, with 95% of residuals spanning a range of about 26 and 1/2 USD.

R? is almost 0.5, which indicates room for improvement, but a demonstration that the model improves much over the null
model. That is, using rm to predict medv does much better than simply using the mean of medyv to predict medv.

v Postscript

In practice, regression models, and all machine learning models, typically involve much more than a single feature, predictor
variable. Subsequent material expands this model to multiple regression, that is, multiple features.

v Feature Selection

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

Table of Contents

1 Preliminaries
2 Data
3 Feature Selection

o 3.1 Manual Selection
o 3.2 Automated Feature Selection

= 3.2.1 Automated Univariate Feature Selection
= 3.2.2 Automated Multivariate Feature Selection

4 Postscript

Feature selection is not always necessary for building machine learning models, but it is typically a helpful process to pursue.
The goal is to reduce the number of predictor variables (features) in the model, to keep predictive accuracy at or about the
same level, but with a much simpler model, with fewer predictor variables.

Two reasons to pursue feature selection:

1. Data costs money. The fewer the predictors, the less data needs to be collected.
2. Understanding the underlying relationships between predictors and target variable, which indirectly often leads to the
construction of better models.

v Preliminaries

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%$H:%M"))

Analysis on 2021-07-12 at 14:28
import os
os.getcwd()

' /content'
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

v Data

#d = pd.read _csv('data/Boston.csv')
d = pd.read _csv('http://web.pdx.edu/~gerbing/data/Boston.csv"')

d.shape
(506, 15)
d.head()
Unnamed; crim zn indus chas nox rm age dis rad tax ptr
0 1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296
1 2 0.02731 0.0 7.07 0 0469 6.421 78.9 4.9671 2 242
2 3 0.02729 0.0 7.07 0 0469 7.185 61.1 4.9671 2 242
3 4 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222
4 5 0.06905 0.0 2.18 0 0458 7.147 542 6.0622 3 222

Do not need the first column, so drop.

d = d.drop(["Unnamed: 0"], axis="columns")

d.head()
crim zn indus chas nox rm age dis rad tax ptratio blac
0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.9
1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.9
2 0.02729 0.0 7.07 0 0469 7.185 61.1 4.9671 2 242 17.8 392.8
3 0.08237 0.0 2.18 0 0.458 6.998 458 6.0622 3 222 18.7 394.6
4 0.06905 0.0 2.18 0 0.458 7.147 542 6.0622 3 222 18.7 396.9

Store the features, the predictor variables, in data structure X. Store the target variable in data structure y. To run multiple

regression with all possible predictor variables, one possibility defines X as the entire data frame with medv dropped, as in
X = d.drop(['medv’], axis="columns")

Alternatively, use the procedure below that manually defines a vector of the predictor variables (features) names, and then

define X as the subset of d that contains just these variables.

y = d['medv']

pred vars = ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad',
'tax', 'ptratio', 'black', 'lstat']
X = d[pred _vars]

Not necessary, but see how many features in the model, and observe the data type of the X and y data structures. The function
len() provides the length of a vector, that is, the number of elements of a vector.

n_pred = len(pred vars)
print ("Number of predictor variables:", n_pred)

Number of predictor variables: 13

X andy are created as two different pandas data types: X is a data frame, y is a one-dimensional array called a series. A data
frame can have a single column, but, somewhat confusingly (in my opinion), subsetting a data frame down to a single variable
is no longer is a data frame.

Feature Selection

Features, the predictor variables, should be ...

¢ relevant: Predictors each correlate with the target
¢ unique: Predictors do not correlate much with each other

The problem of collinearity is the problem of correlated predictor variables, the features. Too much correlation and redundancy
make estimating the slope coefficients difficult, though it does not harm predictive accuracy per se. Generally, improve model
fit by adding new information in the form of a new predictor variable to the model to the extent that the new predictor is
relevant and unique.

Do, however, be aware of the problem of data leakage. When testing the model on data previously unseen by the model, all
aspects of that data must have been unseen, just as in a real-world forecasting scenario. Otherwise, the data is said to leak
from training to testing data. Making decisions regarding the model based on all the data then by definition includes both
training and testing data. Best to make decisions regarding model estimation only from the training data.

Manual Selection

Base selection of the predictor variables on satisfying the two criterion: relevance and uniqueness. The goal here is to produce
a single output, a table, that displays numerical indices for both criterion.

Uniqueness. Besides the correlation coefficient of two predictor variables, a more general indicator of collinearity is the
variance inflation factor or VIF. The VIF assesses the linear redundancy of one predictor variable not just with one other
predictor variable, but all the other predictor variables.

Relevance. Compute the correlation of each predictor with the target.

print("X is a: ", type(X))
print("X.values is a: ", type(X.values))

X is a: <class 'pandas.core.frame.DataFrame'>
X.values is a: <class 'numpy.ndarray'>

Use the statsmodels function variance inflation_ factor() to compute the variance inflation factor for each predictor.
The VIF's are a property only of the X's, so the target y is not part of this analysis. The variance inflation factor()
function does not compute all the VIF's, but only one at a time. Create a data frame named vif, then fill each row of the data
frame with the corresponding name of the predictor variable and its corresponding variance inflation factor.

To systematically calculate and retrieve the VIF's, one for each feature, traverse through the variables in X one at a time with a
programming structure known as a for loop, from the first X variable through the last X variable, where x.shape[1] is the
number of rows of the data frame.

Because the loop cannot traverse through the original data frame, transfer the X data frame to a more primitive data structure,
a numpy structure of a numeric matrix, obtained with the values method.

1. To begin, create an empty data frame with any valid name. Here we use vif. Then define a variable called Predictor in the
data frame, filled with the names of the columns of the X data structure using the columns method.

2. Then create a variable called VIF, the variance inflation factor for each predictor variable. Loop through the data matrix
(not data frame) with the values method for each predictor variable.

3. Calculate the correlation of each predictor (feature) with the target and store in the variable called Relevance. Store in the
data series cr, then loop through cr for each variable to copy the value to the new Relevance variable.

4. Finally, display the contents of the created vif data frame by listing its name as the last line of code in the cell. (If we wish
to display information before the last line, then need the print () function.)

from statsmodels.stats.outliers_influence import variance_inflation_factor
vif = pd.DataFrame()
vif['Predictor’'] = X.columns

vif['VIF'] = [variance_inflation factor(X.values, 1i)
for i in range(X.shape[l])]

cr = d.corr()['medv'].round(3)
vif['Relevance'] = [cr[i]

for i in range(X.shape[l])]
vif

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/ testing.py:19: Fu
import pandas.util.testing as tm

Predictor VIF Relevance
0 crim 2.100373 -0.388
1 zn 2.844013 0.360
2 indus 14.485758 -0.484
3 chas 1.152952 0.175
4 nox 73.894947 -0.427
5 rm 77.948283 0.695
6 age 21.386850 -0.377
7 dis 14.699652 0.250
8 rad 15.167725 -0.382
9 tax 61.227274 -0.469
10 ptratio 85.029547 -0.508
1 black 20.104943 0.333
12 Istat 11.102025 -0.738

There is much collinearity in the data, consistent with the correlation matrix that shows many feature correlations far from 0.
Many features could be deleted to yield a more parsimonious model that would be just as effective if not more so. Although
rm has one of the highest VIF's, it is also strongly related to the target as shown by the regression coefficients' analysis and
has one of the highest correlations with the target. A high VIF does not mean a feature should be deleted because perhaps a
relevant feature is correlated with other, less relevant features that, when deleted, lower the VIF on the more relevant feature.

v Automated Feature Selection

The pure machine learning approach seeks to automate everything. This approach makes the most sense when there are
many, tens if not hundreds, of features. Otherwise, best to perform feature selection manually, analyzing correlations, variance
inflation factors, p-values from the regression analysis of all features, and all possible subset regressions. And there is always
understanding the meaning of the individual features (predictor variables), favoring the most understandable and meaningful,
and perhaps easiest or cheapest for which to collect the data.

Let's proceed as if we have too many features to model effectively or we wish to rely only on influential predictor variables. So
we pare down our model here using automated feature selection. We begin with all 13 features.

If you have the computation time, do this after the analysis with all the features. If computation time is limited, do at least

enma faatiira calantinn hafara tha madal avaliiatinn

Automated Univariate Feature Selection

There is one simple sklearn feature selection module called selectkBest that selects the specified number of features
according to relevance, the correlation of each feature with the target. It simply selects those features with the highest
correlations with the target. Specify the number of retained features with the k parameter.

Here the logical array we name selected indicates which of the k values in the X feature data structure are to be retained.

from sklearn.feature_ selection import SelectKBest, f regression
selector = SelectKBest(f regression, k=5).fit(X,y)

selected = selector.get_ support()

selected

array([False, False, True, False, False, True, False, False, False,
True, True, False, True])

Select the selected variables by subsetting the original X data structure.

X2 = X.iloc[:, selected]

X2.head()
indus rm tax ptratio l1lstat
0 2.31 6.575 296 15.3 4.98
1 7.07 6.421 242 17.8 9.14
2 7.07 7.185 242 17.8 4.03
3 2.18 6.998 222 18.7 2.94
4 218 7.147 222 18.7 5.33

Automated Multivariate Feature Selection

A more sophisticated, though more costly in CPU time procedure, is the sklearn module RFE, for recursive feature
elimination. First, specify the estimation procedure by which to initially assign weights to the features, such as linear
regression as in this example. The RFE procedure then evaluates the features and identifies the single weakest feature on the
basis of model fit, which is then pruned from the model. This assumes the parameter step is set at 1, which is the number of
features pruned at each step.

To apply the estimator, invoke the £it() function on the specified feature and target data structures, X and y. The process is
recursively repeated until the requested number of features, n_features_to_select, is obtained. In this example, retain the top 5
features.

This method generally produces a better model than selectkBest, but the issue is computation time. If the CPU time is
available, rFE is preferred.

from sklearn.linear model import LinearRegression

estimator = LinearRegression()

from sklearn.feature_selection import RFE

selector = RFE(estimator, n_features to_select=5, step=1).fit(X,y)

The features are selected, but now pare down the X data frame of feature data to just include the selected features. Rely upon
two variables that rRFE () created. The output vector support_ indicates by True or False the selected variables. The output
ranking_ vector ranks the features, with all the selected variables ranked at 1.

print(selector.support)
print(selector.ranking)

[False False False True True True False True False False True False
False]
[465111913718 2]

Use the support_ output structure from RFE () . Subset the data with iloc() to redefine the feature data frame.

X2 = X.iloc[:, selector.support]

X2.head()
chas nox rm dis ptratio
0 0 0.538 6.575 4.0900 15.3
1 0 0.469 6.421 4.9671 17.8
2 0 0.469 7.185 4.9671 17.8
3 0 0.458 6.998 6.0622 18.7
4 0 0.458 7.147 6.0622 18.7

We see that the five feature variables selected by the more sophisticated rrE () differ from the five chosen features by
SelectKBest() .

To view the rankings of all the features, to show the order of the variables that did not make the final 5, access the output
ranking_ variable. Note that one of the two features most highly correlated with the target, Istat, did not make the cut.

The crucial information not shown here is how much higher is Rz, or how much lower is MSE, for a five-feature model. No
answer from this analysis. To test, the model would need to be re-run.

rnk = pd.DataFrame()
rnk['Feature'] = X.columns
rnk['Rank']= selector.ranking
rnk.sort_values('Rank').transpose()
3 4 5 7 10 12 8 0 2 1 9 11 6

Feature chas nox rm dis ptratio Istat rad crim indus zn tax black age

Rank 1 1 1 1 1 2 3 4 5 6 7 8 9

v Postscript

The model should also be analyzed with standardized variables to put everything on a common scale. Further, at least one
outlier should be removed. Given the high degree of collinearity, the model can likely be reduced to about 3 or 4 features with
little if any lose in predictive power.

Also, the model should be developed on one set of data, the training data, and then evaluated on testing data, apart from the
training data. If no new data is available, then split the original data up into 75%/25% samples and then estimate (learn) on the
75% sample and test on the 25% sample.

The most useful statistical information, in my opinion, for feature selection is what is called all subset regression, which
evaluates R? for all (or many) possible subsets of feature combinations (actually, the adjusted version). Then it becomes
straightforward to see which core set of predictors are best combined to achieve one of the best models among the available
alternatives.

On a bit of a tangent here, but in terms of the most general advice, my R Regression() function provides this subset
regression analysis automatically (though little time if any) to discuss feature selection in that class. | prefer that program in
my lessR R package to anything | have seen in Python when doing regression analysis. Very straightforward to use and does
cross-validation as well. Read the data and run the function. Not part of this course per se, but helpful to apply in real-world
contexts. Here is the R code that gives all of the above, plus all subsets regressions.

library(lessR)
d = Read("http://web.pdx.edu/~gerbing/data/Boston.csv")
Regression(medv ~ crim + zn + indus + chas + nox + rm + age + dis + rad + tax + ptratio + black + Istat)

As a bonus, add the parameter Rmd="house" (or named whatever), and you will get a complete written report.

http://web.pdx.edu/~gerbing/data/Boston.csv%22

Regression Outliers

<div id="author""> David Gerbing
The School of Business

Portland State University
gerbing@pdx.edu </div>

Table of Contents

e 3 Influence and Qutliers

Preliminaries

In [2]: from datetime import datetime as dt
now = dt.now()

print ("Analysis on", now.strftime("%$Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2020-07-13 at 16:46

In [3]: import os

os.getcwd ()

Out[3]: '/Users/davidgerbing/Documents/000/410/Code’

In [4]: import
import
import

import

pandas as pd

numpy as np
matplotlib.pyplot as plt
seaborn as sns

Data

In [5]: d = pd.read csv('data/Boston.csv')
#d = pd.read csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

In [6]: d.shape

out[6]: (506, 15)

In [7]: d.head()

out[7]:

Unnamed: 0 crim zn indus chas nox rm age dis rad tax ptratio black Istat medv

0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0

0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6

3 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7

0.03237 0.0 2.18 0O 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 294 334

WD
AN

5 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2

Do not need the first column, so drop.

In [8]: d = d.drop(["Unnamed: 0"],

d.head()

axis="columns")

Out[8]:

crim zn indus chas nox rm age dis rad tax ptratio black Istat medv

0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0

1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6

0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7

0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 294 334

. WD

0.06905 0.0 2.18 0 0458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2

Store the features, the predictor variables, in data structure X. Store the target variable in data structure y. To run multiple
regression with all possible predictor variables, define X as the entire data frame with medv dropped, as in
X = d.drop(['medv'], axis="columns")
or, use the procedure below that manually defines a vector of the predictor variables (features) names, and then define X as the
subset of d that contains just these variables.
In [9]: y = d['medv']
pred vars = ['crim',
'ptratio’,
d[pred vars]

'zn', 'indus', 'chas', 'nox', 'rm', 'dis', 'rad', 'tax',

'black', 'lstat']

|age|’

X =

Not necessary, but see how many features in the model, and observe the data type of the X and y data structures. The function
len() provides the length of a vector, that is, the number of elements of a vector.

In [10]: n pred = len(pred vars)

print("Number of predictor variables:", n pred)

Number of predictor variables: 13

X and y end up as two different pandas data types: X is a data frame, y is a one-dimensional array called a series . The

numpy package, upon which pandas is built, has its own data type for arrays, such as created with the np.array()
function. Some distinctions are that numpy arrays can have multiple dimensions, whereas Pandas series can have any set of
characters for the corresponding indices.

Influence and Outliers

Run statsmodels function OLS() to do the basic regression analysis. This includes adding a column of 1's to the X
structure of the data for the feature variables.

In [19]: import statsmodels.api as sm

from statsmodels.regression.linear model import RegressionResults
X = sm.add constant(X)

model = sm.OLS(y, X)

results = model.fit()

Calculate the values of Cook's Distance, D, and other residual based statistics, with the function get influence() . To be
useful, sort the data with sort wvalues() accordingto cooks d, then list the first 15 or so rows of cooks d and related
indices. Set the parameter ascending to False to begin the sort with the largest values, that is, a descending sort.

In [20]: from statsmodels.stats.outliers_influence import OLSInfluence
infl = results.get influence()

smry = infl.summary frame()

smry = smry.loc[:, ['standard resid', 'student resid', 'cooks d']]

smry.sort values(by="cooks d", ascending=False).head(15)

out[20]:

standard_resid student resid cooks d

368
372
364
365
369
412
367
370
214
371
414
253
380
374

166

5.713855
5.180330

-3.420118

2.933770
3.756430
3.505841
2.696070
3.332992
2.754234
5.335291
2.470361

2.789298

-1.004220

2.811972

2.752133

5.907411
5.322247

-3.457995

2.956763
3.807609
3.546859
2.713448
3.367841
2.772893
5.491079
2.483299

2.808758

-1.004229

2.831962

2.770745

0.165674
0.094097
0.069430
0.067184
0.055263
0.050041
0.045412
0.044196
0.042925
0.042555
0.034770
0.033492
0.031755
0.028228

0.022481

In this example, Observation #368 with D = 0.166 is likely an outlier. Its values should be examined and likely deleted from the
analysis. Any written description of the results should include a description of this observation, its abnormal values of X that lead
to the large value of D, and why it was deleted from further analysis.

In real life analysis we would list the data values for the outlier and then figure out why that set of data values lead to that row of
data being an outlier. Here is the listing. Certainly age is way high, but we will not be concerned with more analysis here.

In [21]: d.iloc[368, :]

Out[21]: .89822
.00000
.10000
.00000
.63100
rm .97000
age 100.00000
dis 1.33250
rad 24.00000
tax 666.00000
ptratio 20.20000
black 375.52000
lstat 3.26000
medv 50.00000

Name: 368, dtype: float64

crim

zn

indus 1
chas

nox

O b O O 00 O b

To drop the row of data, use the drop method as applied to indices since we never assigned actual row names to the rows of
the data frame.

In [22]: d.shape

out[22]: (506, 14)

In [23]: d2 = d.drop([d.index[368]])

In [24]: d2.shape

Out[24]: (505, 14)

To continue the regression analysis without the outlier, we would repeat the preceding steps, beginning with forming the X and y
data structures.

~ Regression with sklearn Machine Learning

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

Table of Contents

1 Preliminaries

o 1.1 Misc
o 1.2 Import Standard Data Analysis Libraries
o 1.3 Access Solution Algorithm

2 Data

3 Data Exploration

4 Create Feature and Target Data Structures
5 Model Validation with One Hold-Out Sample

o

5.1 Split data into train and test sets
5.2 Estimate the model parameters
5.3 Calculate y

5.4 Assess Fit

o

o

o

= 5.4.1 Visual assessment of fit
= 5.4.2 Fit metrics

¢ 6 Model Validation with Multiple Hold-Out Samples
e 7 Strategy to Obtain the Final Model

v Preliminaries

v Misc

from datetime import datetime as dt

now = dt.now()

print ("Analysis on", now.strftime("%Y-%3m-%d"), "at", now.strftime("$H:3M"))
Analysis on 2021-07-12 at 13:49

import os

os.getcwd()

' /content'
~ Import Standard Data Analysis Libraries

import pandas as pd
import numpy as np

[CRUUSROIFER T I R SO BRI

LUPUL L uaLpluLlin.pPypLlUL ad pilu

import seaborn as sns

Access Solution Algorithm

The sklearn package provides many different solution algorithms to accommodate many different types of machine
learning models, each in its own module called a class. The LinearRegression module provides the functions for doing
linear regression. Access an algorithm by creating a specific instance of the algorithm, referred to by a specific name in the
analysis. This process is called instantiation.

Here instantiate LinearRegression() with the name reg_model, accepting all default parameters, not passing any parameter
values between the parentheses. All subsequent references to the linear regression algorithm below are then implemented via
this name reg_model.

from sklearn.linear model import LinearRegression
reg model = LinearRegression()

Data

Boston Housing Data Set

e crim: per capita crime rate by town

¢ zn: proportion of residential land zoned for lots over 25,000 sq.ft.
¢ indus: proportion of non-retail business acres per town.

¢ chas: Charles River dummy variable (1 if tract bounds river; 0 otherwise)
* nox: nitric oxides concentration (parts per 10 million)

¢ rm: average number of rooms per dwelling

e age: proportion of owner-occupied units built prior to 1940

¢ dis: weighted distances to five Boston employment centres

¢ rad: index of accessibility to radial highways

e tax: full-value property-tax rate per 10,000 USD

e ptratio: pupil-teacher ratio by town

¢ b: 1000(Bk*: 0.63)"2 where Bk is the proportion of blacks by town
¢ [stat: % lower status of the population

¢ medv: Median value of owner-occupied homes in 1000's USD

#d = pd.read csv('data/Boston.csv')
d = pd.read csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

d.shape

(506, 15)

d.head()

Unnamed:

0 crim zn indus chas nox rm age dis rad tax ptr

n 4 [aWalal~lsls} 40N n N4 n n cno Al ~ud~ [~]~Np] A NONN 4 Nnne

Do not need the first column, so drop.

d = d.drop(['Unnamed: 0'], axis="columns")

d.head()
crim zn indus chas nox rm age dis rad tax ptratio blac
0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.9
1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.9
2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.8
3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.6
4 0.06905 0.0 2.18 0 0.458 7.147 542 6.0622 3 222 18.7 396.9

Check for missing data to determine if any action such as row or column deletion or any data imputation is needed.

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

crim

zn
indus
chas
nox

rm

age

dis

rad

tax
ptratio
black
lstat
medv
dtype: inté6

[=NelNelNelNeNelNeNe N Ne Ne e Ne Nel

Total Missing: 0
No missing data.

Check out the distribution of the target with seaborn displot() . Set parameter kde to True to show the smoothed
summary, called a density plot. If going to run a model focused on forecasting the target, one should also understand the
nature of the target variable. The main purpose is to understand the distribution, not necessarily to show normality per se.
Look for skewness, outliers, etc.

Data Exploration

plt.figure(figsize=(6,6))
sns.displot(d.medv, kde=True, color='steelblue')

<seaborn.axisgrid.FacetGrid at 0x7£8385bl2e50>
<Figure size 432x432 with 0 Axes>

70 1

£ a0 1 /e
Q
o
30.
20 1 —
°1 AN j
M/

More or less normal, with some large values beyond normality. It appears prices more than 50,000 USD are truncated to
50,000 USD for some reason.

Examine the relevance of each feature according to its correlation with the target. Use pandas function corr() to calculate
just the correlations of the variables with medv . Use function sort values() to sort from smallest to largest. Correlations of
large magnitude, regardless of sign, indicate relevance.

Feature chas appears the least relevant with a correlation of the target of only 0.18. Even so, not 0, so with the small data set,
will retain for the initial model analysis.

The most relevant features are Istat and rm.

(d
.corr()['medv']
.sort_values()

.round(2)

)
lstat -0.74
ptratio -0.51
indus -0.48
tax -0.47
nox -0.43
crim -0.39
rad -0.38
age -0.38
chas 0.18
dis 0.25
black 0.33
zn 0.36
rm 0.70
medv 1.00

Name: medv, dtype: float64

Data leakage: Feedback from data analysis from which the model is trained is used to evaluate the model used
for forecasting.

We need to avoid data leakage. Test the final proposed forecasting model on data that has not in any way been used to
estimate the model.

In practice, however, you might need to reduce computation time if you have a huge data set and a model with many
predictors, particularly with a more complicated model and solution algorithm than for linear regression. In that situation,

without doing any model estimation, perhaps eliminate some features that violate the two properties of relevance and
uniqueness before model estimation.

plt.figure(figsize=(12,10))
sns.heatmap(d.corr().round(2), linewidths=2.0, annot=True,
cmap=sns.diverging palette(5, 250, as_cmap=True))

<matplotlib.axes._ subplots.AxesSubplot at 0x7£8381d45fd0>

B
- 006 004 006 009 009 009 01 001 004 012 005 005 018
-H . 0.19 .
: -02
-0‘38 ﬁ J " 0.1 0.21 -.E 029 025
-00

- 029 .0.38‘ 012

o - B

o I & -

o~ - B0 - Do -
.

mdus d!as nox m tax mratlo black medv

036

m

o. 18

chas indus

0.09

nox

ds age m

rad

ta
E
3
N
o
g
=}
o0
~

Istat black ptratio

medv

v Create Feature and Target Data Structures

Store the features, the predictor variables, in data structure X. Store the target variable in data structure y.

To run multiple regression with all possible predictor variables, define X as the entire data frame with medv dropped, as in
X = d.drop(['medv1, axis="columns")
or,
use the procedure below that manually defines a vector of the predictor variables (features) names, and then define X as the
subset of d that contains just these variables.

y = d['medv']

pred vars = ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad',
'tax', 'ptratio', 'black', 'lstat']

X = d[pred_vars]

Useful to see how many features in the model with the Python 1en() function for length, and observe the data type of the X
and y data structures. Because this function is part of the original Python language, no package prefix is needed, just the

function name.

n_pred = len(pred vars)
print ("Number of predictor variables:", n_pred)

Number of predictor variables: 13

print("X: ", type(X))
print("y: ", type(y))

X: <class 'pandas.core.frame.DataFrame'>
y: <class 'pandas.core.series.Series'>

Model Validation with One Hold-Out Sample

Now for Python machine learning!

The sklearn package, named as an abbreviation for the full name scikit-learn, provides many machine learning
algorithms, all implemented with the same general procedure illustrated here. Many support functions such as dividing data
into training and testing partitions are also supported.

The underlying goal is to provide "Simple and efficient tools for predictive data analysis". A primary reason Python has become
the leading platform for machine learning is because of scikit-learn. The name scikit-learn is a scientific toolkit for
machine learning.

Split data into train and test sets

Cross-validation tests a model on a new data set, testing data different from the data on which the model was estimated,
training data. The concept of cross-validation has applied to regression analysis for many decades, though perhaps often
recommended more than actually accomplished. The machine learning framework provides for easily accessible cross-
validation methods, and is a necessary component of the analysis.

The sklearn function train test_split(), fromthe model selection module, randomly shuffles the original data into
two sets, training data and testing data, here called X_train and X_test for the features and y_train and y_test for the target.

¢ Parameter test_size specifies the percentage of the original data set allocated to the test split.
e Parameter random state specifies the initial seed (or starting point) from which the process of number generation
begins so that the sequence can be repeated.

The input into the train test _split() function are the X and y data structures. The function provides four outputs from a
single function call: X training and testing data, and y training and testing data. Python has the convention of listing the names
for multiple outputs on the left side of the equals sign, separated by commas, in the correct order in which the function lists
the output.

Optional parameter random state specifies the initial seed so that the same random process, more properly called a pseudo-
random process, can be repeated at some future time with the same data split is obtained from train test_split().Re-run
with the same value, here 7, obtain the same random split.

from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size=.25, random state=7)

https://scikit-learn.org/stable/index.html

The shape method displays the dimensions of each of the resulting two data sets, X_train and X_test. The first number is the
number of rows in the corresponding data structure. Here with the size of the testing data set at 25% of all the data, there are
379 rows of data in the two training data structures and 127 rows of data in the two testing data structures. The y data

ctriinrtiirac hava anhi Ana ~aliimn Tha 1 etriintiirac ara nat Aata framace en thair niimhar Af ~Aliimne ic nat cnacnifiad

print("Size of X data structures:
print("Size of y data structures:

, X train.shape, X test.shape)
, Y_train.shape, y test.shape)

Size of X data structures: (379, 13) (127, 13)
Size of y data structures: (379,) (127,)

Estimate the model parameters

All sklearn solution algorithms fit the model, that is, estimate the model parameters, with the £it () function, presumably
first applied only to the training data. Expressed yet another way, the machine (i.e., algorithm implemented on the machine)
learns from the training data. Only use the training data at this point in the analysis.

Here apply the £it () function for linear regression by applying our reg_model instantiation of LinearRegression.

reg model.fit(X train, y train)

LinearRegression(copy X=True, fit intercept=True, n_jobs=None, normalize=False)

The £it() function creates several different data structures as output, each structure stored with a pre-defined name. The
name of a data structure whose values that the analysis procedure creates ends in an underline.

The estimated model coefficients are stored in the intercept and coef structures. To reference, precede each name, in
this example, with the model's name and a period. The coefficients of the final, validated model, estimated with all of the data,
are needed to apply the model to other situations.

The machine learning implementation of regression is typically not primarily directed towards understanding and interpreting
the model coefficients. Instead, focus on evaluating the extent of forecasting error. The estimated coefficients are not even
displayed by default. The analysis does not provide the usual regression model output with the coefficients listed along with
their corresponding #-tests of the null hypothesis of 0, and the associated confidence interval, such as obtained from the
orLs() functioninthe statsmodels package.

The corresponding output structures are not pandas data frames, but rather numpy arrays, which do not display as nicely. To
make the output more readable, convert the numpy array output format to a pandas data frame.

Inthe print() function,the %.3f is a format that indicates to display a floating-point number, that is, one with decimal
digits, and to display three decimal digits.

print("intercept: %.3f" % (reg model.intercept), "\n")

cdf = pd.DataFrame(reg model.coef , X.columns, columns=['Coefficients'])
print(cdf)

intercept: 23.957

Coefficients
crim -0.129373
zn 0.029590
indus 0.022293
chas 2.837446
nox -15.395420
rm 5.275573
age -0.010538
dis -1.301708

rad 0.266393

tax -0.010969

ptratio -0.964830
black 0.010860
lstat -0.378363

v Calculate y

Given the estimated model, generate forecasts. The standard sklearn function to calculate a fitted value from the estimated
model is predict() .

Here compute two sets of values: y_fit when the model is applied (fitted) to the data on which it trained, and, for model
evaluation, y_pred when the model is applied to the test data.

y_fit = reg model.predict(X_train)
y_pred = reg model.predict(X test)

Evaluate the descriptive analysis of fit by comparing y to J for the training data.

Evaluate true forecasting fit by comparing y to y for the testing data.

v Assess Fit

v Visual assessment of fit

If there is only one predictor variable, plot the scatter plot of X and y and the least-squares regression line through the
scatterplot. If this multiple regression, then this code is not run.

The Python syntax for an if statement uses the double equal sign, ==, to evaluate the equality, and a single equal sign, =, to
create equality by assigning the value on the right to the variable on the left. Indicate the end of the conditional statement, here
n_pred==1, with a colon, : . Indent two spaces for the statements that are run if the conditional statement is true.

if n_pred ==
plt.scatter (X train, y train, color='gray')
plt.plot(X train, y fit, color='black', linewidth=2)
plt.xlabel("Prices: $X i$")
plt.title("Y and Fitted $\hat{Y} i$ Plotted Against X")

The basis of the assessment of the model is the comparison of the actual data values of y in the testing data, y_test, to the
values of y calculated from the model, y_pred.

Visualize the overall fit by plotting the actual values of y in the test data, y_test, with the corresponding values of the
forecasted SyS's, S\hat y$, or y_pred. If the forecasting is perfect, then Sy=\hat y$, and all points lie on the 45-degree line
through the origin. By default, the horizontal axis started numbering at 10, which was explicitly overridden to start at 0 with the
x1lim() function so that both axes begin at 0.

To obtain a scatter plot with the regression line and associated confidence interval, use the seaborn function regplot() .
The variables to be plotted are not in a data frame, so there is no data parameter. To label the axes requires the pandas
function series() to name the associated series. In my opinion, it's a bit of contortion just to label the axes, but it works.

y_test = pd.Series(y_test, name="y from testing data")

7 mnrad = nA Cariaclixr nrad nama="nradi~+ad ralina AF "\

e o U SRR CIC) S PO PEevaveem vaaue wae gy g

sns.regplot(x=y_ test, y=y pred)

<matplotlib.axes. subplots.AxesSubplot at 0x7£83762b7790>

predicted value of y

10 15 20 25 30 35 40 45 50
y from testing data

We can see that the predicted values closely match with the actual data values from the testing data.

Fit metrics

This first application is not always done. It evaluates the fit of the model to the training data, comparing the actual data values,
y_train, to the corresponding values computed by the model, y_fit. This is not the official evaluation of model fit and
performance. It is useful, however, to compare the fit indices for the training data to the testing data. A large drop indicates
overfitting the model to the training data.

The metrics moduleinthe sklearn package provides the computations for the fit indices. The module provides the mean
squared error, MSE, and SR*28SR"2$ fit indices with the functions mean_squared error() and r2_score() . To get the
standard deviation of the residuals, manually take the square root of the variance MSE with the numpy function sqrt() .

The %.3f formatting code instructs the Python print() function to print a floating-point number (numeric with decimal digits)
with three decimal digits.

from sklearn.metrics import mean squared error, r2_ score

mse = mean_squared _error(y_train, y fit)

rsq = r2_score(y_train, y fit)

print("MSE: %.3f" % mse)

se = np.sqrt(mse)

range95 = 4 * se

print("Stdev of residuals: %.3f " % se)

print("Approximate 95 per cent range of residuals: %.3f " % range95)
print("R-squared: %.3f" % rsq)

MSE: 20.266

Stdev of residuals: 4.502

Approximate 95 per cent range of residuals: 18.007
R-squared: 0.767

For pedagogy, here compute the standard deviation of the residuals from the data. Define the residuals as e. Note that the
mean squared residual, both here and from the previous cell, is calculated with the full sample size, not the technically correct
degrees of freedom.

e = y train - y fit
print("stdev of residuals: %.3f " % np.sgrt(np.mean(e**2)))

stdev of residuals: 4.502

Here we do the actual evaluation of model performance. Evaluate how well the actual data values for SySSyS, y_test, match
the forecasted or predicted values of Sy$SyS, S\hat yS$$\hat y$S. From this split of data, the value of SR*28SR"2$ typically drops
from that obtained from the training data. Sometimes, however, by chance, the testing data may outperform the training data,
again due to chance.

mse_f = mean squared error(y_test, y pred)

rsq f = r2 score(y_test, y pred)

print('Forecasting Mean squared error: %.3f' % mse f)

print('Forecasting Standard deviation of residuals: %.3f' % np.sqrt(mse f))
print('Forecasting R-squared: %.3f' % rsq f)

Forecasting Mean squared error: 29.515
Forecasting Standard deviation of residuals: 5.433
Forecasting R-squared: 0.617

We see that when applied to new data, the standard deviation of residuals, s_eSSs_e$, increased from 4.502 to 5.433, still a
small number. $R*2S$R*2S decreased from 0.767 from the training data to 0.617 applying the model to the testing data.
Regardless, good fit is obtained even with the forecasting model.

Model Validation with Multiple Hold-Out Samples

As an alternative to the one hold-out cross-validation in the previous section, here evaluate model fit with cross-validation on
multiple samples. The sklearn KFold module performs the cross-validation in which the model is estimated using Sk-1$$k-
1S folds and then tested on the remaining fold. The process automatically repeats for each fold.

Here pass specific parameter values to kfold.

» n_splits: Number of splits (folds) of the training data.
¢ shuffle: Randomly shuffle the data before splitting into the folds.
¢ random_state: Set the seed to recover the same "random" data set in a future analysis.

The number of splits can vary from 2 to $n-188n-18, where $n$$nS is the total number of rows in the training data. Values of 3
and 5 are the most common. Larger data sets support a larger number of splits. Usually, shuffle the data first to keep the
entire process entirely random.

Here instantiate the kFo1d module with kf, invoking the desired parameter values.

from sklearn.model_ selection import KFold, cross_validate
kf = KFold(n_splits=5, shuffle=True, random state=1)

The cross_validate() conveniently provides for multiple evaluation scores from the same cross-validation folds without
manually repeating the computations for each score. Plus, computation times are also provided.

To estimate the model for each fold, here five different estimates from five different samples, specify the estimation
algorithm. We have already instantiated the LinearRegression() estimator earlier as reg_model, but repeat here for clarity.
The scoring parameter specifies to obtain SR*28SR*2$ and MSE scores for each of the true forecasts of applying the model,
for each split, from the k-1 folds data to the hold-out fold.

Weirdly, MSE is reported in the negative. The reason is that the best score is always the largest across all scoring procedures
and all estimation algorithms and is thus consistent with other model-tuning algorithms that expect this behavior and

consistent with the internal code of the related skilearn functions. So here, the least negative is the largest value, the most
desirable value. In reality, MSE must be a non-negative number, so the sign of the real MSE is just flipped to go negative.

The training data evaluations are not needed for the evaluation per se, which occurs on the testing data, but sometimes
helpful to compare to the corresponding testing scores. Training scores much larger than the related testing scores indicates
overfitting. Obtain the training information with the parameter return_train_score.

scores = cross_validate(reg model, X, y, cv=kf,
scoring=('r2', 'neg_mean_squared_error'),
return_train score=True)

Our scores array contains much information regarding the fit of each model over the five different analyses, but not so directly
readable. To make it more readable, convert scores to a data frame, rename the long column names to more compact
versions, convert the MSE scores to positive numbers, and average the results. The display includes the time to fit the training
data for each fold and the time to calculate the evaluation scores, which includes getting the predicted values.

The parameter inplace setto True means making the change in the specified data frame and saving the data frame with
those changes. This parameter removes the need to copy to a new data frame.

ds = pd.DataFrame(scores)
ds.rename(columns = {'test neg mean squared error': 'test MSE',
'train_neg mean squared_error': 'train MSE'},
inplace=True)

ds['test MSE'] = -ds['test MSE']
ds['train MSE'] = -ds['train MSE']

print(ds.round(4))

fit time score_time test r2 train r2 test MSE train MSE

0 0.0048 0.0047 0.7634 0.7294 23.3808 21.8628
1 0.0020 0.0014 0.6468 0.7582 28.6143 20.5029
2 0.0019 0.0015 0.7921 0.7262 15.1606 23.7937
3 0.0019 0.0013 0.6508 0.7580 27.2082 20.8185
4 0.0022 0.0014 0.7353 0.7409 23.3712 21.6071

A fit index averaged over all the folds is the best summary of how well the model fits, either to the training data, or more
interestingly to the testing data.

print('Mean of test R-squared scores: %$.3f' % ds['test r2'].mean())
print('\n")
print('Mean of test MSE scores: %.3f' % ds['test MSE'].mean())

se = np.sqrt(ds['test MSE'].mean())
print('Standard deviation of mean test MSE scores: %.3f' % se)

Mean of test R-squared scores: 0.718

Mean of test MSE scores: 23.547
Standard deviation of mean test MSE scores: 4.853

This 13-predictor model fits well, with an average SR*2S8S$R*2S$ across the five folds of 0.72. (Note that we never see the actual
estimated model from each fold.) The average MSE and s_eSSs_eS$ is also low in terms of the more interpretable standard
deviation of the residuals. Once the model is validated, fit it to the entire, full data set.

v Strategy to Obtain the Final Model

Begin data preparation by deleting any unnecessary features, removing any obvious univariate outliers, and converting any
categorical variables to indicator/dummy variables if included in the model as features. Also check for missing data as
machine learning solution algorithms do not run if missing data are present.

If CPU time is an issue, cross-validate with only one hold-out sample. Otherwise, cross-validate with 3 or 5 or more hold-out
samples, depending on CPU time and the size of the original data set.

All that is needed for model validation if computation time permits is the SkSk-fold cross-validation with
multiple-scores.

The only advantage of the one train-test split approach is that the model coefficients can be obtained, but they are not of
primary interest because the final model has not yet been estimated on all of the data. Cross-validation with SkSSkS$-fold does
what the one train-test split approach does, but now SkSk times. The train-test one split approach almost becomes
pedagogical as a way to learn how the SkSSkS$-fold procedure works.

The initial model is usually pared down to a more parsimonious model, retaining a smaller set of relevant features that each
provide unique information. Obvious candidates for features to delete can be deleted before model validation begins, that is,
those with low correlations with the target and/or high correlations with other features.

More sophisticated feature deletion can occur after the model if the model is validated. Then use the statsmodels
regression function ors () for ordinary least squares to estimate the model on all of the data to get the estimated model on
the largest sample possible. Do a more sophisticated feature selection procedure using your own judgement, based on
SpSSpS-values for individual features and VIF values for individual features. Also, use Cook's distance to investigate and
possibly eliminate any rows of data that are outliers with respect to the regression model.

Once a final model is selected, re-run the cross-validation on the smaller number of features to make sure the reduced model
still evaluates well. Ideally, this analysis would be done on a completely new data set, but that may not be practical.

When completed, with the final statsmodels run you have the $b$$bS$ coefficients - $b_0, b_1,b_2,88b_0, b_1, b_2,$ etc. -
that define the model that you now, in another context, put into production.

~ Logistic Regression with sklearn

David Gerbing
The School of Business

Portland State University
gerbing@pdx.edu

Table of Contents

e 1 Preliminaries

(o}

o

(o}

1.1

Misc

1.2

Import Standard Data Analysis Libraries

1.3

Access Solution Algorithm

e 2 Data

(o}

o

(o}

o

(o}

o

(o}

2.1

2.2

Read and Verify Data
Pre-Process Data

2.3

Pre-Analysis Understanding and Feature Selection

2.4

Target Variable

2.5

Feature Relevance

2.6

Feature Redundancy

2.7

Create Feature and Target Data Structures

¢ 3 Fit Model, then Predict, Evaluate with One Hold-Out Sample

o 3.1 Split Data into Train and Test sets
o 3.2 Fitthe Model to the Data
o 3.3 Evaluate Fit

= 3.3.1 Predicted Values

= 3.3.2 Probabilities for Prediction
= 3.3.3 Fit Metrics

= 3.3.4 Baseline Probability

¢ 4 Validate with Multiple Hold-Out Samples

¢ 5 Automated Feature Selection

o 5.1 Univariate Selection Procedure

o 5.2 Multivariate Selection Procedure
o 5.3 Validate Reduced Model

e 6 Estimate and Apply the Model

o 6.1 Estimate
o 6.2 Apply

v Preliminaries

v Misc

=3O U U . [P U [P

Liulll uaccoiie J.lllb}UJ. L uacLcLliue a> Juu
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("$H:3M"))

Analysis on 2021-08-02 at 19:06
import os
os.getcwd()

' /content'
v Import Standard Data Analysis Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

~ Data

An online retailer offers clothes in women's and men's styles, but sometimes the value of Gender is missing from the online
order.

To provide a prediction equation, use logistic regression, which forecasts membership into a group, that is, a label. Here
forecast values of the variable Gender, binary in this data set, from physical body dimensions as it relates to body type.

v~ Read and Verify Data

d = pd.read _csv('http://web.pdx.edu/~gerbing/data/BodyMeas.csv')
#d = pd.read_csv('data/BodyMeas.csv')

d.shape

(340, 8)

d.head()

Gender Weight Height Waist Hips Chest Hand Shoe

0 F 200 71 43 46 45 8.5 7.5
1 F 155 66 31 43 37 8.0 8.0
2 F 145 64 35 40 40 7.5 7.5
3 F 140 66 31 40 36 8.0 9.0
4 M 230 76 40 43 44 9.0 12.0

v Pre-Process Data

This is the place to check for outliers, though not doing now.

Apply pandas get dummies() to Gender to create two new binary variables scored 0 and 1, Gender_F and Gender_M. We
could specifically target Gender with the columns parameter but can also convert all the categorical variables at one time, of
which the only one is Gender in this example. To target all the variables, enter the data frame's name instead of a specific list
of variables.

We only need and want one of the newly created indicator (dummy) variables, k — 1 indicator variables, where k is the
number of categories. Use the drop first parameter to delete the first dummy variable, Gender_F arbitrarily. For the
remaining Gender_M, a 1 means Male, and a 0 means Female.

d = pd.get dummies(d, drop first=True)

Verify the data are correctly read.

d.head()

Weight Height Waist Hips Chest Hand Shoe Gender_M

0 200 71 43 46 45 8.5 7.5 0
1 155 66 31 43 37 8.0 8.0 0
2 145 64 35 40 40 7.5 7.5 0
3 140 66 31 40 36 8.0 9.0 0
4 230 76 40 43 44 9.0 120 1

If we had more variables, we could transpose the output of head() to list the variables vertically. Not needed here, but
illustrated to show the effect. Use the transpose() function.

Verify a data frame with many variables using transpose() .

d.head().transpose()

0 1 2 3 4

Weight 200.0 155.0 145.0 140.0 230.0
Height 71.0 66.0 640 66.0 76.0
Waist 430 310 350 31.0 400
Hips 46.0 43.0 40.0 40.0 43.0

Chest 450 370 400 36.0 440
Hand 8.5 8.0 7.5 8.0 9.0

Shoe 7.5 8.0 7.5 9.0 120

Gender_M 0.0 0.0 0.0 0.0 1.0

Check for missing data with isna().
print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Weight 0
Height 0

Waist

Hips

Chest

Hand

Shoe
Gender_ M
dtype: inté64

O O O O oo

Total Missing: 0

No missing data, so proceed as is.

v Pre-Analysis Understanding and Feature Selection

There is no strict requirement to study your data before beginning building the model. However, typically better to first develop
some intuition for the data before attempting to construct the model. Unless the goal is to reduce the computation time of
model analysis, avoid data leakage by modifying the data before dividing into training and testing data sets. Otherwise,
changes are made to all of the data, some of which later become testing data, now no longer entirely independent of the
training phase.

v Target Variable

Check out the distribution of the target. If going to run a model focused on forecasting the target, should also understand the
nature of the target variable. Choose a named color.

freq = d['Gender M'].value counts()
freq

1 170
0 170
Name: Gender M, dtype: int64

plt.title('Distribution of Gender', fontsize=12)
freq.plot(kind='bar', color="sienna")

<matplotlib.axes. subplots.AxesSubplot at 0x7fe5a464e310>
Distribution of Gender

160 A
140 1
120
100 A

In this data set M (y=1) and F (y=0) are evenly distributed. There is plenty of variability in the target variable that a set of
related features could explain.

~ Feature Relevance

https://matplotlib.org/3.2.2/gallery/color/named_colors.html

Are all the features relevant? Examine the means of M and F across the features. All the numerical variables appear to differ
depending on Gender, so prediction accuracy should be good.

The pandas function groupby () analyzes the data according to the specified statistic, here mean(), for each level of the
specified categorical variable, here Gender_M. Without specifying specific variables to analyize, all numerical variables in the
data frame are analyzed.

d.groupby('Gender M').mean()

Weight Height Waist Hips Chest Hand Shoe

Gender M
0 148.411765 65.464706 34.111765 41.629412 38.929412 7.728529 7.981176
1 215.758824 71.352941 40.941176 44.652941 45.005882 9.145588 10.670588

Examine the overlap in the distributions of Male and Female for each of the features. If the feature is relevant so that it relates
to the target Gender, then it should differentiate men from women. Visualize the extent of this differentiation according to the
separation between men and women on each feature.

To visualize overlap, use the seaborn function pairplot() that generates a scatterplot matrix (table). However, only plot the
diagonal elements of this matrix, which visualize the smoothed histograms of the corresponding variable. Specify only a single
variable for pairplot () with the vars parameter. The resulting scatterplot "matrix" consists of only a single diagonal
element of the distribution of the variable.

To avoid entering a separate pairplot() call for each variable, use a for loop that loops through the specified columns of
the data frame one-by-one in the call to pairplot(), here for the potential features.

pred _vars = ['Weight', 'Height', 'Waist', 'Hips', 'Chest', 'Hand', 'Shoe']
for column in d[pred vars]:
sns.pairplot(d, vars=[column], hue='Gender M')

Gender_M

200 400
Weight

Gender_M

U T
60 70 80
Height

Gender_M

Gender_M

10 4

0.8 A

.. DA 4
The less the overlap for a feature, the more accurate the feature classifies M and F. Hip size appears to be the least useful.
Height and Hand size appear to be the most useful.

Still, the full multiple logistic regression specifies an interaction among all the variables, so complete model selection is best
accomplished after deriving an initial model, and then preferably only on testing data to avoid data leakage. In practice,
however, for large models with huge data sets, some obvious culling of features at this point can be worthwhile to same
computation time.

T V01 =

Feature Redundancy

Check for collinearity by examining the correlation of the features with each other. We could use pairplot() to generate the
full scatterplot matrix, but a heatmap requires less space. Generate the heatmap with the seaborn function heatmap ()

Not needing to drop features before model estimation as CPU time is not an issue, it is helpful to explore relations of the
features with each other and with the target. The goal is to understand how the model will perform and how many features will
be needed.

http://seaborn.pydata.org/generated/seaborn.heatmap.html

The cmap parameter for the color map specifies the assignment of colors to correlation values, with many possibilities
include many palettes from matplotlib obtained just be entering a color name. Here use a seaborn palette called
dark palette.

This palette is sequential, from lighter to darker of the same hue, appropriate since all correlations are above 0. To show
positive and negative correlations, choose a diverging palette, with different hues on both sides of the midpoint, such as from

cmap=sns.diverging palette(5, 250, as_cmap=True))

plt.figure(figsize=(10,10))
sns.heatmap(d.corr().round(2), linewidths=2.0, annot=True,
cmap=sns.dark palette("seagreen"))

<matplotlib.axes. subplots.AxesSubplot at 0x7fe59bffa650>

Weight
- .
- &

(o]

[=2]

Height

Waist

Hips

Chest
-

Hand
\
(=]
(<]
- [=]
(<]

Shoe
-
- ﬂ

0.64 0.72 .5 1 0.56 0.73

Gender M

ll ll ll 1 1 1 1 1
Weight Height Waist Hips Chest Hand Shoe Gender_M

There are some high feature correlations. Shoe size correlates with Height at r=0.81, and Chest correlates with Weight at 0.86,
both very high correlations. Because of this redundancy, the final model will not require all 7 features, probably more like 3 or 4
at the maximum.

Create Feature and Target Data Structures

Define all the variables that are added to X, as below. y is a column of 0's and 1's

y = d['Gender M']
X d[pred vars]
X.shape

https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html

(340, 7)

Optional, but see how many features are in the model, and observe the data type of the X and y data structures.

n_pred = len(pred vars)
print ("Number of predictor variables:", n_pred)

Number of predictor variables: 7
print("X: ", type(X))
print("y: ", type(y))

X: <class 'pandas.core.frame.DataFrame'>
y: <class 'pandas.core.series.Series'>

It might be useful to study rescaling the features so that each has approximately the same scale, either minimum of 0 and a
maximum of 1, or standardization. However, will not pursue that here.

Fit Model, then Predict, Evaluate with One Hold-Out Sample

This analysis follows the standard sklearn machine learning paradigm. The logistic regression analysis outlined below is
similar to the standard least-squares regression analysis pursued previously. Ultimately we prefer k-fold cross-validation but
first shown is the one-split vesion instead of k splits.

Split Data into Train and Test sets

Cross-validation is testing a model a new data set different from the data on which the model was estimated. The concept of
cross-validation has applied to regression analysis for many decades, though perhaps often recommended more than actually
accomplished. The machine learning framework provides for easily accessible cross-validation methods, and is considered a
necessary component of the analysis.

The key component of a cross-validation, or more simply, validation, is the hold-out sample, the portion of the original data set
aside as the testing data. If there is much data with a model that requires much training time, only one hold-out sample may
be practical, the approach here.

Function train test split() randomly shuffles the original data into two sets, training data and testing data, here called
X_train and X_test for the features and y_train and y_test for the target. Parameter test_size specifies the percentage of the
original data set allocated to the test split.

The input into the train test split() function are the X and y data structures. With a single function call, the function
provides four outputs, X training and testing data, and y training and testing data. Python has the convention of listing the
names for multiple outputs on the left side of the equals sign, separated by commas, in the correct order of the output.

Keep the group membership balanced in the created data sets with the parameter stratify, set equal to the variable in the y
target data structure. We want randomization of the data into training and testing structures but with the same proportion of
group members across the structures. That keeps the null model the same for each data set, to have the same baseline of
comparison for the testing data.

Optional parameter random state specifies the initial seed so that the same random process, more appropriately called a
pseudo-random process, can be repeated in the future with the same data split is obtained from train test split().Re-
run with the same value, here 9, get the same random split.

from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size=.30,
stratify=d['Gender M'], random state=9)

In the full data set, M and F are equally represented. Show that the stratify parameter worked correctly by maintaining the
same balance in the created training and testing data sets.

y_train.value counts()

1 119
0 119
Name: Gender M, dtype: int64

y_test.value counts()

1 51
0 51
Name: Gender M, dtype: int64

Verify the data are as expected for the target variable. Here view an excerpt from the testing data for the target. As expected, a
series of O's and 1's.

pd.DataFrame(y_ test).head(10).transpose()

255 15 280 238 306 236 138 309 26 281

Gender_M 1 1 1 0 1 1 0 1 0 0

The shape method displays the dimensions of each of the resulting two data sets, X_train and X_test. The first number is the
number of rows in the corresponding data structure. Here, with the testing data set size at 25% of all the data, there are 379
rows of data in the two training data structures and 127 rows of data in the two testing data structures. The y data structures
have only one column and are not data frames, so their number of columns is not specified.

print("size of X data structures:
print("size of y data structures:

, X train.shape, X test.shape)

, Y_train.shape, y test.shape)

size of X data structures: (238, 7) (102, 7)
size of y data structures: (238,) (102,)

Access Solution Algorithm

The sklearn package provides many machine learning algorithms, all implemented with the same general procedure. Here
invoke LogisticRegression module, which provides the functions for the logistic regression analysis. Implement a general
algorithm by making a specific instance of the algorithm, referred to by a specific name in the analysis of your choosing. This
process is called instantiation. Here instantiate with the reference logistic_model. All subsequent references to the linear
regression algorithm are implemented via the name logistic_model.

The solver parameter indicates the specific solution algorithm. Several solution methods are available, all of which employ
gradient descent, which iterates to a solution step-by-step from an intial, arbitrary solution. Convergence for the solution
algorithm was not obtained with 100 iterations, so increase the value of parameter max_iter to achieve convergence.

from sklearn.linear model import LogisticRegression
logistic_model = LogisticRegression(solver='lbfgs', max iter=500)

v Fit the Model to the Training Data

Employ the standard sklearn machine learning functions. Fit the model, that is, estimate the parameters, with the fit ()
function, here applied on the training data applied to a logistic regression model, previously instantiated as logistic_model.
Expressed yet another way, have the machine (i.e., algorithm) learn from the training data. Only fit the training data at this point
in the analysis.

logistic model.fit(X train, y train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit intercept=True,
intercept_scaling=1, 11 ratio=None, max_iter=500,
multi class='auto', n_jobs=None, penalty='1l2",
random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
warm_start=False)

Showing the model at this point in the analysis is for pedagogy. In actual practice no need to examine this model because first,
the model has not yet been validated on testing data, and second, it is based only on the training data. This training data-
derived model will be applied to the testing data to evaluate the extent of the forecasting error.

If the model validates, then we view the model to employ in future forecasts at the end of the analysis. Repeat the technique
for viewing the model shown here at the end of a successful analysis.

Optionally display the estimated model coefficients, stored in the 1m.coef object, a data structure created by the fit ()
function — the name of a variable whose values that the procedure creates ends in an underline. The coefficients of the final
model, estimated with all of the data, are needed to apply the model to other data sets.

The pure machine learning implementation of regression is not directed towards understanding and interpreting the model
coefficients but instead focuses on evaluating the extent of forecasting error. As such, the analysis does not provide the usual
regression output. Traditionally, list the coefficients along with their corresponding #-tests of the null hypothesis of 0, and the
associated confidence interval (as obtained from the statsmodels package).

print("intercept %.3f" % logistic model.intercept , "\n")
cf = pd.DataFrame()

cf['Feature'] = X.columns

cf['Coef']= np.transpose(logistic_model.coef).round(3)
cf.transpose()

intercept -25.125

0 1 2 3 4 5 6
Feature Weight Height Waist Hips Chest Hand Shoe

Coef 0.046 0.232 0.248 -0.689 0.091 1.457 0.591

The estimated coefficients for variables Height, Waist, Chest, Hand, and Shoe all associate with an increase in the probability
of the relevant group, y = 1, whereas Hips has a negative coefficient. That is, Hips goes in the opposite direction indicating a
lower probability of Male, and so an increased probability of Female, as Hip size increases.

Model:
VGender = —25.121 + 0.046(xWe,~gh,) + 0.232(xHe,~ght) + 0.248(xwaist) — O.690(xHips) + 0.091(xcpesr) + 1.458(x g4

+ 0.591(XS;,0€)

This model is then used to calculate y from the testing data to evaluate fit.

Evaluate Fit

Predicted Values

Use the sklearn function predict() to calculate the values of y from the previously fitted model using fit() . Calculate
the fitted values y for both the training data and testing data. Name the y values for the training data y_fit. The values of y for
the testing data are true forecasts or predictions, data never before seen by the model, so name y_pred.

y_fit = logistic_model.predict(X_ train)
y_pred = logistic _model.predict(X_test)

The resulting y_fit and y_pred data structures are numpy arrays. Here display the first 15 values of y_pred to show a string of
forecasted positive and negative outcomes, relative to value Male. Verify that the predicted values have the correct structure.

print(y_pred[1:25])

[01 011010000111 1011101010]

Yes, all predicted values are 0's and 1's, the assignment to one of the two target groups.
Probabilities for Prediction

How were those predictions derived? Not needed as part of the analysis, but here presented for understanding.

The model predicts group membership from the calculated probability of being a Male. Calculate the probability of class
membership with the predict proba() function. It returns a column for each value of the target, here probability of 0 and
then probability of 1. The expression i[1] restricts the output to just the second column, the probabilities of being Male given
the values of the feature variables.

If probability of Male > 0.5, then forecast as Male, otherwise Female.

Here list the first 15 rows of data with head(), transposed to take up less vertical space.

Baseline prediction is predicting membership in the group with the highest probability of the two target classes, the prediction
in the absence of all information regarding X, the null model. Before we can evaluate fit, we need the baseline probability.

To calculate the baseline probabilities, compute the proportion of rows of data for each group. The mean of a column of O's
and 1's is the proportion of 1's (males). The group with the largest proportion is the baseline probability.

probs = [i[1] for i in logistic_model.predict proba(X test)]
pred df = pd.DataFrame({'true values': y_ test,
'pred_values': y pred,
'pred probs' :probs})
pred_df.head(15).transpose().style.format("{:.3}")

255 15 280 238 306 236 138 309 26 281 204 48 330 188 172
true_values 1.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 10 1.0 1.0
pred_values 0.0 0.0 1.0 0.0 10 1.0 00 1.0 0.0 0.0 0.0 0.0 10 1.0 1.0
pred_probs 0.431 0.0228 0.99 0.00313 0.991 0.804 0.0011 0.682 0.0023 0.0729 0.00112 0.0339 0.924 0.991 1.0

Here are two forecasts from the probability calculations. The data have been randomly shuffled in the creation of the training
and test data sets, so the row numbers are arbitrarily ordered.

¢ First column, Row 255: predicted probability of Male is 0.431, so forecast Female
¢ Third entry, Row 280: predicted probability of Male is 0.990, so forecast Male

Fit Metrics

The metrics moduleinthe sklearn package provides the computations for the fit indices. The basis of the assessment of
the model compares the actual data values of y in the testing data, y_test, to the values of y calculated from the model,
y_pred. For a binary target variable, this comparison reduces the two correct classifications and the two incorrect
classifications, summarized by the confusion matrix.

Obtain forecasting accuracy with sklearn function accuracy score() . First, compare the values to see if the model overfit
the training data by applying to both the training data and the testing data.

from sklearn.metrics import accuracy score
print ('Accuracy for training data: %.3f' % accuracy score(y_train, y fit))
print ('Accuracy for testing data: %.3f' % accuracy score(y_test, y pred))

Accuracy for training data: 0.933
Accuracy for testing data: 0.902

The testing performance from training to testing did not drop much, only 3.1%, so not much overfitting here. Also evaluate if
the testing accuracy is high for model validation. At 90.2% accuracy for the testing data, the model is reasonably accurate, and
considerably larger than the 50% baseline prediction (analogous to the R? statistic).

Now a more in-depth analysis of the testing model performance, beginning with the confusion matrix, the numerical basis for
all the classification fit indices. sklearn provides two functions for the confusion matrix. One function,
confusion_matrix(), counts the correct classifications and the mis-classifications given the y and y values, the actual and
forecasted O's and 1's.

To display the results, and to access them for later reference, save the confusion matrix in a data frame, here named dc.

from sklearn.metrics import confusion matrix
dc = pd.DataFrame(confusion matrix(y test, y pred))

dc
o 1
0 47 4
1 6 45

The second confusion matrix function, plot confusion matrix(), provides a heat map that illustrates the extent of the four
outcome numbers for the 102 customers in the testing data. This function works directly from the model, implicitly computing
the y's from the features, X, and then comparing to the given values of y.

from sklearn.metrics import plot confusion matrix
confmat = plot confusion matrix(logistic_model, X test, y test, cmap="Blues")

45

35

25

Tue label

20
15
10

0 1

[

Not needed, but here explicitly label each of the four outcomes, referring to the previously computed data frame dc.

print("True Negatives: ", dc.iloc[0,0])
print("True Positives: ", dc.iloc[1,1])
print("False Negatives: ", dc.iloc[1,0])
print("False Positives: ", dc.iloc[0,1])

True Negatives: 47
True Positives: 45
False Negatives: 6
False Positives: 4

With these data, there is no indication that misclassifying a Male as Female or a Female as Male is more costly. So the
asymmetric fit indices, recall (sensitivity), and precision are likely not needed.

For completeness, however, calculate the fit indices recall, precision, and F1, as with any fit index, compare the actual value so
of y, named y_test, to the values fitted by the model, y, named y_pred. Pass each set of values to the respective sklearn

functions recall score(), precision_score(),and f1_score().

from sklearn.metrics import recall score, precision score, fl score

print ('Recall for testing data: %.3f' % recall score(y test, y pred))

print ('Precision for testing data: %.3f' % precision_score(y_test, y pred))
print ('Fl for testing data: %.3f' % fl score(y_test, y pred))

Recall for testing data: 0.882
Precision for testing data: 0.918
Fl1 for testing data: 0.900

The lowest fit index, recall (sensitivity), is still high, at 88.1%. That means that the model correctly forecasts 88.2% of the
Males as Males (true positive). So the model mislabels almost 12% of actual Male body types as Female. This 12% comes
from the 6 false negatives from the confusion matrix.

Precision is even higher, which means that of those the model forecasted as Male, 91.8% are Male. Less than 8% of those
predicted as Male are indicated as Female in the data, a false positive. As seen in the confusion matrix, only 4 false positives.

By definition, the F7 statistic is between recall and precision, their harmonic average, at 91.8%.

Baseline Probability

Did the estimated model do better than the null model in which the forecast is to the group with the largest membership? That
is, the null model forecasts without any knowledge of X.

my = y.mean()
max my = np.max(lv.mean(), l-v.mean()1)

print('Proportion of 0\'s (female): %.3f' % (l-my))
print('Proportion of 1\'s (male): %.3f' % my)
print('Null model accuracy: %.3f' % max my)

Proportion of 0's (female): 0.500
Proportion of 1's (male): 0.500
Null model accuracy: 0.500

Here the proportion of M's and F's are equal, so the baseline probability is 0.5. If all customers are predicted to be either Male
or Female, accuracy is 50%. Obtained forecasting accuracy on the testing data of 0.902 is much larger than the 0.500
accuracy of the null model.

Validate with Multiple Hold-Out Samples

Double-click (or enter) to edit

Here use a version of kfold designed for models with categorical target variables called stratifiedkFold. The distinction
isthat stratifiedkFold generates the test set of each fold with the same proportion of samples in each group (class, level)
as in the whole population. Here substantiate with skf, invoking the desired parameters. That way, the test data resemble the
overall data set in terms of the distribution of the target variable, which keeps the baseline or null error rate the same across
folds.

from sklearn.model_ selection import StratifiedKFold
skf = StratifiedKFold(n_splits=5, shuffle=True, random state=1)

Get the accuracy, recall, and precision scores for each of the true forecasts of applying the model, for each split, from the k-1
folds data to the hold-out fold.

To estimate the model (here five different estimates from five different samples) we need to specify the estimation algorithm.
We have already instantiated the LogisticRegression() module as logistic_model.

The cross_validate() function provides for obtaining multiple evaluation scores from the same cross-validation folds
without having to repeat the computations for each score. Computation times are also provided, of importance for massive
data sets.

The evaluations performed on the training data are not needed for model evaluation per se, which occurs on the testing data,
but are useful to compare to the corresponding testing scores. Training scores much larger than the corresponding testing
scores indicates overfitting. Obtain the training evaluations with the parameter return _train_score.

from sklearn.model_ selection import cross_validate

scores = cross_validate(logistic_model, X, y, cv=skf,
scoring=('accuracy', 'recall', 'precision'),
return train score=True)

The scores array contains much information, but not so directly readable. Here convert to a data frame, rename the long
column names, convert the MSE scores to positive numbers, and average the results. The display includes the time to fit the
training data for each fold, and also the time to calculate the evaluation scores, which includes getting the predicted values.

The parameter inplace setto True means to make the change in the specified data frame and the save the data frame with
those changes. That is, do not need to copy to a new data frame.

The result is a slight increase in recall compared indicated by our single train/test sample for recall, which averages 91.8%
across the five samples. A slight decrease in precision results, here with an average of 92.1%. No change in the fundamental
conclusion of a good-fitting model.

These results also indicate that to study a specific model and confusion matrix, the single train/test split can be useful, but to
power through the formal model evaluation, if CPU time is not an issue stratifiedkFold makes it easy to avoid a single

arhitrans enlit far whinrh ta ralv 1inan far madal avalitatinn Inetaad Aan far manv enirh enlite

ds = pd.DataFrame(scores).round(3)

print(ds)
fit time score time ... test precision train precision
0 0.080 0.003 ... 0.938 0.927
1 0.041 0.003 0.917 0.941
2 0.064 0.003 0.868 0.940
3 0.049 0.003 0.943 0.919
4 0.033 0.003 0.967 0.934

[5 rows x 8 columns]

print('Mean of test accuracy: %.3f' % ds['test_accuracy'].mean())
print('Mean of test recall: %.3f' % ds['test recall'].mean())
print('Mean of test precision: %.3f' % ds['test precision'].mean())

Mean of test accuracy: 0.927
Mean of test recall: 0.930
Mean of test precision: 0.927

The model does well on all three basic fit classification indices. Given the high collinearity among the predictors, probably not
all predictor variables are needed.

Automated Feature Selection

The pure machine learning approach seeks to automate everything. This approach makes the most sense when there are
many, tens if not hundreds, of features. Otherwise, feature selection is best performed "hands on", analyzing correlations,
variance inflation factors, p-values from the regression analysis of all features. And there is always understanding the meaning
of the individual features (predictor variables), favoring those that are the most understandable and meaningful, and perhaps
easiest or cheapest for which to collect the data.

Anyhow, let's proceed as if we have too many features to effectively model, and so we need to pare down our model, here
using automated feature selection. We begin with all 13 features.

If you have the computation time, do this after the analysis with all the features. If computation time is limited, do at least
some feature selection before the model evaluation.

Univariate Selection Procedure

There is one simple feature selection procedure called selectkBest () that selects the specified number of features
according to the statistical test of the difference in group means of each feature across the two levels of the target.

The get_support() function identifies the selected features by listing a True for each selected feature across the varaibles
in a vector of True and False values.

from sklearn.feature selection import SelectKBest, f classif
selector = SelectKBest(k=3).fit(X,y)
selected = selector.get support()

selected

array([False, True, False, False, False, True, True])

Verify the sub-setted data frame.

X2 = X.iloc[:, selected]
X2.head()

Height Hand Shoe

0 71 8.5 7.5
1 66 8.0 8.0
2 64 7.5 7.5
3 66 8.0 9.0
4 76 9.0 120

Multivariate Selection Procedure

A more sophisticated, though more costly in CPU time procedure, is called rrE, for recursive feature elimination. First, specify
the estimation procedure by which to initially assign weights to the features, such as linear regression, as in this example. The
RFE procedure then evaluates the features and identifies the weakest feature, which is then pruned from the model. This
description assumes the parameter step is set at 1, which is the number of features pruned at each step. To apply the
estimator: invoke the £it () function on the specified feature and target data structures, X and y. Recursively repeat the
process until the requested number of features, n_features to_select, is obtained. In this example, retain the top 3
features.

This method generally produces a better model than selectkBest but the issue is computation time. If the CPU time is
available, rRFE is preferred.

from sklearn.feature_selection import SelectKBest
from sklearn.feature selection import RFE
selector = RFE(logistic model, n_ features to select=3, step=1).fit(X,y)

The features are selected, but now the X data frame of feature data must be pared down to just include the selected features.
For this there are two variables that rRrE created. The support vector indicates by True or False the selected variables. The
ranking_ vector ranks the features, with all the selected variables ranked at 1.

print(selector.support)
print(selector.ranking)

[False False False False True True True]
[5342111]

Use the support_ created data variable with the iloc method to redefine the feature data frame. Here we return to the full
data set of the features, the X data frame.

X reduced = X.iloc[:, selector.support]
X _reduced.head()

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

Chest Hand Shoe

0 45 8.5 7.5
1 37 8.0 8.0
2 40 7.5 7.5
3 36 8.0 9.0
a 14 an 12n

Optional, but to view the rankings of all the features, to show the order of the variables that did not make the final 3, access the
ranking variable.

Display in a more readable format by converting output to a data frame, sorting the values, and transpose the data frame to
list horizontally.

rnk = pd.DataFrame()

rnk|['Feature'] = X.columns

rnk['Rank']= selector.ranking
rnk.sort_values('Rank').transpose()

4 5 6 3 1 2 0
Feature Chest Hand Shoe Hips Height Waist Weight

Rank 1 1 1 2 3 4 5

Validate Reduced Model

Now that we have a new model, that is, with fewer features, we need to validate the new model. Validate the reduced model
with k-fold cross-validation. Then compare to the full model.

scores = cross_validate(logistic _model, X reduced, y, cv=skf,
scoring=('accuracy', 'recall', 'precision'),
return_train_score=True)

ds = pd.DataFrame(scores).round(3)

print(ds)

print('\n")

print('Mean of test accuracy: %.3f' % ds['test accuracy'].mean())

print('Mean of test recall: %$.3f' % ds['test_recall'].mean())

print('Mean of test precision: %.3f' % ds['test precision'].mean())

fit time score time ... test precision train precision
0 0.011 0.003 ... 0.875 0.912
1 0.010 0.003 ... 0.909 0.917
2 0.011 0.004 ... 0.861 0.923
3 0.013 0.003 ... 0.943 0.910
4 0.010 0.003 ... 0.969 0.899

[5 rows x 8 columns]

Mean of test accuracy: 0.906
Mean of test recall: 0.900
Mean of test precision: 0.911

Comparing to the full model with seven predictors, there was a slight decrease in performance, less than 1% on the average of
the evaluation statistics. How many features to include in the model is a business decision, which weighs the cost of

additional data and CPU time versus forecasting accuracy. Perhaps the less than 1% decrease is acceptable, or, run with all

Estimate and Apply the Model

Estimate

Once validated, we need the best estimate that we can get for this model. The best estimate of the model is from all of the
data, but here from only three features, those that define X_reduced. Here revise logistic_model with a model that is fit

(estimated parameters) from all the data.

The logistic_model construct must have been previously instantiated as a LogisticRegression, here fit to all of the data for
the specified variables with fit().

logistic_model.fit(X_reduced, y)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit intercept=True,
intercept scaling=1, 11 ratio=None, max_iter=500,
multi class='auto', n_jobs=None, penalty='1l2",
random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
warm_start=False)

Access the estimated linear coefficients from the fit() output structures intercept_and coef . To enhance the display
of the partial slope coefficients, show them from within a constructed data frame, here called cf.

print("intercept %.3f" % logistic model.intercept , "\n")
cf = pd.DataFrame()

cf['Feature'] = X reduced.columns

cf['Coef']= np.transpose(logistic_model.coef).round(3)
cf.transpose()

intercept -31.871

0 1 2
Feature Chest Hand Shoe

Coef 0.146 2.079 0.912

Model: $$\hat y_{Gender} = -31.871 + 0.146(x_{Chest}) + 2.079(x_{Hand}) + 0.912(x_{Shoe})$$S$$\hat y_{Gender} = -31.871 +
0.146(x_{Chest}) + 2.079(x_{Hand}) + 0.912(x_{Shoe})$$

Apply

Now apply this model where it most conveniently fits into the work flow. It can be added to a local app such as Excel, or coded
into a web application, available on the Internet. Or, it can be retained in Python, though of course, the entire model would not

be re-estimated for each application.

Forecast a M or F from a set of Chest, Hand, and Shoe measurements from new data. Suppose a customer failed to report
Gender, but did report a Chest of of 48 inches, a Hand size of 9 inches, and a Shoe size of 9.5. The double brackets for the
array [[66, 9, 9.5]] of new data from which to make a prediction indicate the creation of a two-dimensional array, which is the
form of the input that the sklearn functions expect.

Use the predict() function to forecast the Gender label, 0 or 1, and the predict proba() function to assign the
corresponding probability.

Make sure that when using predict to calculate $\hat y_iS$\hat y_i$ that the number of elements of X_new, here three,
exactly match the elements when model was fit using fit().

X new = [[48, 9, 9.5]]
y_new = logistic_model.predict (X new)
print("Predicted group membership:", y new)

y_prob = logistic_model.predict_proba(X new)
print(round(y_prob[0,1], 3))

Predicted group membership: [1]
0.926

From this person's measurements of Chest=48, Hand=9, and Shoe=9.5, the person is predicted to be a member of Group 1,
Male, with high probability of 0.926.

This application of the model forecasted group membership, Male or Female, only for a single set of the three feature values in
the revised model. Could also read a new data set of just X values and process them to apply the model to forecast future
events with predict () for multiple observations.

~ Decision Tree Classification with sklearn

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

Goal: Define a decision tree to classify according to Gender from other body measurements. The motiviation is to forecast
Gender body type when that information is missing from online clothing orders.

v Preliminaries

v Misc

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

[Analysis on 2021-07-25 at 15:59
import os
os.getcwd()

'/content'
v Import Standard Data Analysis Libraries

Only need pandas and matlib in this analysis, though does not hurt to do the standard import that includes numpy and

seaborn.

import pandas as pd
import matplotlib.pyplot as plt

v Access Solution Algorithm

To demonstrate the power and ease of use of the sklearn machine learning paradigm, here allow for a variety of
classification algorithms. Activate the Decision Tree analysis with a maximum depth of five.

from sklearn.tree import DecisionTreeClassifier
dt _model = DecisionTreeClassifier(max_depth=5)

v Get and Structure Data

d = pd.read csv('http://web.pdx.edu/~gerbing/data/BodyMeas.csv')
#d = pd.read csv('data/BodyMeas.csv')

A chana

—oemaim e

(340, 8)

d.head()

Gender Weight Height Waist Hips Chest Hand Shoe

0 F 200 71 43 46 45 8.5 7.5
1 F 155 66 31 43 37 8.0 8.0
2 F 145 64 35 40 40 7.5 7.5
3 F 140 66 31 40 36 8.0 9.0
4 M 230 76 40 43 44 9.0 12.0

Create the features and target data structures. Need the target variable with two levels scores 0 and 1. Could use
get_dummies (), but here manually create our dummy variable with replace() . Arbitrarily score 1 for Male.

classes = ['Female', 'Male'] # for graph

features = ['Weight', 'Height', 'Waist', 'Hips', 'Chest', 'Hand', 'Shoe']
X = d[features]

y = d['Gender'].replace({'F':0, 'M':1})

Evaluate Model with Multiple Hold-Out Samples

k-fold cross-validation for one set of parameters

Use 5-fold cross-validation to build and estimate the model five different times, all with the same set of parameters. For
decision tree analysis, set max_depth to 5 as defined in the model instantiation. Use all 7 features as defined in X. Assess the
fit of each model with accuracy, recall, and precision.

The kfold module creates the folds, partitions of the data set into five different training sets of data, each with a
corresponding testing data set. The cross_validate module does the actual cross-validation, running five different models
on five different training sets and then testing each model on the corresponding testing data set.

from sklearn.model selection import KFold
kf = KFold(n_splits=5, shuffle=True, random state=1)

from sklearn.model_ selection import cross_validate
scores = cross_validate(dt _model, X, y, cv=kf,

scoring=('accuracy', 'recall', 'precision'),
return train score=True)

Convert the scores output to a data frame for the appearance of the display.

ds = pd.DataFrame(scores).round(3)

print(ds)
fit time score time ... test precision train precision
0 0.006 0.003 ... 0.846 0.970
1 0.002 0.002 0.946 0.956
2 0.002 0.002 0.933 0.978
3 0.002 0.003 0.912 0.971
4 0.002 0.002 0.839 0.952

[5 rows x 8 columns]

print('Mean of test accuracy: %.3f' % ds['test_accuracy'].mean())
print('Mean of test recall: %.3f' % ds['test recall'].mean())
print('Mean of test precision: %.3f' % ds['test precision'].mean())

Mean of test accuracy: 0.897
Mean of test recall: 0.900
Mean of test precision: 0.895

The model fits well. Accuracy, recall (sensitivity), and precision, all around 89%.

Grid Search: Hyperparameter Tuning with Cross-Validation

The previous cross-validation is for pedagogy only, as it is just one of a much larger set of results from a full grid search. But
what is the best depth for the decision tree? The optimal number of features? To answer those questions, systematically
explore a range of different models. Define any one model by a specific depth and number of features. Define many models,
each with a different combination of depth and features, called hyper-parameters. Explore the fit of a complete set of related
models by systematically varying the depth and number of features with a hyper-parameter grid search.

Here run 4 levels of depth, 4 different numbers of features for 16 different models. For each model, do cross-validations on 3
different folds. So 16x3=48 different analyses in all, conveniently and automatically accomplished with the module
Gridsearchcv, for grid-search cross-validation. The param grid parameter specifies the hyper-parameters to systematically
adjust in all possible combinations.

Gridsearchcv sets up the grid of the 16 models. Here, instantiate the module as grid_search and thenuse fit() to fit all
the models, each 3 times. Transpose the results to fit on the page.

Much work was accomplished with little code, illustrating the power and convenience of sklearn.

from sklearn.model selection import GridSearchCVv
kf3 = KFold(n_splits=3, shuffle=True, random state=1)

params = {'max depth': [2, 3, 4, 5],
'max_ features': [1, 2, 3, 4]}
grid search = GridSearchCV(dt model, param grid=params, cv=kf3,
scoring=('accuracy', 'recall', 'precision'), refit=False,
return train_ score=True)
grid_search.fit(X,y)

GridSearchCV(cv=KFold(n_splits=3, random_state=1, shuffle=True),
error_score=nan,
estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,
criterion="'gini', max depth=5,
max_features=None,
max leaf nodes=None,
min_impurity decrease=0.0,
min_impurity_ split=None,
min_samples_ leaf=1,
min samples split=2,
min_weight fraction leaf=0.0,
presort="'deprecated',
random_state=None,
splitter='best'),

iid='deprecated', n_jobs=None,

param grid={'max depth': [2, 3, 4, 5],

'max_features': [1, 2, 3, 4]},

pre_dispatch='2*n_ jobs', refit=False, return_ train score=True,

Here are all the results, for each individual fold and their summaries.

= pd.DataFrame(grid search.cv_results_).round(3)

d results =
d results = d_results.drop(['params'], axis='columns')

d results.transpose()

0 1 2 3 4 5 6 7 8
mean_fit_time 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 O.
std_fit_time 0.001 0 0 0 0 0 0 0 0
mean_score_time 0.003 0.003 0.002 0.002 0.002 0.004 0.004 0.003 0.002 O.
std_score_time 0.001 0 0 0 0 0.003 0.001 0 0 o

param_max_depth 2 2 2 2 3 3 3 3 4

In this output we mostly care about the mean of each fit index over the five folds, For example, mean test accuracy provides
the mean of the five accuracy scores from the cross-validation. Subset the results data frame, and rename variables to be
more compact.

d_summary = d_results[['param max depth', 'param max features', 'mean test_accuracy',
'mean_test recall', 'mean test precision', 'mean train accuracy',
'mean_train recall', 'mean_train precision']]

d summary = d_summary.rename(columns= {
'param _max_depth': 'depth',

'param max features': 'features',
'mean_test accuracy': 'test accuracy',
'mean_test recall': 'test recall',
'mean_test precision': 'test precision',
'mean_train accuracy': 'train accuracy',
'mean_train recall': 'train recall’,

'mean train precision': 'train precision'})

d_summary

depth features test_accuracy test_recall test_precision train_accu:

0 2 1 0.856 0.850 0.862 0
1 2 2 0.879 0.915 0.856 0
2 2 3 0.871 0.829 0.905 0
3 2 4 0.897 0.898 0.903 0
4 3 1 0.844 0.873 0.826 0
5 3 2 0.891 0.912 0.880 0
6 3 3 0.894 0.894 0.899 0
7 3 4 0.906 0.901 0.912 0
8 4 1 0.841 0.776 0.890 0
9 4 2 0.882 0.884 0.883 0
10 4 3 0.885 0.897 0.877 0
11 4 4 0.915 0.901 0.928 0
12 5 1 0.868 0.852 0.882 0
13 5 2 0.876 0.856 0.895 0
14 5 3 0.891 0.890 0.893 0
15 5 4 0.882 0.887 0.879 0

All the decision trees provide a similar fit, with very little overfitting except as expected in the more complex models.

Parsimony: Choose the simplest model that provides the best or almost the best fit to the testing data.

As always, strive for parsimony. Choose the model with a depth of two and three or four features. The resulting mean test

Choose Model and Estimate on All Data

Generally obtai the best estimates with the most data. Given sufficient fit from the validation phase, choose and then fit
(estimate) the final model on the full data set. Sacrifice a little accuracy for parsimony, which results in a model with 3 features
at a depth of 2.

dt _model = DecisionTreeClassifier(max_features=3, max depth=2)
mf = dt_model.fit(X,y)

Use the created output variable feature importances_ to identify the most important features to choose the best 3, the
three with non-zero entries. Instead of writing code individually for each feature, do a for loop to process each feature one-by-
one.

for name, importance in zip(X.columns, dt model.feature importances):
print(name, '%.3f' % importance)

Weight 0.178
Height 0.766
Waist 0.000
Hips 0.000
Chest 0.000
Hand 0.000
Shoe 0.055

The model accuracy, recall, and precision have previously been evaluated for forecasting efficiency, each as the mean of the
corresponding k-fold values. Here compute the same values for the full data set.

Begin with the J;'s with predict().
y_fit = dt model.predict(X)

from sklearn.metrics import confusion matrix
pd.DataFrame(confusion matrix(y, y_ fit))

0 1
0 150 20
1 18 152

From the confusion matrix, calculate the basic test indices.

from sklearn.metrics import accuracy_score, recall score, precision_score, fl score
print ('Accuracy: %.3f' % accuracy_ score(y, y_£fit))

print ('Recall: %.3f' % recall score(y, y_£fit))

print ('Precision: %.3f' % precision score(y, y_£fit))

print ('Fl: %.3f' % fl score(y, y_£fit))

Accuracy: 0.888
Recall: 0.894
Precision: 0.884
Fl: 0.889

v lllustrate the Model

The sklearn module tree provides a visualization of the obtained decision tree. The visualization shows the stakeholders
who have sponsored the analysis (including your salary) how to classify customers with the model. The visualization
facilitates model understanding, illustrating the sequence of decisions that arrive at the final classification.

The visualization also shows those classifications with which we have a high degree of confidence according to low Gini
values and more intense coloring than those classifications for which we have little confidence, with a Gini coefficient clost to
0.5.

Obtain the visualization waith the plot tree() function from the tree module. Specify the features with the
feature names parameter, and the groups for which to classify into with the c1ass_names parameter. Their respective
values for this analysis, features and classes, have been previously defined much earlier in this notebook.

from sklearn import tree

plt.figure(figsize=(9,6))

tree.plot_tree(mf, feature names=features, class_ names=classes, rounded=True, filled=True)
plt.savefig('dt Gender.png')

Height <= 67.5
gini = 0.5
samples = 340
value = [170, 170]
class = Female

gini = 0.444 gini = 0.365
samples = 9 samples = 25
value = [3, 6] value = [19, 6]
class = Male class = Female

The value output indicates the number of samples classified as Female and Male, in that order. The more extreme the
differences in the two numbers, the better the classification accuracy, which yields a more desirable lower gini coefficient. For
example, customers with a Hand size less than 8.125 inches, and a Weight less than 186 Ibs, correctly classify 135 customers
as Female and misclassify only five Male customers as Female.

The total number of False Negatives, Males misclassified as Females, is 5 + 8 + 3 = 16, a number directly available from the
confusion table. The tree diagram specifies exactly where those misclassifications occurred.

There are 12 False Positives, as indicated from the tree diagram or the confusion matrix.
v Apply the Model

Jupyter notebooks are not an optimal production environment, but the following code does generate a model forecast from
new data entered into the model, such as in an actual forecasting application. The double brackets for the array of new data
from which to make a prediction indicate the creation of a two-dimensional array, which is the form of input for sklearn

functions. To apply the model here more efficiently, we could add a read statement that reads X_new values from an external
data file and then create a sequence of probabilities and predictions.

This model only uses three features, so it could refit on just a feature data set X that contains only those three features:
Weight, Height, and Hand size. Then would only need to enter just those three values to obtain a forecast of Gender.

X _new [[142,66,31,40,36,8,9]]

y_new = dt model.predict (X new)
print("Predicted group membership:", y new)
y_prob = dt _model.predict_ proba(X new)
print(round(y_prob[0,1], 3))

Predicted group membership: [0]
0.084

v Cluster Analysis with the sklearn ML Framework

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

Table of Contents

1 Preliminaries
2 Get and Structure Data

o 2.1 Read and Verify
o 2.2 Create the Feature Data Structure
o 2.3 Standardize the Variables

3 Find Optimal Number of Clusters

o 3.1 Hyper-Parameter Tuning
o 3.2 Choose the Optimal Model

4 Implement Chosen Cluster Model

o 4.1 Do the Cluster Analysis
o 4.2 Evaluate Fit

5 Interpret the Cluster Solution

o 5.1 Assign Cluster Stats to Data

o 5.2 Cluster Centroids with Counts

o 5.3 Cluster Scatterplot

o 5.4 Evaluate Solution Against Ground Truth

Return to the data set from the online clothing retailer. This data is actual data from a real online retailer, with customer names
and ID's deleted from the rows of data. The only data manipulation prior to analysis is to sample from the larger data set to
balance the ratio of Males and Females in the analysis and to delete samples with missing data.

Previous examples of machine learning presented supervised machine learning analyses to build a model to forecast missing
Gender body type from an online order form. Here, use unsupervised learning to suggest the underlying structure regarding
Gender. Without supervision, does Gender emerge from the clustering customers from other variables?

This template outlines the steps for a complete cluster analysis, with the following caveat.

Validation warning: The 340 samples in this analysis are not enough samples to split the data into training and testing data
sets for meaningful cluster analysis. Not doing a proper data split keeps the analysis simpler. Without a testing data set, do
not select a solution with many clusters as that solution likely results from overfitting.

In general, unsupervised machine learning leads to a solution evaluated for fit, just as with supervised machine learning. As
always, that solution should ultimately be validated on new data.

v Preliminaries

from datetime import datetime as dt

now = dt.now()
print ("Analysis on", now.strftime("%Y-%3m-%d"), "at", now.strftime("$H:%M"))

Analysis on 2021-08-02 at 01l:16

import os
os.getcwd()

' /content'

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

Because a cluster solution depends on the initial, somewhat arbitrary initial solution, a different solution results from each
analysis. This impact is lessoned by automatically running multiple solutions, each with a different starting set of clusters, the
default. Set the parameter random_state to an odd integer, again arbitrarily selected to reproduce these solutions.

For convenience only, here set random _state to a specific value referenced with two analyses so that the value only needs to
be changed once to generate the same solutions.

start=47

Get and Structure Data

Read and Verify

d = pd.read _csv('http://web.pdx.edu/~gerbing/data/BodyMeas.csv')
#d = pd.read_csv('data/BodyMeas.csv')
d.shape

(340, 8)

d.head()

Gender Weight Height Waist Hips Chest Hand Shoe

0 F 200 71 43 46 45 8.5 7.5
1 F 155 66 31 43 37 8.0 8.0
2 F 145 64 35 40 40 7.5 7.5
3 F 140 66 31 40 36 8.0 9.0
4 M 230 76 40 43 44 9.0 12.0

Create the Feature Data Structure

In general, a cluster analysis typically is based on several variables. Here, more for pedagogy, select just two features so that
the result can be plotted and the clusters visualized.

#X = d[['Weight', 'Height', 'Waist', 'Hips', 'Chest', 'Hand', 'Shoe']]

X = d[['Hand', 'Height']]
X.head()

Hand Height

0 8.5 71
1 8.0 66
2 7.5 64
3 8.0 66
4 9.0 76

n_features = X.shape[l]
print('Number of features:', n_features)

Number of features: 2
Missing data check.

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Gender 0
Weight 0
Height 0
Waist 0
Hips 0
Chest 0
Hand 0
Shoe 0
dtype: inté64

Total Missing: 0
Standardize the Variables

Because cluster analysis is based on straight-line (Euclidean) distance, the variables must be on at least approximately the
same scale. Here standardize each variable to a mean of 0 and a standard deviation of 1, the z-scores. Most transformed
values lie between -3 and 3 IF normally distributed.

from sklearn import preprocessing

from sklearn.preprocessing import StandardScaler
s_scaler = preprocessing.StandardScaler()

X = s_scaler.fit transform(X)

X = pd.DataFrame(X, columns=['Hand', 'Height'])
X.head()

Hand Heiaht
Use describe() to calculate descriptive statistics that verify that the transformations correctly resulted in z-scores for each
of the X variables.

X.describe().round(3)

Hand Height

count 340.000 340.000
mean -0.000 0.000
std 1.001 1.001
min -2.504 -2.297
25% -0.706 -0.832
50% 0.065 -0.100
75% 0.578 0.877

max 2.633 2.342

The mean and standard deviation of each standardized variable are 0 and 1, respectively.
Find Optimal Number of Clusters

Each cluster analysis requires first to specify the number of clusters. A single cluster analysis cannot evaluate the optimal
number of clusters to obtain the best fit. Instead, run a variety of cluster analyses, treating the number of clusters as a hyper-
parameter.

Hyper-Parameter Tuning

Specify the k-means analysis with the sklearn function xmeans (). Apply the usual sklearn function fit() to do the
analysis.

However, a specific cluster analysis begins from the specified number of clusters, finding the best fit for that number of
clusters. Beyond the best fit for a single model, the more general question is to understand how many clusters exist in the
data. Answer that question with a hyper-parameter tuning of the number of clusters, systematically running different cluster
models with differing numbers of clusters.

from sklearn.cluster import KMeans

from sklearn import metrics

from sklearn.metrics import pairwise_ distances

from sklearn.metrics import silhouette samples, silhouette_ score

Set the variables needed to loop through a range of different numbers of clusters. Specify the maximum number of clusters
with our own defined variable max_nc. Define two empty arrays, inertia and silhouette for storing the corresponding error
indices for each cluster analysis at a specified number of clusters.

max_nc = 25
inertia = []
silhouette = []

For the sklearn function xMeans (), specify the number of clusters with parameter n_clusters. Use a for loop that varies
the index i to run analyses from 2 to 25 cluster solutions systematically. All lines of indented code are the code that runs in the
for loop.

By default, try 10 different arbitrary initial cluster solutions for each cluster analysis with the init parameter set to k-
means++ 1o specify the initial cluster seeds for each solution. To provide for a more stable, optimal solution, up this default to
100 with the parameter n_init. The variable start was previously set as an arbitrary odd number to be able to recover the
solution. Or, could just set this as a constant directly.

Evaluate fit of each solution in terms of cluster inertia from created data structure model.inertia_, as well as the average
silhouette value from silhouette_score. Store these fit values in the previously created inertia and silhouette arrays.

Note that a complete analysis would involve a systematic grid search over the number of clusters and the number of features.

for i in range(2, max nc):
model = KMeans(n_clusters=i, init='k-means++', n_init=100, random state=start)
model.fit(X)
inertia.append(model.inertia)
s_score = metrics.silhouette score(X, model.labels , metric='euclidean')
silhouette.append(s_score)

Choose the Optimal Model

To analyze the fit of each cluster solution, display both Silhouette and Inertia for each specified number of clusters. First, print
the column headings, followed by a dotted line. A for loop specifies the printing of the fit coefficients for each solution.

Each format specifies how to display the values. For the column headings, set the spacing of each. The d format applies to
integers for the numerical output, and the £ format applies to numbers with decimal digits, the width of the entire numerical
output, and the number of decimal digits.

print('{:>2}{:>11}{:>9} "' .format('nc', 'Silhouette', 'Inertia'))
print('-' * 24)
for i in range(2, max nc):
print('{:>2d}{:>8.3£f}{:>12.3f}"'.format(i, silhouette[i-2], inertia[i-2]))

nc Silhouette Inertia

2 0.509 268.921
3 0.371 203.022
4 0.351 160.368
5 0.349 131.704
6 0.368 110.968
7 0.365 95.997
8 0.386 81.539
9 0.388 72.883
10 0.393 65.994
11 0.395 59.540
12 0.403 53.671
13 0.415 48.966
14 0.405 45.091
15 0.412 41.876
16 0.402 39.236
17 0.412 36.593
18 0.410 33.782
19 0.426 31.837
20 0.447 29.4098
21 0.448 27.932

22 0.456 25.928

23 0.459 24.621

A A arFn AA A-Fn

plt.plot(range(2, max_nc), inertia, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')

plt.show()

250 1

200 4

150 A

Inertia

100 A

5 10 15 20 25
Number of clusters

plt.plot(range(2, max_nc), silhouette, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Silhouette')

plt.show()

0.44
042 4

Silhouette

0.40 1
0.38

5 10 15 20 25
Number of clusters

For this analysis with two features, the two cluster solutions appear the most appropriate. As always, as the number of
clusters increases, cluster inertia, the sums of squared errors of the points in a cluster about its centroid, decreases. But the
silhouette score drops much after two clusters. It does slowly increase, so a 25 cluster solution has the best fit in statistical

terms, but is not meaningful in interpretative terms.

The question now is to the extent that the two-cluster solution provides an interpretable solution.

Implement Chosen Cluster Model

Do the Cluster Analysis

Focus on the chosen solution of two clusters, according to the value of n_clusters.

model = KMeans(n_clusters=2, init='k-means++', n_init=100, random state=start)
model.fit(X)

KMeans (algorithm='auto', copy x=True, init='k-means++', max_iter=300,
n_clusters=2, n_init=100, n_jobs=None, precompute distances='auto',
random_state=47, tol=0.0001, verbose=0)

v Evaluate Fit

The £it() function generates variables inertia_ and labels_. We have these values from the hyper-parmater tuning, but repeat
here for reference, and to verify we have the same model.

s_score = metrics.silhouette_ score(X, model.labels , metric='euclidean')
print('Error: %.3f ' % model.inertia)
print('Mean silhouette score: %.3f' % s_score)

Error: 268.921
Mean silhouette score: 0.509

View the individual silhouette values from function silhouette samples().Ww want as many as possible larger than
around 0.4 and 0.5.

s_values = silhouette samples(X, model.labels)
plt.hist(s_values.round(3))
plt.xlabel('Silhouette Coefficient')
plt.ylabel('Count"')

Text(0, 0.5, 'Count')

100 1

80

60

Count

20 1

0.0 01 0.2 03 04 05 06 0.7
Silhouette Coefficient

The two-cluster solution appears to fit the data well. Most individual silhouette are above 0.5, and there are no negative values.

v Interpret the Cluster Solution

The cluster analysis has no business value unless the cluster solution can be meaningfully interpreted and related to how the
world works. To do this interpretation, we need to know the cluster that each sample belongs to and the corresponding
unstandardized cluster centroid (center). As usual in data analysis, the center summarizes the constituent parts, the individual
rows of data, the samples, that comprise each cluster.

v Assign Cluster Stats to Data

Update the original data table for each sample with the cluster assignment and the silhouette score. This enhanced data set
allows further exploration of the cluster assignments to other variables in the data.

Obtain the cluster assignment with the output (created) variable labels_. There is no "prediction” in this context as there is no y
variable as a target in the sense of supervised training only features.

Obtain the silhouette values from the previously computed s_values from function silhouette samples() . These values are
optional but allow the detection of samples that do not fit well with any cluster, should such an analysis be pursued.

As an option, save the original data retained in the analysis with to_csv(), though this option is commented out here with the

d['Cluster'] = model.labels

d['S'] = s_values.round(3)

#d.to _csv("Clustered.csv", header=True)

d.head()

Gender Weight Height Waist Hips Chest Hand Shoe Cluster S

0 F 200 71 43 46 45 8.5 7.5 1 0.408
1 F 155 66 31 43 37 8.0 8.0 0 0.594
2 F 145 64 35 40 40 7.5 7.5 0 0.690
3 F 140 66 31 40 36 8.0 9.0 0 0.594
4 M 230 76 40 43 44 9.0 120 1 0.571

Cluster Centroids with Counts

Do a frequency distribution of the cluster membership. The value counts() function only applies to data frame variables, so
convert.

d _lab = pd.DataFrame(model.labels , columns=['labels'])

count = d_lab['labels'].value counts()
count

0 174

1 166

Name: labels, dtype: inté64

To interpret the clusters, view their centroids. View the cluster centroids as they exist in terms of the analysis for the cluster
solution, that is, standardized. The created data structure cluster centers_ provides the centroid for each cluster, though in
the metric in which the cluster analysis is conducted, here standardized.

dcc = pd.DataFrame(model.cluster centers ,
columns=['Hand', 'Height']).round(3)
dcc['Count'] = count
dcc.sort_values('Count', ascending=False)
Hand Height Count

0 -0.736 -0.782 174

1 0772 0.820 166

Negative standardized values indicate the number of standard deviations below the mean. Cluster 0 cutomers have below
average hand size and height. The opposite is true for Cluster 1 customers.

In a cluster analysis with more than two features on which to cluster the samples, this table of the cluster centroids (centers)
is the primary output for interpreting the meaning of the clusters. (With only two features, we also plot the data and cluster
centroids).

To better interpret the clusters, view the cluster centers in terms of the original, unstandardized data. Compute the mean of
each feature by cluster with function groupby () followed by the function mean () . Convert to a data frame and restore the
variable names. Sort the clusters by frequency, from largest to smallest.

Can also save the unstandardized cluster centers to a file with the to_csv() function in terms of the original data as read
from an external file. That option is commented out here with a #.

avg = d.groupby(d['Cluster']).mean().round(2)

d_avg = pd.DataFrame(avg, columns=['Hand', 'Height']).round(3)
d _avg['Count'] = count

d_avg = d_avg.sort_values('Count', ascending=False)
#d_avg.to_csv("ClustCenters.csv", header=True)

d_avg
Hand Height Count
Cluster
0 7.72 65.21 174
1 9.19 71.77 166

print('Hand size difference:', (d_avg.loc[l,'Hand'] - d_avg.loc[0, 'Hand']).round(3))
print('Height difference: ', (d_avg.loc[l, 'Height'] - d_avg.loc[0, 'Height']).round(3))

Hand size difference: 1.47
Height difference: 6.56

Primary interpretation: Cluster 0 samples, on average, have smaller Hand sizes and Heights, and Cluster 1 samples, on
average, have larger Hand sizes and Heights.

Cluster Scatterplot

With only two features, we can also create a scatterplot to visualize the location of the samples and the cluster centroids in
the plot of Hand sizes and Height.

Create a seaborn (sns) scatterplot, with also relies upon the original matplotlib (plt) visualization system. The resulting
scatterplot is actually two super-imposed scatterplots, one of the data and one of the cluster centroids. Parameter s specifies
the size of the plotted points, a larger value for the centroids. Parameter hue sets the grouping variable. Each group is plotted
in a different color according to the specified palette.

With the parameter palette, assign the colors to the points based on the hue specification, cluster membership. Use a
Python dictionary, indicated by the { and } to set the colors. The names Cluster 0 and Cluster 1 from the cluster analysis
solution are arbitrary, and, in this example, go counter to the way that the scatterplot() function assigns the colors to the
data values. That is why the assignment of colors to the cluster centroids is reversed from the data scatterplot. The initial
assignments were arbitrary, so align the centroid and data colors as needed with the dictionary.

The if clause indicates to run the following indented code only if n_features equals 2, which it does in this example. Standard
Python syntax specifies that all lines of code that run when the if clause is true must be indented from that statement, as in
the following code.

Note: If there are many samples per cluster, the cluster centroid, though displayed as a bigger circle, still blends in with the
surrounding points. In that case, for printing the cluster centroids, drop the hue parameter, which displays a different color for
each centroid, and replace with a single color such as color='black' Or color='DimGray"'.

if n features == 2:
sns.scatterplot(x=d['Hand'], y=d['Height'], s=50,
hue=d['Cluster'], palette={0: 'MediumSeaGreen', 1: 'SteelBlue'})
sns.scatterplot(x=d_avg['Hand'], y=d_avg['Height'], s=125, hue=d['Cluster'],
palette={1l: 'MediumSeaGreen', 0: 'SteelBlue'}, legend=False)

plt.grid()
o o o
77.5 4 Cluster ® ~
e O ° 0 o
75017 o 1 ¢¢ ®
o e e 0 = o o
o o EEEXNRENRK) © o
72.5 1 o ° o og ° o o
¢ o0 o e e 0 o
o 70.0 1 s ® e] ®]
S © e 00 e 00 [
= o e e 0o o0 o o o
T 67.5 1 CEO) o © o o
o e a0 e e 0 o
65.0 oo @ o = B
L a o L= 0
o o o0 [0 @ o
62.5 1 CI) © 0 =3
o e o o
60.0 4 -
o
6 7 8 9 10 1

Hand

With two clusters specified, the cluster solution generally recovers the Male/Female body size division based on Hand size
and Height.

Evaluate Solution Against Ground Truth

After a cluster analysis, when there are other variables in the analysis, one question often of interest is if the clusters are
related to other variables. Such a correspondence can suggest future supervised machine learning targeting the related
variable. To uncover these relationships, do cross-tabulations of cluster membership with the values of other variables.

As an example, consider the relationship between the Cluster membership and Gender.
Ground truth: The extent to which the classification of the samples reflects the true reality.

In this case, to what extent did the cluster solution, without any input from Gender, express Gender in terms of body type?
Previous analyses of these data showed how supervised learning methods such as logistic regression and decision trees
could predict or account for Gender. In this unsupervised analysis, there was no knowledge of Gender available to the
clustering algorithm.

Can the clustering algorithm when computing the model recover the classification into groups without awareness of the
groups? The previous scatterplot of Hand size and Height indicates a general classification of Male and Female. To what
extent do the clusters from the two-cluster solution correspond to Male and Female body types?

The basic display of the classification output is the confusion matrix, previously introduced. One way to obtain is with the
pandas function crosstab() for cross-tabulation. This method works with the non-numeric Gender values as the procudure
simply counts the values in each group.

ct = pd.crosstab(d['Gender'], d['Cluster'])
ct

Cluster 0 1

Gender
F 155 15
M 19 151

The standard procedure is for all non-numeric variables to be convered to numeric prior to machine learning. Gender was not
part of this cluster analysis, and so was not converted. To proceed with sklearn functions in this post-analysis, we do,
however, need to convert Gender to numeric.

Another way to get the confusion matrix is from the sklearn function confusion matrix() . Its use, however, requires only
numeric data, so replace the M and F data values with 1 and 0, respectively.

d['Gender'] = d['Gender'].replace({'M':1, 'F':0})
pd.DataFrame(metrics.confusion matrix(d['Gender'], d['Cluster']))

0 1
0 155 15
1 19 151

From the confusion matrix, obtain the traditional binary classification evaluation metrics from sklearn.

from sklearn.metrics import accuracy_score, recall score, precision_score, fl score
print ('Accuracy: %.3f' % accuracy score(d['Gender'], d['Cluster']))

print ('Recall: %.3f' % recall score(d['Gender'], d['Cluster']))

print ('Precision: %.3f' % precision_score(d['Gender'], d['Cluster']))

print ('Fl: %.3f' % fl score(d['Gender'], d['Cluster']))

Accuracy: 0.900
Recall: 0.888
Precision: 0.910
Fl: 0.899

With no knowledge of Gender, the cluster analysis obtained 90% accuracy of classification into male and female body types.

This classification accuracy is particularly impressive given that it is about as accurate as the decision tree analysis, a
supervised method explicitly based on the target Gender. Yet Gender did not even appear in the cluster analysis.

Plot the four values of the confusion matrix from the data structure ct with a two-variable bar chart.

ct.plot(kind='bar', color=['mediumseagreen', 'steelblue’'])

<matplotlib.axes._ subplots.AxesSubplot at 0x7£d75639af90>
160 |
This cluster analysis of Hand size and Height, that is unsupervised, uncovered the structure of two distinct clusters that
identify Male and Female body types. The unsupervised cluster analysis method did not include Gender, yet it was unable to
cover the structure provided by the different body types.

Had our investigation of body measurements begun with the cluster analysis, by discovering a pattern, the unsupervised
analysis identifies a potential target variable for future supervised analyses.

e Cluster
20 =0
LI
0
w =
Gender

