
check 0s completed at 10:16 PM

Cluster Analysis with the sklearn ML Framework

David Gerbing

The School of Business

Portland State University

gerbing@pdx.edu

1 Preliminaries
2 Get and Structure Data

2.1 Read and Verify
2.2 Create the Feature Data Structure
2.3 Standardize the Variables

3 Find Optimal Number of Clusters

3.1 Hyper-Parameter Tuning
3.2 Choose the Optimal Model

4 Implement Chosen Cluster Model

4.1 Do the Cluster Analysis
4.2 Evaluate Fit

5 Interpret the Cluster Solution

5.1 Assign Cluster Stats to Data
5.2 Cluster Centroids with Counts
5.3 Cluster Scatterplot
5.4 Evaluate Solution Against Ground Truth

Table of Contents

Return to the data set from the online clothing retailer. This data is actual data from a real online retailer, with customer names and ID's deleted
from the rows of data. The only data manipulation prior to analysis is to sample from the larger data set to balance the ratio of Males and
Females in the analysis and to delete samples with missing data.

Previous examples of machine learning presented supervised machine learning analyses to build a model to forecast missing Gender body
type from an online order form. Here, use unsupervised learning to suggest the underlying structure regarding Gender. Without supervision,
does Gender emerge from the clustering customers from other variables?

This template outlines the steps for a complete cluster analysis, with the following caveat.

Validation warning: The 340 samples in this analysis are not enough samples to split the data into training and testing data sets for meaningful
cluster analysis. Not doing a proper data split keeps the analysis simpler. Without a testing data set , do not select a solution with many
clusters as that solution likely results from overfitting.

In general, unsupervised machine learning leads to a solution evaluated for fit, just as with supervised machine learning. As always, that
solution should ultimately be validated on new data.

Preliminaries

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-08-02 at 01:16

/content' '

import os
os.getcwd()

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Because a cluster solution depends on the initial, somewhat arbitrary initial solution, a different solution results from each analysis. This
impact is lessoned by automatically running multiple solutions, each with a different starting set of clusters, the default. Set the parameter
random_state to an odd integer, again arbitrarily selected to reproduce these solutions.

For convenience only, here set random_state to a specific value referenced with two analyses so that the value only needs to be changed
once to generate the same solutions.

start=47

Get and Structure Data

Read and Verify

d = pd.read_csv('http://web.pdx.edu/~gerbing/data/BodyMeas.csv')
#d = pd.read_csv('data/BodyMeas.csv')
d.shape

(340, 8)

Gender Weight Height Waist Hips Chest Hand Shoe

0 F 200 71 43 46 45 8.5 7.5

1 F 155 66 31 43 37 8.0 8.0

2 F 145 64 35 40 40 7.5 7.5

3 F 140 66 31 40 36 8.0 9.0

4 M 230 76 40 43 44 9.0 12.0

d.head()

Create the Feature Data Structure

In general, a cluster analysis typically is based on several variables. Here, more for pedagogy, select just two features so that the result can be
plotted and the clusters visualized.

Hand Height

0 8.5 71

1 8.0 66

2 7.5 64

3 8.0 66

4 9.0 76

#X = d[['Weight', 'Height', 'Waist', 'Hips', 'Chest', 'Hand', 'Shoe']]
X = d[['Hand','Height']]
X.head()

n_features = X.shape[1]
print('Number of features:', n_features)

Number of features: 2

Missing data check.

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Gender 0

Weight 0

Height 0

Waist 0

Hips 0

Chest 0

Hand 0

Shoe 0

dtype: int64

Total Missing: 0

Standardize the Variables

Because cluster analysis is based on straight-line (Euclidean) distance, the variables must be on at least approximately the same scale. Here
standardize each variable to a mean of 0 and a standard deviation of 1, the -scores. Most transformed values lie between -3 and 3 IF normally
distributed.

𝑧

from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
s_scaler = preprocessing.StandardScaler()
X = s_scaler.fit_transform(X)

Hand Height

0 0.064668 0.632727

1 -0.449047 -0.588199

2 -0.962762 -1.076569

3 -0.449047 -0.588199

4 0.578383 1.853653

X = pd.DataFrame(X, columns=['Hand','Height'])
X.head()

Use describe() to calculate descriptive statistics that verify that the transformations correctly resulted in -scores for each of the X
variables.

𝑧

Hand Height

count 340.000 340.000

mean -0.000 0.000

std 1.001 1.001

min -2.504 -2.297

25% -0.706 -0.832

50% 0.065 -0.100

75% 0.578 0.877

max 2.633 2.342

X.describe().round(3)

The mean and standard deviation of each standardized variable are 0 and 1, respectively.

Find Optimal Number of Clusters

Each cluster analysis requires first to specify the number of clusters. A single cluster analysis cannot evaluate the optimal number of clusters
to obtain the best fit. Instead, run a variety of cluster analyses, treating the number of clusters as a hyper-parameter.

Hyper-Parameter Tuning

Specify the -means analysis with the sklearn function Kmeans() . Apply the usual sklearn function fit() to do the analysis.

However, a specific cluster analysis begins from the specified number of clusters, finding the best fit for that number of clusters. Beyond the
best fit for a single model, the more general question is to understand how many clusters exist in the data. Answer that question with a hyper-
parameter tuning of the number of clusters, systematically running different cluster models with differing numbers of clusters.

𝑘

from sklearn.cluster import KMeans
from sklearn import metrics
from sklearn.metrics import pairwise_distances
from sklearn.metrics import silhouette_samples, silhouette_score

Set the variables needed to loop through a range of different numbers of clusters. Specify the maximum number of clusters with our own
defined variable max_nc. Define two empty arrays, inertia and silhouette for storing the corresponding error indices for each cluster analysis at
a specified number of clusters.

max_nc = 25
inertia = []
silhouette = []

For the sklearn function KMeans() , specify the number of clusters with parameter n_clusters . Use a for loop that varies the index i to run
analyses from 2 to 25 cluster solutions systematically. All lines of indented code are the code that runs in the for loop.

By default, try 10 different arbitrary initial cluster solutions for each cluster analysis with the init parameter set to k-means++ to specify the
initial cluster seeds for each solution. To provide for a more stable, optimal solution, up this default to 100 with the parameter n_init . The
variable start was previously set as an arbitrary odd number to be able to recover the solution. Or, could just set this as a constant directly.

Evaluate fit of each solution in terms of cluster inertia from created data structure model.inertia_, as well as the average silhouette value from
silhouette_score. Store these fit values in the previously created inertia and silhouette arrays.

Note that a complete analysis would involve a systematic grid search over the number of clusters and the number of features.

for i in range(2, max_nc):
 model = KMeans(n_clusters=i, init='k-means++', n_init=100, random_state=start)
 model.fit(X)
 inertia.append(model.inertia_)
 s_score = metrics.silhouette_score(X, model.labels_, metric='euclidean')
 silhouette.append(s_score)

Choose the Optimal Model

To analyze the fit of each cluster solution, display both Silhouette and Inertia for each specified number of clusters. First, print the column
headings, followed by a dotted line. A for loop specifies the printing of the fit coefficients for each solution.

Each format specifies how to display the values. For the column headings, set the spacing of each. The d format applies to integers for the
numerical output, and the f format applies to numbers with decimal digits, the width of the entire numerical output, and the number of decimal
digits.

print('{:>2}{:>11}{:>9}'.format('nc', 'Silhouette', 'Inertia'))
print('-' * 24)
for i in range(2, max_nc):
 print('{:>2d}{:>8.3f}{:>12.3f}'.format(i, silhouette[i-2], inertia[i-2]))

nc Silhouette Inertia

 2 0.509 268.921

 3 0.371 203.022

 4 0.351 160.368

 5 0.349 131.704

 6 0.368 110.968

 7 0.365 95.997

 8 0.386 81.539

 9 0.388 72.883

10 0.393 65.994

11 0.395 59.540

12 0.403 53.671

13 0.415 48.966

14 0.405 45.091

15 0.412 41.876

16 0.402 39.236

17 0.412 36.593

18 0.410 33.782

19 0.426 31.837

20 0.447 29.498

21 0.448 27.932

22 0.456 25.928

23 0.459 24.621

24 0.469 23.060

plt.plot(range(2, max_nc), inertia, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')
plt.show()

plt.plot(range(2, max_nc), silhouette, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Silhouette')
plt.show()

For this analysis with two features, the two cluster solutions appear the most appropriate. As always, as the number of clusters increases,
cluster inertia, the sums of squared errors of the points in a cluster about its centroid, decreases. But the silhouette score drops much after two
clusters. It does slowly increase, so a 25 cluster solution has the best fit in statistical terms, but is not meaningful in interpretative terms.

The question now is to the extent that the two-cluster solution provides an interpretable solution.

Implement Chosen Cluster Model

Do the Cluster Analysis

Focus on the chosen solution of two clusters, according to the value of n_clusters.

model = KMeans(n_clusters=2, init='k-means++', n_init=100, random_state=start)
model.fit(X)

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,

 n_clusters=2, n_init=100, n_jobs=None, precompute_distances='auto',

 random_state=47, tol=0.0001, verbose=0)

Evaluate Fit

The fit() function generates variables inertia_ and labels_. We have these values from the hyper-parmater tuning, but repeat here for
reference, and to verify we have the same model.

s_score = metrics.silhouette_score(X, model.labels_, metric='euclidean')
print('Error: %.3f ' % model.inertia_)
print('Mean silhouette score: %.3f' % s_score)

Error: 268.921

Mean silhouette score: 0.509

View the individual silhouette values from function silhouette_samples() . Ww want as many as possible larger than around 0.4 and 0.5.

Text(0, 0.5, 'Count')

s_values = silhouette_samples(X, model.labels_)
plt.hist(s_values.round(3))
plt.xlabel('Silhouette Coefficient')
plt.ylabel('Count')

The two-cluster solution appears to fit the data well. Most individual silhouette are above 0.5, and there are no negative values.

Interpret the Cluster Solution

The cluster analysis has no business value unless the cluster solution can be meaningfully interpreted and related to how the world works. To
do this interpretation, we need to know the cluster that each sample belongs to and the corresponding unstandardized cluster centroid
(center). As usual in data analysis, the center summarizes the constituent parts, the individual rows of data, the samples, that comprise each
cluster.

Assign Cluster Stats to Data

Update the original data table for each sample with the cluster assignment and the silhouette score. This enhanced data set allows further
exploration of the cluster assignments to other variables in the data.

Obtain the cluster assignment with the output (created) variable labels_. There is no "prediction" in this context as there is no variable as a
target in the sense of supervised training only features.

Obtain the silhouette values from the previously computed s_values from function silhouette_samples() . These values are optional but
allow the detection of samples that do not fit well with any cluster, should such an analysis be pursued.

As an option, save the original data retained in the analysis with to_csv() , though this option is commented out here with the # sign.

𝑦

Gender Weight Height Waist Hips Chest Hand Shoe Cluster S

0 F 200 71 43 46 45 8.5 7.5 1 0.408

1 F 155 66 31 43 37 8.0 8.0 0 0.594

2 F 145 64 35 40 40 7.5 7.5 0 0.690

3 F 140 66 31 40 36 8.0 9.0 0 0.594

4 M 230 76 40 43 44 9.0 12.0 1 0.571

d['Cluster'] = model.labels_
d['S'] = s_values.round(3)
#d.to_csv("Clustered.csv", header=True)
d.head()

Cluster Centroids with Counts

Do a frequency distribution of the cluster membership. The value_counts() function only applies to data frame variables, so convert.

d_lab = pd.DataFrame(model.labels_, columns=['labels'])
count = d_lab['labels'].value_counts()
count

0 174

1 166

Name: labels, dtype: int64

To interpret the clusters, view their centroids. View the cluster centroids as they exist in terms of the analysis for the cluster solution, that is,
standardized. The created data structure cluster_centers_ provides the centroid for each cluster, though in the metric in which the cluster
analysis is conducted, here standardized.

Hand Height Count

0 -0.736 -0.782 174

1 0.772 0.820 166

dcc = pd.DataFrame(model.cluster_centers_,
 columns=['Hand', 'Height']).round(3)
dcc['Count'] = count
dcc.sort_values('Count', ascending=False)

Negative standardized values indicate the number of standard deviations below the mean. Cluster 0 cutomers have below average hand size
and height. The opposite is true for Cluster 1 customers.

In a cluster analysis with more than two features on which to cluster the samples, this table of the cluster centroids (centers) is the primary
output for interpreting the meaning of the clusters. (With only two features, we also plot the data and cluster centroids).

To better interpret the clusters, view the cluster centers in terms of the original, unstandardized data. Compute the mean of each feature by
cluster with function groupby() followed by the function mean() . Convert to a data frame and restore the variable names. Sort the clusters by
frequency, from largest to smallest.

Can also save the unstandardized cluster centers to a file with the to_csv() function in terms of the original data as read from an external file.
That option is commented out here with a #.

Hand Height Count

Cluster

0 7.72 65.21 174

1 9.19 71.77 166

avg = d.groupby(d['Cluster']).mean().round(2)
d_avg = pd.DataFrame(avg, columns=['Hand', 'Height']).round(3)
d_avg['Count'] = count
d_avg = d_avg.sort_values('Count', ascending=False)
#d_avg.to_csv("ClustCenters.csv", header=True)
d_avg

print('Hand size difference:', (d_avg.loc[1,'Hand'] - d_avg.loc[0,'Hand']).round(3))
print('Height difference: ', (d_avg.loc[1,'Height'] - d_avg.loc[0,'Height']).round(3))

Hand size difference: 1.47

Height difference: 6.56

Primary interpretation: Cluster 0 samples, on average, have smaller Hand sizes and Heights, and Cluster 1 samples, on average, have larger
Hand sizes and Heights.

Cluster Scatterplot

With only two features, we can also create a scatterplot to visualize the location of the samples and the cluster centroids in the plot of Hand
sizes and Height.

Create a seaborn (sns) scatterplot, with also relies upon the original matplotlib (plt) visualization system. The resulting scatterplot is
actually two super-imposed scatterplots, one of the data and one of the cluster centroids. Parameter s specifies the size of the plotted points,
a larger value for the centroids. Parameter hue sets the grouping variable. Each group is plotted in a different color according to the specified
palette.

With the parameter palette , assign the colors to the points based on the hue specification, cluster membership. Use a Python dictionary,
indicated by the { and } to set the colors. The names Cluster 0 and Cluster 1 from the cluster analysis solution are arbitrary, and, in this example,
go counter to the way that the scatterplot() function assigns the colors to the data values. That is why the assignment of colors to the
cluster centroids is reversed from the data scatterplot. The initial assignments were arbitrary, so align the centroid and data colors as needed
with the dictionary.

The if clause indicates to run the following indented code only if n_features equals 2, which it does in this example. Standard Python syntax
specifies that all lines of code that run when the if clause is true must be indented from that statement, as in the following code.

Note: If there are many samples per cluster, the cluster centroid, though displayed as a bigger circle, still blends in with the surrounding points.
In that case, for printing the cluster centroids, drop the hue parameter, which displays a different color for each centroid, and replace with a
single color such as color='black' or color='DimGray' .

if n_features == 2:
 sns.scatterplot(x=d['Hand'], y=d['Height'], s=50,
 hue=d['Cluster'], palette={0: 'MediumSeaGreen', 1: 'SteelBlue'})
 sns.scatterplot(x=d_avg['Hand'], y=d_avg['Height'], s=125, hue=d['Cluster'],
 palette={1: 'MediumSeaGreen', 0: 'SteelBlue'}, legend=False)
 plt.grid()

With two clusters specified, the cluster solution generally recovers the Male/Female body size division based on Hand size and Height.

Evaluate Solution Against Ground Truth

After a cluster analysis, when there are other variables in the analysis, one question often of interest is if the clusters are related to other
variables. Such a correspondence can suggest future supervised machine learning targeting the related variable. To uncover these
relationships, do cross-tabulations of cluster membership with the values of other variables.

As an example, consider the relationship between the Cluster membership and Gender.

Ground truth: The extent to which the classification of the samples reflects the true reality.

In this case, to what extent did the cluster solution, without any input from Gender, express Gender in terms of body type? Previous analyses of
these data showed how supervised learning methods such as logistic regression and decision trees could predict or account for Gender. In this
unsupervised analysis, there was no knowledge of Gender available to the clustering algorithm.

Can the clustering algorithm when computing the model recover the classification into groups without awareness of the groups? The previous
scatterplot of Hand size and Height indicates a general classification of Male and Female. To what extent do the clusters from the two-cluster
solution correspond to Male and Female body types?

The basic display of the classification output is the confusion matrix, previously introduced. One way to obtain is with the pandas function
crosstab() for cross-tabulation. This method works with the non-numeric Gender values as the procudure simply counts the values in each
group.

Cluster 0 1

Gender

F 155 15

M 19 151

ct = pd.crosstab(d['Gender'], d['Cluster'])
ct

The standard procedure is for all non-numeric variables to be convered to numeric prior to machine learning. Gender was not part of this cluster
analysis, and so was not converted. To proceed with sklearn functions in this post-analysis, we do, however, need to convert Gender to
numeric.

Another way to get the confusion matrix is from the sklearn function confusion_matrix() . Its use, however, requires only numeric data, so
replace the M and F data values with 1 and 0, respectively.

0 1

0 155 15

1 19 151

d['Gender'] = d['Gender'].replace({'M':1, 'F':0})
pd.DataFrame(metrics.confusion_matrix(d['Gender'], d['Cluster']))

From the confusion matrix, obtain the traditional binary classification evaluation metrics from sklearn .

from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
print ('Accuracy: %.3f' % accuracy_score(d['Gender'], d['Cluster']))
print ('Recall: %.3f' % recall_score(d['Gender'], d['Cluster']))
print ('Precision: %.3f' % precision_score(d['Gender'], d['Cluster']))
print ('F1: %.3f' % f1_score(d['Gender'], d['Cluster']))

Accuracy: 0.900

Recall: 0.888

Precision: 0.910

F1: 0.899

With no knowledge of Gender, the cluster analysis obtained 90% accuracy of classification into male and female body types. This classification
accuracy is particularly impressive given that it is about as accurate as the decision tree analysis, a supervised method explicitly based on the
target Gender. Yet Gender did not even appear in the cluster analysis.

Plot the four values of the confusion matrix from the data structure ct with a two-variable bar chart.

<matplotlib.axes._subplots.AxesSubplot at 0x7fd75639af90>

ct.plot(kind='bar', color=['mediumseagreen','steelblue'])

This cluster analysis of Hand size and Height, that is unsupervised, uncovered the structure of two distinct clusters that identify Male and
Female body types. The unsupervised cluster analysis method did not include Gender, yet it was unable to cover the structure provided by the
different body types.

Had our investigation of body measurements begun with the cluster analysis, by discovering a pattern, the unsupervised analysis identifies a
potential target variable for future supervised analyses.

