

Decision Tree Classification with *sklearn*

David Gerbing
The School of Business
Portland State University
gerbing@pdx.edu

Goal: Define a decision tree to classify according to Gender from body measurements. The motivation is to forecast Gender body type when that information is missing from online clothing orders.

Preliminaries

Misc

```
from datetime import datetime as dt
now = dt.now()
print("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))
Analysis on 2021-07-30 at 21:36
```

```
import os
os.getcwd()
'content'
```

Import Standard Data Analysis Libraries

Only need `pandas` and `matplotlib` in this analysis, though does not hurt to do the standard import that includes `numpy` and `seaborn`.

```
import pandas as pd
import matplotlib.pyplot as plt
```

Get and Structure Data

```
d = pd.read_csv('http://web.pdx.edu/~gerbing/data/BodyMeas.csv')
#d = pd.read_csv('data/BodyMeas.csv')
d.shape
```

	Gender	Weight	Height	Waist	Hips	Chest	Hand	Shoe
0	F	200	71	43	46	45	8.5	7.5
1	F	155	66	31	43	37	8.0	8.0
2	F	145	64	35	40	40	7.5	7.5
3	F	140	66	31	40	36	8.0	9.0
4	M	230	76	40	43	44	9.0	12.0

Create the features and target data structures. The target variable, `Gender`, in this data set has two levels, F and M. These values need to be scored 0 and 1. Could use `get_dummies()` to obtain this scoring, but here manually create our dummy variable with the `pandas` function `replace()`. Arbitrarily score 1 for Male. The remaining seven variables are potential features.

```
classes = ['Female', 'Male'] # for graph
features = ['Weight', 'Height', 'Waist', 'Hips', 'Chest', 'Hand', 'Shoe']
X = df[features]
y = df['Gender'].replace({'F':0, 'M':1})
```

Access Solution Algorithm

Activate the decision tree analysis with the `sklearn` module `DecisionTreeClassifier`. In this example, instantiate the module as `dt_model`, referred to throughout the analysis. Set a maximum tree depth of five with the `max_depth` parameter.

```
from sklearn.tree import DecisionTreeClassifier
dt_model = DecisionTreeClassifier(max_depth=5)
```

Evaluate Model with *Multiple* Hold-Out Samples

k-fold cross-validation for one model

In this analysis we do not do a single train/test data split. Instead we go right to a 5-fold cross-validation to build and estimate the same model five different times according to the `n_splits` parameter.

The `Kfold` module specifies the re-ordering of the data to create the folds, partitions of the data set into five different training sets of data, each with a corresponding testing data set. Save the result in the variable here called `kf`.

```
from sklearn.model_selection import KFold
kf = KFold(n_splits=5, shuffle=True, random_state=1)
```

The `cross_val_score()` function performs the model analyses, performing a cross-validation on five different decision tree models on five different training sets. Each fold is constructed as specified by the `kf` variable output from the `Kfold` procedure, then the model is tested on the corresponding testing data set.

The maximum depth of the tree has been set at 5. Use all 7 features as defined in the `X` data frame.

Both training set fit indices are requested in addition to those from the test data set. To do so, set parameter `return_train_score` to `True`. Assess the fit of each model with the `scoring` parameter, requesting accuracy, recall, and precision.

```
from sklearn.model_selection import cross_val_score
scores = cross_val_score(dt_model, X, y, cv=kf,
                        scoring=['accuracy', 'recall', 'precision'],
                        return_train_score=True)
```

Convert the scores output from `cross_val_score()` to a data frame for the appearance of the display. Transpose the data frame to view all the variable names with the data.

```
ds = pd.DataFrame(scores).round(3).transpose()
print(ds)
```

	0	1	2	3	4
fit_time	0.004	0.003	0.002	0.002	0.003
score_time	0.005	0.003	0.003	0.003	0.003
train_accuracy	0.882	0.921	0.941	0.882	0.882
test_recall	0.47	0.921	0.933	0.661	0.667
train_recall	0.978	0.985	0.964	0.985	0.993
test_precision	0.868	0.936	0.933	0.912	0.867
train_precision	0.970	0.956	0.978	0.971	0.952

We have the fit indices for each of the five cross-validations. Compute the mean across the five data sets of fit indices to obtain the best estimate of fit for each index.

```
print('Mean of test accuracy: %3f' % ds.loc['test_accuracy'].mean())
print('Mean of test recall: %3f' % ds.loc['test_recall'].mean())
print('Mean of test precision: %3f' % ds.loc['test_precision'].mean())
```

Mean of test accuracy: 0.903
Mean of test recall: 0.900
Mean of test precision: 0.905

The decision tree model with a depth of 5 and all 7 features fits well. Accuracy, recall (sensitivity), and precision for the testing data are around 90%.

As shown at the end of this notebook, we can apply the model, but we have not yet demonstrated the set of hierarchical decisions imposed by this decision tree.

Grid Search: Hyperparameter Tuning with Cross-Validation

Define any one decision tree model by a specific depth and number of features. The previous cross-validation was just for one model. But what is the best depth for the decision tree? The optimal number of features? To answer those questions, systematically explore a range of different models. Define many models, each with a different combination of depth and features, examples of what are called hyper-parameters. Explore the fit of a complete set of related models by systematically varying the depth and number of features with a hyper-parameter grid search.

Here define 4 levels of depth, 4 different numbers of features for 16 different models.

```
params = {'max_depth': [2, 3, 4, 5],
          'max_features': [1, 2, 3, 4]}
```

For each model, do cross-validations on 3 different folds. So 16x3=48 different analyses in all, conveniently and automatically accomplished with the module `GridSearchCV`, for grid-search cross-validation.

```
from sklearn.model_selection import GridSearchCV
kf3 = KFold(n_splits=3, shuffle=True, random_state=1)
```

`GridSearchCV` sets up the grid of the 16 models. Here, instantiate the module as `grid_search` and then use `fit()` to fit all the models, each 3 times. The `param_grid` parameter specifies the hyper-parameters to systematically adjust in all possible combinations. Transpose the results to fit on the page.

Much work is accomplished with little code, illustrating the power and convenience of `sklearn`.

```
grid_search = GridSearchCV(dt_model, param_grid=params, cv=kf3,
                           scoring=['accuracy', 'recall', 'precision'], refit=False,
                           return_train_score=True)
```

```
grid_search.fit(X, y)
```

GridSearchCV(cv=KFold(n_splits=3, random_state=1, shuffle=True), estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=5, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=None, splitter='best'), error_score='raise', param_grid=[{'max_depth': [2, 3, 4, 5], 'max_features': [1, 2, 3, 4]}], refit=False, return_train_score=True, scoring=['accuracy', 'recall', 'precision'], verbose=0)

The default output of `GridSearchCV` is a list of all the parameter values implemented in the analyses. To access specific results, access the output data structure `cv_results_`.

Here are all the results, for each individual fold and their summaries. The model that corresponds to each of the 16 columns is defined by the variable `computed variable params`.

```
d_results = pd.DataFrame(grid_search.cv_results_).round(2)
d_results.transpose()
```

	0	1	2	3
mean_fit_time	0	0	0	0
std_fit_time	0	0	0	0
mean_score_time	0.01	0	0	0
std_score_time	0	0	0	0
param_max_depth	2	2	2	2
param_max_features	1	2	3	4

Convert the scores output from `cross_val_score()` to a data frame for the appearance of the display. Transpose the data frame to view all the variable names with the data.

```
ds = pd.DataFrame(scores).round(3).transpose()
print(ds)
```

	0	1	2	3
fit_time	0.004	0.003	0.002	0.002
score_time	0.005	0.003	0.003	0.003
train_accuracy	0.882	0.921	0.941	0.882
test_recall	0.47	0.921	0.933	0.661
train_recall	0.978	0.985	0.964	0.985
test_precision	0.868	0.936	0.933	0.912
train_precision	0.970	0.956	0.978	0.971

We have the fit indices for each of the five cross-validations. Compute the mean across the five data sets of fit indices to obtain the best estimate of fit for each index.

```
print('Mean of test accuracy: %3f' % ds.loc['test_accuracy'].mean())
print('Mean of test recall: %3f' % ds.loc['test_recall'].mean())
print('Mean of test precision: %3f' % ds.loc['test_precision'].mean())
```

Mean of test accuracy: 0.903
Mean of test recall: 0.900
Mean of test precision: 0.905

The decision tree model with a depth of 5 and all 7 features fits well. Accuracy, recall (sensitivity), and precision for the testing data are around 90%.

As shown at the end of this notebook, we can apply the model, but we have not yet demonstrated the set of hierarchical decisions imposed by this decision tree.

Choose Model and Estimate on All Data

Generally obtain the full data set estimates with a little accuracy data. Given sufficient fit from the validation phase, choose a depth of 5 to estimate the final fit on the full data set. Sacrifice a little accuracy to parsimony.

```
dt_model = DecisionTreeClassifier(max_depth=5, max_features=3)
```

For each model, do cross-validations on 3 different folds. So 16x3=48 different analyses in all, conveniently and automatically accomplished with the module `GridSearchCV`, for grid-search cross-validation.

```
from sklearn.model_selection import GridSearchCV
kf3 = KFold(n_splits=3, shuffle=True, random_state=1)
```

`GridSearchCV` sets up the grid of the 16 models. Here, instantiate the module as `grid_search` and then use `fit()` to fit all the models, each 3 times. The `param_grid` parameter specifies the hyper-parameters to systematically adjust in all possible combinations. Transpose the results to fit on the page.

Much work is accomplished with little code, illustrating the power and convenience of `sklearn`.

```
grid_search = GridSearchCV(dt_model, param_grid=params, cv=kf3,
                           scoring=['accuracy', 'recall', 'precision'], refit=False,
                           return_train_score=True)
```

```
grid_search.fit(X, y)
```

GridSearchCV(cv=KFold(n_splits=3, random_state=1, shuffle=True), estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=5, max_features=3, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=None, splitter='best'), error_score='raise', param_grid=[{'max_depth': [2, 3, 4, 5], 'max_features': [1, 2, 3, 4]}], refit=False, return_train_score=True, scoring=['accuracy', 'recall', 'precision'], verbose=0)

The default output of `GridSearchCV` is a list of all the parameter values implemented in the analyses. To access specific results, access the output data structure `cv_results_`.

Here are all the results, for each individual fold and their summaries. The model that corresponds to each of the 16 columns is defined by the variable `computed variable params`.

```
d_results = pd.DataFrame(grid_search.cv_results_).round(2)
d_results.transpose()
```

	0	1	2	3
mean_fit_time	0	0	0	0
std_fit_time	0	0	0	0
mean_score_time	0.01	0	0	0
std_score_time	0	0	0	0
param_max_depth	2	2	2	2
param_max_features	1	2	3	4

Convert the scores output from `cross_val_score()` to a data frame for the appearance of the display. Transpose the data frame to view all the variable names with the data.

```
ds = pd.DataFrame(scores).round(3).transpose()
print(ds)
```

	0	1	2	3
fit_time	0.004	0.003	0.002	0.002
score_time	0.005	0.003	0.003	0.003
train_accuracy	0.882	0.921	0.941	0.882
test_recall	0.47	0.921	0.933	0.661
train_recall	0.978	0.985	0.964	0.985
test_precision	0.868	0.936	0.933	0.912
train_precision	0.970	0.956	0.978	0.971

We have the fit indices for each of the five cross-validations. Compute the mean across the five data sets of fit indices to obtain the best estimate of fit for each index.

```
print('Mean of test accuracy: %3f' % ds.loc['test_accuracy'].mean())
print('Mean of test recall: %3f' % ds.loc['test_recall'].mean())
print('Mean of test precision: %3f' % ds.loc['test_precision'].mean())
```

Mean of test accuracy: 0.903
Mean of test recall: 0.900
Mean of test precision: 0.905

The decision tree model with a depth of 5 and all 7 features fits well. Accuracy, recall (sensitivity), and precision for the testing data are around 90%.

As shown at the end of this notebook, we can apply the model, but we have not yet demonstrated the set of hierarchical decisions imposed by this decision tree.

Grid Search: Hyperparameter Tuning with Cross-Validation