
check 0s completed at 5:57 PM

Decision Tree Classification with sklearn

David Gerbing

The School of Business

Portland State University

gerbing@pdx.edu

Goal: Define a decision tree to classify according to Gender from body measurements. The motivation is to forecast Gender body type when
that information is missing from online clothing orders.

Preliminaries

Misc

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-07-30 at 21:36

/content' '

import os
os.getcwd()

Import Standard Data Analysis Libraries

Only need pandas and matlib in this analysis, though does not hurt to do the standard import that includes numpy and seaborn .

import pandas as pd
import matplotlib.pyplot as plt

Get and Structure Data

d = pd.read_csv('http://web.pdx.edu/~gerbing/data/BodyMeas.csv')
#d = pd.read_csv('data/BodyMeas.csv')
d.shape

(340, 8)

Gender Weight Height Waist Hips Chest Hand Shoe

0 F 200 71 43 46 45 8.5 7.5

1 F 155 66 31 43 37 8.0 8.0

2 F 145 64 35 40 40 7.5 7.5

3 F 140 66 31 40 36 8.0 9.0

4 M 230 76 40 43 44 9.0 12.0

d.head()

Create the features and target data structures. The target variable, Gender, in this data set has two levels, F and M. These values need to be
scored 0 and 1. Could use get_dummies() to obtain this scoring, but here manually create our dummy variable with the pandas function
replace() . Arbitrarily score 1 for Male. The remaining seven variables are potential features.

classes = ['Female', 'Male'] # for graph
features = ['Weight', 'Height', 'Waist', 'Hips', 'Chest', 'Hand', 'Shoe']
X = d[features]
y = d['Gender'].replace({'F':0, 'M':1})

Access Solution Algorithm

Activate the decision tree analysis with the sklearn module DecisionTreeClassifier . In this example, instantiate the module as dt_model,
referred to throughout the analysis. Set a maximum tree depth of five with the max_depth parameter.

from sklearn.tree import DecisionTreeClassifier
dt_model = DecisionTreeClassifier(max_depth=5)

Evaluate Model with Multiple Hold-Out Samples

k-fold cross-validation for one model

In this analysis we do not do a single train/test data split. Instead we go right to a 5-fold cross-validation to build and estimate the same model
five different times according to the n_splits parameter.

The Kfold module specifies the re-ordering of the data to create the folds, partitions of the data set into five different training sets of data,
each with a corresponding testing data set. Save the result in the variable here called kf.

from sklearn.model_selection import KFold
kf = KFold(n_splits=5, shuffle=True, random_state=1)

The cross_validate() function performs the model analyses, performing a cross-validation on five different decision tree models on five
different training sets. Each fold is constructed as specified by the kf variable output from the Kfold procedure, then the model is tested on
the corresponding testing data set.

The maximum depth of the tree has been set at 5. Use all 7 features as defined in the X data frame.

Both training data set fit indices are requested in addition to those from the test data set. To do so, set parameter return_train_score to
True . Assess the fit of each model with with the scoring parameter, requesting accuracy, recall, and precision.

from sklearn.model_selection import cross_validate
scores = cross_validate(dt_model, X, y, cv=kf,
 scoring=('accuracy', 'recall', 'precision'),
 return_train_score=True)

Convert the scores output from cross_validate() to a data frame for the appearance of the display. Transpose the data frame to view all the
variable names with the data.

ds = pd.DataFrame(scores).round(3).transpose()
print(ds)

 0 1 2 3 4

fit_time 0.004 0.003 0.002 0.002 0.002

score_time 0.005 0.003 0.003 0.003 0.003

test_accuracy 0.882 0.926 0.941 0.882 0.882

train_accuracy 0.974 0.971 0.971 0.978 0.971

test_recall 0.917 0.921 0.933 0.861 0.867

train_recall 0.978 0.985 0.964 0.985 0.993

test_precision 0.868 0.946 0.933 0.912 0.867

train_precision 0.970 0.956 0.978 0.971 0.952

We have the fit indices for each of the five cross-validations. Compute the mean across the five data sets of fit indices to obtain the best
estimate of fit for each index.

print('Mean of test accuracy: %.3f' % ds.loc['test_accuracy'].mean())
print('Mean of test recall: %.3f' % ds.loc['test_recall'].mean())
print('Mean of test precision: %.3f' % ds.loc['test_precision'].mean())

Mean of test accuracy: 0.903

Mean of test recall: 0.900

Mean of test precision: 0.905

The decision tree model with a depth of 5 and all 7 features fits well. Accuracy, recall (sensitivity), and precision for the testing data are around
90%.

As shown at the end of this notebook, we can apply the model, but we have not yet demonstrated the set of hierarchical decisions imposed by
this decision tree.

Grid Search: Hyperparameter Tuning with Cross-Validation

Define any one decision tree model by a specific depth and number of features. The previous cross-validation was just for one model. But what
is the best depth for the decision tree? The optimal number of features? To answer those questions, systematically explore a range of different
models. Define many models, each with a different combination of depth and features, examples of what are called hyper-parameters. Explore
the fit of a complete set of related models by systematically varying the depth and number of features with a hyper-parameter grid search.

Here define 4 levels of depth, 4 different numbers of features for 16 different models.

params = {'max_depth': [2, 3, 4, 5],
 'max_features': [1, 2, 3, 4]}

For each model, do cross-validations on 3 different folds. So 16x3=48 different analyses in all, conveniently and automatically accomplished
with the module GridSearchCV , for grid-search cross-validation.

from sklearn.model_selection import GridSearchCV
kf3 = KFold(n_splits=3, shuffle=True, random_state=1)

GridSearchCV sets up the grid of the 16 models. Here, instantiate the module as grid_search and then use fit() to fit all the models, each
3 times. The param_grid parameter specifies the hyper-parameters to systematically adjust in all possible combinations. Transpose the
results to fit on the page.

Much work is accomplished with little code, illustrating the power and convenience of sklearn .

grid_search = GridSearchCV(dt_model, param_grid=params, cv=kf3,
 scoring=('accuracy', 'recall', 'precision'), refit=False,
 return_train_score=True)
grid_search.fit(X,y)

GridSearchCV(cv=KFold(n_splits=3, random_state=1, shuffle=True),

 error_score=nan,

 estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,

 criterion='gini', max_depth=5,

 max_features=None,

 max_leaf_nodes=None,

 min_impurity_decrease=0.0,

 min_impurity_split=None,

 min_samples_leaf=1,

 min_samples_split=2,

 min_weight_fraction_leaf=0.0,

 presort='deprecated',

 random_state=None,

 splitter='best'),

 iid='deprecated', n_jobs=None,

 param_grid={'max_depth': [2, 3, 4, 5],

 'max_features': [1, 2, 3, 4]},

 pre_dispatch='2*n_jobs', refit=False, return_train_score=True,

 scoring=('accuracy', 'recall', 'precision'), verbose=0)

The default output of GridSearchCV is a list of all the parameter values implemented in the analyses. To access specific results, access the
output data structure cv_results .

Here are all the results, for each individual fold and their summaries. The model that corresponds to each of the 16 columns is defined by the
variable computed variable params.

0 1 2 3

mean_fit_time 0 0 0 0

std_fit_time 0 0 0 0

mean_score_time 0.01 0 0 0

std_score_time 0 0 0 0

param_max_depth 2 2 2 2

param_max_features 1 2 3 4

params
{'max_depth':

2,
'max_features':

1}

{'max_depth':
2,

'max_features':
2}

{'max_depth':
2,

'max_features':
3}

{'max_depth':
2,

'max_features':
4}

{'max_de

'max_feat

split0_test_accuracy 0.84 0.86 0.85 0.82

split1_test_accuracy 0.83 0.88 0.91 0.92

split2_test_accuracy 0.82 0.88 0.81 0.88

mean_test_accuracy 0.83 0.87 0.86 0.88

std_test_accuracy 0.01 0.01 0.04 0.04

rank_test_accuracy 16 11 12 10

split0_train_accuracy 0.82 0.87 0.93 0.88

split1_train_accuracy 0.83 0.89 0.9 0.89

split2_train_accuracy 0.79 0.9 0.89 0.91

mean_train_accuracy 0.81 0.89 0.91 0.89

std_train_accuracy 0.01 0.01 0.02 0.01

split0_test_recall 0.83 0.79 0.9 0.81

split1_test_recall 0.78 0.88 0.96 0.9

split2_test_recall 0.86 0.82 0.7 0.93

mean_test_recall 0.82 0.83 0.86 0.88

std_test_recall 0.03 0.04 0.11 0.05

rank_test_recall 15 14 11 6

split0_train_recall 0.83 0.79 0.93 0.85

split1_train_recall 0.8 0.86 0.94 0.85

split2_train_recall 0.94 0.89 0.85 0.99

mean_train_recall 0.86 0.85 0.91 0.9

std_train_recall 0.06 0.04 0.04 0.07

split0_test_precision 0.88 0.94 0.84 0.86

split1_test_precision 0.83 0.86 0.86 0.92

split2_test_precision 0.8 0.92 0.89 0.85

mean_test_precision 0.84 0.91 0.86 0.88

std_test_precision 0.03 0.03 0.02 0.03

rank_test_precision 16 3 13 11

split0_train_precision 0.79 0.92 0.93 0.89

split1_train_precision 0.86 0.93 0.88 0.93

split2_train_precision 0.73 0.9 0.92 0.85

mean_train_precision 0.8 0.92 0.91 0.89

std_train_precision 0.06 0.01 0.02 0.03

d_results = pd.DataFrame(grid_search.cv_results_).round(2)
d_results.transpose()

In this output our primary concern is the mean of each fit index over the five folds. For example, mean_test_accuracy provides the mean of
the five accuracy scores from the cross-validation. Subset the results data frame, and rename variables to obtain a more compact display.

depth features test_accuracy test_recall test_precision train_accuracy

0 2 1 0.83 0.82 0.84 0.81

1 2 2 0.87 0.83 0.91 0.89

2 2 3 0.86 0.86 0.86 0.91

3 2 4 0.88 0.88 0.88 0.89

4 3 1 0.84 0.81 0.86 0.86

5 3 2 0.88 0.87 0.90 0.92

6 3 3 0.89 0.86 0.91 0.93

7 3 4 0.89 0.89 0.89 0.94

8 4 1 0.85 0.85 0.85 0.89

9 4 2 0.88 0.86 0.90 0.95

10 4 3 0.90 0.89 0.91 0.95

11 4 4 0.90 0.90 0.89 0.95

12 5 1 0.84 0.85 0.84 0.92

13 5 2 0.90 0.89 0.91 0.96

14 5 3 0.88 0.87 0.89 0.97

15 5 4 0.89 0.88 0.90 0.97

d_summary = d_results[['param_max_depth', 'param_max_features', 'mean_test_accuracy',
 'mean_test_recall', 'mean_test_precision', 'mean_train_accuracy',
 'mean_train_recall', 'mean_train_precision']]
d_summary = d_summary.rename(columns= {
 'param_max_depth': 'depth',
 'param_max_features': 'features',
 'mean_test_accuracy': 'test_accuracy',
 'mean_test_recall': 'test_recall',
 'mean_test_precision': 'test_precision',
 'mean_train_accuracy': 'train_accuracy',
 'mean_train_recall': 'train_recall',
 'mean_train_precision': 'train_precision'})
d_summary

All the decision trees provide a similar fit, with very little overfitting except as expected in the more complex models.

Parsimony: Choose the simplest model that provides the best or almost the best fit to the testing data.

As always, strive for the most parsimonious model. A model with a depth of two and four features yields an accuracy of 0.88. Moving to a
depth of four with two features increases accuracy only by 0.02, so perhaps not worth the additional model complexity for such a small
increase in fit.

Choose Model and Estimate on All Data

Generally obtain the best estimates with the most data. Given sufficient fit from the validation phase, choose and then fit (estimate) the final
model on the full data set. Sacrifice a little accuracy for parsimony, which results in a model with 3 features at a depth of 2.

dt_model = DecisionTreeClassifier(max_features=3, max_depth=2)
mf = dt_model.fit(X,y)

Use the created output variable feature_importances_ to identify the most important features to choose the best 3, the three with non-zero
entries. Instead of writing code individually for each feature, do a for loop to process each feature one-by-one.

for name, importance in zip(X.columns, dt_model.feature_importances_):
 print(name, '%.3f' % importance)

Weight 0.000

Height 0.149

Waist 0.000

Hips 0.000
Chest 0.000

Hand 0.851
Shoe 0.000

The model accuracy, recall, and precision have previously been evaluated for forecasting efficiency, each as the mean of the corresponding k-
fold values. Given the best form of the model, now compute the same values for the full data set.

Begin with the 's, computed with the predict() function.𝑦 ̂
𝑖

y_fit = dt_model.predict(X)

0 1

0 158 12

1 16 154

from sklearn.metrics import confusion_matrix
pd.DataFrame(confusion_matrix(y, y_fit))

From the obtained confusion matrix, calculate the basic test indices.

from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
print ('Accuracy: %.3f' % accuracy_score(y, y_fit))
print ('Recall: %.3f' % recall_score(y, y_fit))
print ('Precision: %.3f' % precision_score(y, y_fit))
print ('F1: %.3f' % f1_score(y, y_fit))

Accuracy: 0.918

Recall: 0.906

Precision: 0.928

F1: 0.917

Illustrate the Model

The sklearn module tree provides a visualization of the obtained decision tree. The visualization shows the stakeholders who have
sponsored the analysis (including your salary) how to classify customers with the model. The visualization facilitates model understanding,
illustrating the sequence of decisions that arrive at the final classification.

The visualization also shows those classifications with which we have a high degree of confidence according to low Gini values and more
intense coloring than those classifications for which we have little confidence, with a Gini coefficient closest to 0.5.

Obtain the visualization with the plot_tree() function from the sklearn tree module. Specify the features with the feature_names
parameter, and the groups for which to classify into with the class_names parameter. Their respective values for this analysis, features and
classes, have been previously defined much earlier in this notebook.

from sklearn import tree
plt.figure(figsize=(9,6))
tree.plot_tree(mf, feature_names=features, class_names=classes, rounded=True, filled=True)
plt.savefig('dt_Gender.png')

The value output indicates the number of samples classified as Female and Male, in that order. The more extreme the differences in the two
numbers, the better the classification accuracy, which yields a more desirable lower Gini coefficient. For example, customers with a Hand size
less than 8.125 inches, and a Weight less than 186 lbs, correctly classify 135 customers as Female and mis-classify only five Male customers
as Female.

The total number of False Negatives, Males misclassified as Females, is 5 + 8 + 3 = 16, a number directly available from the confusion table.
The tree diagram specifies exactly where those misclassifications occurred.

There are 12 False Positives, as indicated from the tree diagram or the confusion matrix.

Apply the Model

The purpose of building machine learning predictive models is to predict a target data value, including classifications, from new data with an
unknown target value.

Jupyter notebooks are not an optimal production environment where new data is entered into the previously developed model to obtain a
forecast. However, the following code does generate a model forecast from new data, such as in an actual forecasting application. The double
brackets for the array of new data from which to make a prediction indicate the creation of a two-dimensional array, which is the form of input
for sklearn functions. To apply the model more efficiently, we could add a read statement that reads X_new values from an external data file
and then calculate a sequence of probabilities and predictions.

This model only uses three features, so it could refit on just a feature data set X that contains only those three features: Weight, Height, and
Hand size. Then we would only enter just those three values to obtain a forecast of Gender.

X_new = [[142,66,31,40,36,8,9]]
y_new = dt_model.predict(X_new)
print("Predicted group membership:", y_new)
y_prob = dt_model.predict_proba(X_new)
print(round(y_prob[0,1], 3))

Predicted group membership: [0]

0.035

