
check 0s completed at 10:13 PM

Logistic Regression with sklearn

David Gerbing

The School of Business

Portland State University

gerbing@pdx.edu

1  Preliminaries

1.1  Misc
1.2  Import Standard Data Analysis Libraries
1.3  Access Solution Algorithm

2  Data

2.1  Read and Verify Data
2.2  Pre-Process Data
2.3  Pre-Analysis Understanding and Feature Selection
2.4  Target Variable
2.5  Feature Relevance
2.6  Feature Redundancy
2.7  Create Feature and Target Data Structures

3  Fit Model, then Predict, Evaluate with One Hold-Out Sample

3.1  Split Data into Train and Test sets
3.2  Fit the Model to the Data
3.3  Evaluate Fit

3.3.1  Predicted Values
3.3.2  Probabilities for Prediction
3.3.3  Fit Metrics
3.3.4  Baseline Probability

4  Validate with Multiple Hold-Out Samples
5  Automated Feature Selection

5.1  Univariate Selection Procedure
5.2  Multivariate Selection Procedure
5.3  Validate Reduced Model

6  Estimate and Apply the Model

6.1  Estimate
6.2  Apply

Table of Contents

Preliminaries

Misc

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-07-23 at 05:13


/content' '

import os
os.getcwd()

Import Standard Data Analysis Libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Access Solution Algorithm

The sklearn  package provides many machine learning algorithms, all implemented with the same general procedure. Here invoke
LogisticRegression  module, which provides the functions for the logistic regression analysis. Implement a general algorithm by making a
specific instance of the algorithm, referred to by a specific name in the analysis of your choosing. This process is called instantiation. Here
instantiate with the reference logistic_model. All subsequent references to the linear regression algorithm are implemented via the name
logistic_model.

The solver  parameter indicates the specific solution algorithm. Several solution methods are available, all of which employ gradient descent,
which iterates to a solution step-by-step from an intial, arbitrary solution. Convergence for the solution algorithm was not obtained with 100
iterations, so increase the value of parameter max_iter  to achieve convergence.

from sklearn.linear_model import LogisticRegression
logistic_model = LogisticRegression(solver='lbfgs', max_iter=500)

Data

An online retailer offers clothes in women's and men's styles, but sometimes the value of Gender is missing from the online order.

To provide a prediction equation, use logistic regression, which forecasts membership into a group, that is, a label. Here forecast values of the
variable Gender, binary in this data set, from physical body dimensions as it relates to body type.

Read and Verify Data

d = pd.read_csv('http://web.pdx.edu/~gerbing/data/BodyMeas.csv')
#d = pd.read_csv('data/BodyMeas.csv')

d.shape

(340, 8)

Gender Weight Height Waist Hips Chest Hand Shoe

0 F 200 71 43 46 45 8.5 7.5

1 F 155 66 31 43 37 8.0 8.0

2 F 145 64 35 40 40 7.5 7.5

3 F 140 66 31 40 36 8.0 9.0

4 M 230 76 40 43 44 9.0 12.0

d.head()

Pre-Process Data

This is the place to check for outliers, though not doing now.

Apply pandas get_dummies()  to Gender to create two new binary variables scored 0 and 1, Gender_F and Gender_M. We could specifically
target Gender with the columns  parameter but can also convert all the categorical variables at one time, of which the only one is Gender in this
example. To target all the variables, enter the data frame's name instead of a specific list of variables.

We only need and want one of the newly created indicator (dummy) variables,  indicator variables, where  is the number of categories.
Use the drop_first  parameter to delete the first dummy variable, Gender_F arbitrarily. For the remaining Gender_M, a 1 means Male, and a 0
means Female.

𝑘 − 1 𝑘

d = pd.get_dummies(d, drop_first=True)

Verify the data are correctly read.

Weight Height Waist Hips Chest Hand Shoe Gender_M

0 200 71 43 46 45 8.5 7.5 0

1 155 66 31 43 37 8.0 8.0 0

2 145 64 35 40 40 7.5 7.5 0

3 140 66 31 40 36 8.0 9.0 0

4 230 76 40 43 44 9.0 12.0 1

d.head()

If we had more variables, we could transpose the output of head()  to list the variables vertically. Not needed here, but illustrated to show the
effect. Use the transpose()  function.

Verify a data frame with many variables using transpose() .

0 1 2 3 4

Weight 200.0 155.0 145.0 140.0 230.0

Height 71.0 66.0 64.0 66.0 76.0

Waist 43.0 31.0 35.0 31.0 40.0

Hips 46.0 43.0 40.0 40.0 43.0

Chest 45.0 37.0 40.0 36.0 44.0

Hand 8.5 8.0 7.5 8.0 9.0

Shoe 7.5 8.0 7.5 9.0 12.0

d.head().transpose()

Check for missing data with isna() .

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Weight      0

Height      0

Waist       0

Hips        0

Chest       0

Hand        0

Shoe        0

Gender_M    0

dtype: int64


Total Missing: 0


No missing data, so proceed as is.

Pre-Analysis Understanding and Feature Selection

There is no strict requirement to study your data before beginning building the model. However, typically better to first develop some intuition
for the data before attempting to construct the model. Unless the goal is to reduce the computation time of model analysis, avoid data leakage
by modifying the data before dividing into training and testing data sets. Otherwise, changes are made to all of the data, some of which later
become testing data, now no longer entirely independent of the training phase.

Target Variable

Check out the distribution of the target. If going to run a model focused on forecasting the target, should also understand the nature of the
target variable. Choose a named color.

freq = d['Gender_M'].value_counts()
freq

1    170

0    170

Name: Gender_M, dtype: int64

<matplotlib.axes._subplots.AxesSubplot at 0x7f20e9539fd0>

plt.title('Distribution of Gender', fontsize=12)
freq.plot(kind='bar', color="sienna")

In this data set M ( =1) and F ( =0) are evenly distributed. There is plenty of variability in the target variable that a set of related features could
explain.

𝑦 𝑦

Feature Relevance

Are all the features relevant? Examine the means of M and F across the features. All the numerical variables appear to differ depending on
Gender, so prediction accuracy should be good.

The pandas  function groupby()  analyzes the data according to the specified statistic, here mean() , for each level of the specified categorical
variable, here Gender_M. Without specifying specific variables to analyize, all numerical variables in the data frame are analyzed.

Weight Height Waist Hips Chest Hand Shoe

Gender_M

0 148.411765 65.464706 34.111765 41.629412 38.929412 7.728529 7.981176

1 215.758824 71.352941 40.941176 44.652941 45.005882 9.145588 10.670588

d.groupby('Gender_M').mean()

Examine the overlap in the distributions of Male and Female for each of the features. If the feature is relevant so that it relates to the target
Gender, then it should differentiate men from women. Visualize the extent of this differentiation according to the separation between men and
women on each feature.

To visualize overlap, use the seaborn  function pairplot()  that generates a scatterplot matrix (table). However, only plot the diagonal
elements of this matrix, which visualize the smoothed histograms of the corresponding variable. Specify only a single variable for pairplot()
with the vars  parameter. The resulting scatterplot "matrix" consists of only a single diagonal element of the distribution of the variable.

To avoid entering a separate pairplot()  call for each variable, use a for  loop that loops through the specified columns of the data frame
one-by-one in the call to pairplot() , here for the potential features.

pred_vars = ['Weight', 'Height', 'Waist', 'Hips', 'Chest'Chest , 'Hand', 'Shoe']
for column in d[pred_vars]:
    sns.pairplot(d, vars=[column], hue='Gender_M')

The less the overlap for a feature, the more accurate the feature classifies M and F. Hip size appears to be the least useful. Height and Hand
size appear to be the most useful.

Still, the full multiple logistic regression specifies an interaction among all the variables, so complete model selection is best accomplished
after deriving an initial model, and then preferably only on testing data to avoid data leakage. In practice, however, for large models with huge
data sets, some obvious culling of features at this point can be worthwhile to same computation time.

Feature Redundancy

Check for collinearity by examining the correlation of the features with each other. We could use pairplot()  to generate the full scatterplot
matrix, but a heatmap requires less space. Generate the heatmap with the seaborn  function heatmap() .

Not needing to drop features before model estimation as CPU time is not an issue, it is helpful to explore relations of the features with each
other and with the target. The goal is to understand how the model will perform and how many features will be needed.

The cmap  parameter for the color map specifies the assignment of colors to correlation values, with many possibilities include many palettes
from matplotlib  obtained just be entering a color name. Here use a seaborn  palette called dark_palette .

This palette is sequential, from lighter to darker of the same hue, appropriate since all correlations are above 0. To show positive and negative
correlations, choose a diverging palette, with different hues on both sides of the midpoint, such as from 

cmap=sns.diverging_palette(5, 250, as_cmap=True))

<matplotlib.axes._subplots.AxesSubplot at 0x7f20c61973d0>

plt.figure(figsize=(10,10))
sns.heatmap(d.corr().round(2), linewidths=2.0, annot=True, 
            cmap=sns.dark_palette("seagreen"))

There are some high feature correlations. Shoe size correlates with Height at r=0.81, and ChestChest correlates with Weight at 0.86, both very high
correlations. Because of this redundancy, the final model will not require all 7 features, probably more like 3 or 4 at the maximum.

Create Feature and Target Data Structures

Define all the variables that are added to X, as below.  is a column of 0's and 1's𝑦

y = d['Gender_M']
X = d[pred_vars]
X.shape

(340, 7)

Optional, but see how many features are in the model, and observe the data type of the X and y data structures.

n_pred = len(pred_vars)
print("Number of predictor variables:", n_pred)

Number of predictor variables: 7


print("X: ", type(X))
print("y: ", type(y))

X:  <class 'pandas.core.frame.DataFrame'>

y:  <class 'pandas.core.series.Series'>


It might be useful to study rescaling the features so that each has approximately the same scale, either minimum of 0 and a maximum of 1, or
standardization. However, will not pursue that here.

Fit Model, then Predict, Evaluate with One Hold-Out Sample

This analysis follows the standard sklearn  machine learning paradigm. The logistic regression analysis outlined below is similar to the
standard least-squares regression analysis pursued previously. Ultimately we prefer -fold cross-validation but first shown is the one-split
vesion instead of  splits.

𝑘

𝑘

Split Data into Train and Test sets

Cross-validation is testing a model a new data set different from the data on which the model was estimated. The concept of cross-validation
has applied to regression analysis for many decades, though perhaps often recommended more than actually accomplished. The machine
learning framework provides for easily accessible cross-validation methods, and is considered a necessary component of the analysis.

The key component of a cross-validation, or more simply, validation, is the hold-out sample, the portion of the original data set aside as the
testing data. If there is much data with a model that requires much training time, only one hold-out sample may be practical, the approach here.

Function train_test_split()  randomly shuffles the original data into two sets, training data and testing data, here called X_train and X_test
for the features and y_train and y_test for the target. Parameter test_size  specifies the percentage of the original data set allocated to the
test split.

The input into the train_test_split()  function are the X and  data structures. With a single function call, the function provides four
outputs, X training and testing data, and y training and testing data. Python has the convention of listing the names for multiple outputs on the
left side of the equals sign, separated by commas, in the correct order of the output.

Keep the group membership balanced in the created data sets with the parameter stratify , set equal to the variable in the  target data
structure. We want randomization of the data into training and testing structures but with the same proportion of group members across the
structures. That keeps the null model the same for each data set, to have the same baseline of comparison for the testing data.

Optional parameter random_state  specifies the initial seed so that the same random process, more appropriately called a pseudo-random
process, can be repeated in the future with the same data split is obtained from train_test_split() . Re-run with the same value, here 9, get
the same random split.

𝑦

𝑦

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.30, 
                                     stratify=d['Gender_M'], random_state=9)

In the full data set, M and F are equally represented. Show that the stratify  parameter worked correctly by maintaining the same balance in
the created training and testing data sets.

y_train.value_counts()

1    119

0    119

Name: Gender_M, dtype: int64

y_test.value_counts()

1    51

0    51

Name: Gender_M, dtype: int64

Verify the data are as expected for the target variable. Here view an excerpt from the testing data for the target. As expected, a series of 0's and
1's.

255 15 280 238 306 236 138 309 26 281

Gender_M 1 1 1 0 1 1 0 1 0 0

pd.DataFrame(y_test).head(10).transpose()

The shape  method displays the dimensions of each of the resulting two data sets, X_train and X_test. The first number is the number of rows
in the corresponding data structure. Here, with the testing data set size at 25% of all the data, there are 379 rows of data in the two training data
structures and 127 rows of data in the two testing data structures. The  data structures have only one column and are not data frames, so
their number of columns is not specified.

𝑦

print("size of X data structures: ", X_train.shape, X_test.shape)
print("size of y data structures: ", y_train.shape, y_test.shape)

size of X data structures:  (238, 7) (102, 7)

size of y data structures:  (238,) (102,)


Fit the Model to the Data

Employ the standard sklearn  machine learning functions. Fit the model, that is, estimate the parameters, with the fit()  function, here
applied on the training data applied to a logistic regression model, previously instantiated as logistic_model. Expressed yet another way, have
the machine (i.e., algorithm) learn from the training data. Only fit the training data at this point in the analysis.

logistic_model.fit(X_train, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

                   intercept_scaling=1, l1_ratio=None, max_iter=500,

                   multi_class='auto', n_jobs=None, penalty='l2',

                   random_state=None, solver='lbfgs', tol=0.0001, verbose=0,

                   warm_start=False)

Showing the model at this point in the analysis is for pedagogy. In actual practice no need to examine this model because first, the model has
not yet been validated on testing data, and second, it is based only on the training data. This training data-derived model will be applied to the
testing data to evaluate the extent of the forecasting error.

If the model validates, then we view the model to employ in future forecasts at the end of the analysis. Repeat the technique for viewing the
model shown here at the end of a successful analysis.

Optionally display the estimated model coefficients, stored in the lm.coef_  object, a data structure created by the fit()  function — the name
of a variable whose values that the procedure creates ends in an underline. The coefficients of the final model, estimated with all of the data,
are needed to apply the model to other data sets.

The pure machine learning implementation of regression is not directed towards understanding and interpreting the model coefficients but
instead focuses on evaluating the extent of forecasting error. As such, the analysis does not provide the usual regression output. Traditionally,
list the coefficients along with their corresponding -tests of the null hypothesis of 0, and the associated confidence interval (as obtained from
the statsmodels  package).

𝑡

intercept -25.125 


0 1 2 3 4 5 6

Feature Weight Height Waist Hips Chest Hand Shoe

Coef 0.046 0.232 0.248 -0.689 0.091 1.457 0.591

print("intercept %.3f" % logistic_model.intercept_, "\n")
cf = pd.DataFrame()
cf['Feature'] = X.columns
cf['Coef']= np.transpose(logistic_model.coef_).round(3)
cf.transpose()

The estimated coefficients for variables Height, Waist, ChestChest, Hand, and Shoe all associate with an increase in the probability of the relevant
group, , whereas Hips has a negative coefficient. That is, Hips goes in the opposite direction indicating a lower probability of Male, and so
an increased probability of Female, as Hip size increases.

𝑦 = 1

Model:
= −25.121 + 0.046( ) + 0.232( ) + 0.248( ) − 0.690( ) + 0.091( ) + 1.458( )𝑦 ̂ 𝐺𝑒𝑛𝑑𝑒𝑟 𝑥𝑊 𝑒𝑖𝑔ℎ𝑡 𝑥𝐻𝑒𝑖𝑔ℎ𝑡 𝑥𝑊 𝑎𝑖𝑠𝑡 𝑥𝐻𝑖𝑝𝑠 𝑥𝐶𝐶ℎℎ𝑒𝑒𝑠𝑠𝑡𝑡 𝑥𝐻𝑎𝑛𝑑

+ 0.591( )𝑥𝑆ℎ𝑜𝑒

This model is then used to calculate  from the testing data to evaluate fit.𝑦 ̂ 

Evaluate Fit

Predicted Values

Use the sklearn  function predict()  to calculate the values of  from the previously fitted model using fit() . Calculate the fitted values 
for both the training data and testing data. Name the  values for the training data y_fit. The values of  for the testing data are true forecasts
or predictions, data never before seen by the model, so name y_pred.

𝑦 𝑦 ̂ 

𝑦 ̂  𝑦 ̂ 

y_fit = logistic_model.predict(X_train)
y_pred = logistic_model.predict(X_test)

The resulting y_fit and y_pred data structures are numpy arrays. Here display the first 15 values of y_pred to show a string of forecasted
positive and negative outcomes, relative to value Male. Verify that the predicted values have the correct structure.

print(y_pred[1:25])

[0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0]


Yes, all predicted values are 0's and 1's, the assignment to one of the two target groups.

Probabilities for Prediction

How were those predictions derived? Not needed as part of the analysis, but here presented for understanding.

The model predicts group membership from the calculated probability of being a Male. Calculate the probability of class membership with the
predict_proba()  function. It returns a column for each value of the target, here probability of 0 and then probability of 1. The expression
i[1]  restricts the output to just the second column, the probabilities of being Male given the values of the feature variables.

If probability of Male > 0.5, then forecast as Male, otherwise Female.

Here list the first 15 rows of data with head() , transposed to take up less vertical space.

Baseline prediction is predicting membership in the group with the highest probability of the two target classes, the prediction in the absence of
all information regarding X, the null model. Before we can evaluate fit, we need the baseline probability.

To calculate the baseline probabilities, compute the proportion of rows of data for each group. The mean of a column of 0's and 1's is the
proportion of 1's (males). The group with the largest proportion is the baseline probability.

255 15 280 238 306 236 138 309 26 281 204 48 330 1
true_values 1.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.
pred_values 0.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.
pred probs 0.431 0.0228 0.99 0.00313 0.991 0.804 0.0011 0.682 0.0023 0.0729 0.00112 0.0339 0.924 0.

probs = [i[1] for i in logistic_model.predict_proba(X_test)]
pred_df = pd.DataFrame({'true_values': y_test,
                        'pred_values': y_pred,
                        'pred_probs':probs})
pred_df.head(15).transpose().style.format("{:.3}")

Here are two forecasts from the probability calculations. The data have been randomly shuffled in the creation of the training and test data
sets, so the row numbers are arbitrarily ordered.

First column, Row 255: predicted probability of Male is 0.431, so forecast Female
Third entry, Row 280: predicted probability of Male is 0.990, so forecast Male

Fit Metrics

The metrics  module in the sklearn  package provides the computations for the fit indices. The basis of the assessment of the model
compares the actual data values of  in the testing data, y_test, to the values of  calculated from the model, y_pred. For a binary target
variable, this comparison reduces the two correct classifications and the two incorrect classifications, summarized by the confusion matrix.

𝑦 𝑦

Obtain forecasting accuracy with sklearn  function accuracy_score() . First, compare the values to see if the model overfit the training data
by applying to both the training data and the testing data.

from sklearn.metrics import accuracy_score
print ('Accuracy for training data:  %.3f' % accuracy_score(y_train, y_fit))
print ('Accuracy for testing data:  %.3f' % accuracy_score(y_test, y_pred))

Accuracy for training data:  0.933

Accuracy for testing data:  0.902


The testing performance from training to testing did not drop much, only 3.1%, so not much overfitting here. Also evaluate if the testing
accuracy is high for model validation. At 90.2% accuracy for the testing data, the model is reasonably accurate, and considerably larger than the
50% baseline prediction (analogous to the  statistic).𝑅2

Now a more in-depth analysis of the testing model performance, beginning with the confusion matrix, the numerical basis for all the
classification fit indices. sklearn  provides two functions for the confusion matrix. One function, confusion_matrix() , counts the correct
classifications and the mis-classifications given the  and  values, the actual and forecasted 0's and 1's.

To display the results,and to access them for later reference, save the confusion matrix in a data frame, here named dc.

𝑦 𝑦 ̂ 

0 1

0 47 4

1 6 45

from sklearn.metrics import confusion_matrix
dc = pd.DataFrame(confusion_matrix(y_test, y_pred))
dc

The second confusion matrix function, plot_confusion_matrix() , provides a heat map that illustrates the extent of the four outcome
numbers. This function works directly from the model, implicitly computing the 's from the features, X, and then comparing to the given values
of .

𝑦 ̂ 

𝑦

from sklearn.metrics import plot_confusion_matrix
confmat = plot_confusion_matrix(logistic_model, X_test, y_test, cmap="Blues")

Not needed, but here explicitly label each of the four outcomes, referring to the previously computed data frame dc.

print("True Negatives: ", dc.iloc[0,0])
print("True Positives: ", dc.iloc[1,1])
print("False Negatives: ", dc.iloc[1,0])
print("False Positives: ", dc.iloc[0,1])

True Negatives:  47

True Positives:  45

False Negatives:  6

False Positives:  4


With these data, there is no indication that misclassifying a Male as Female or a Female as Male is more costly. So the asymmetric fit indices,
recall (sensitivity), and precision are likely not needed.

For completeness, however, calculate the fit indices recall, precision, and F1, as with any fit index, compare the actual value so of y, named
y_test, to the values fitted by the model, , named y_pred. Pass each set of values to the respective sklearn  functions recall_score() ,
precision_score() , and f1_score() .`

𝑦 ̂ 

from sklearn.metrics import recall_score, precision_score, f1_score
print ('Recall for testing data:  %.3f' % recall_score(y_test, y_pred))
print ('Precision for testing data:  %.3f' % precision_score(y_test, y_pred))
print ('F1 for testing data:  %.3f' % f1_score(y_test, y_pred))

Recall for testing data:  0.882

Precision for testing data:  0.918

F1 for testing data:  0.900


The lowest fit index, recall (sensitivity), is still high, at 88.1%. That means that the model correctly forecasts 88.2% of the Males as Males (true
positive). So the model mislabels almost 12% of actual Male body types as Female. This 12% comes from the 6 false negatives from the
confusion matrix.

Precision is even higher, which means that of those the model forecasted as Male, 91.8% are Male. Less than 8% of those predicted as Male are
indicated as Female in the data, a false positive. As seen in the confusion matrix, only 4 false positives.

By definition, the F1 statistic is between recall and precision, their harmonic average, at 91.8%.

Baseline Probability

Did the estimated model do better than the null model in which the forecast is to the group with the largest membership? That is, the null model
forecasts without any knowledge of X.

my = y.mean()
max_my = np.max([y.mean(), 1-y.mean()])
print('Proportion of 0\'s (female): %.3f' % (1-my))
print('Proportion of 1\'s (male): %.3f' % my)
print('Null model accuracy: %.3f' % max_my)

Proportion of 0's (female): 0.500

Proportion of 1's (male): 0.500

Null model accuracy: 0.500


Here the proportion of M's and F's are equal, so the baseline probability is 0.5. If all customers are predicted to be either Male or Female,
accuracy is 50%. Obtained forecasting accuracy on the testing data of 0.902 is much larger than the 0.500 accuracy of the null model.

Validate with Multiple Hold-Out Samples

Double-click (or enter) to edit

Here use a version of Kfold  designed for models with categorical target variables called StratifiedKFold . The distinction is that
StratifiedKFold  generates the test set of each fold with the same proportion of samples in each group (class, level) as in the whole
population. Here substantiate with skf, invoking the desired parameters. That way, the test data resemble the overall data set in terms of the
distribution of the target variable, which keeps the baseline or null error rate the same across folds.

from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=1)

Get the accuracy, recall, and precision scores for each of the true forecasts of applying the model, for each split, from the k-1 folds data to the
hold-out fold.

To estimate the model (here five different estimates from five different samples) we need to specify the estimation algorithm. We have already
instantiated the LogisticRegression() module as logistic_model.

The cross_validate()  function provides for obtaining multiple evaluation scores from the same cross-validation folds without having to
repeat the computations for each score. Computation times are also provided, of importance for massive data sets.

The evaluations performed on the training data are not needed for model evaluation per se, which occurs on the testing data, but are useful to
compare to the corresponding testing scores. Training scores much larger than the corresponding testing scores indicates overfitting. Obtain
the training evaluations with the parameter return_train_score .

from sklearn.model_selection import cross_validate
scores = cross_validate(logistic_model, X, y, cv=skf, 
                        scoring=('accuracy', 'recall', 'precision'),
                        return_train_score=True)

The scores array contains much information, but not so directly readable. Here convert to a data frame, rename the long column names,
convert the MSE scores to positive numbers, and average the results. The display includes the time to fit the training data for each fold, and
also the time to calculate the evaluation scores, which includes getting the predicted values.

The parameter inplace  set to True  means to make the change in the specified data frame and the save the data frame with those changes.
That is, do not need to copy to a new data frame.

The result is a slight increase in recall compared indicated by our single train/test sample for recall, which averages 91.8% across the five
samples. A slight decrease in precision results, here with an average of 92.1%. No change in the fundamental conclusion of a good-fitting
model.

These results also indicate that to study a specific model and confusion matrix, the single train/test split can be useful, but to power through
the formal model evaluation, if CPU time is not an issue StratifiedKFold  makes it easy to avoid a single arbitrary split for which to rely upon
for model evaluation. Instead, go for many such splits.

ds = pd.DataFrame(scores).round(3)
print(ds)

   fit_time  score_time  ...  test_precision  train_precision

0     0.068       0.007  ...           0.938            0.927

1     0.042       0.004  ...           0.917            0.941

2     0.045       0.003  ...           0.868            0.940

3     0.046       0.003  ...           0.943            0.919

4     0.034       0.003  ...           0.967            0.934


[5 rows x 8 columns]


print('Mean of test accuracy: %.3f' % ds['test_accuracy'].mean())
print('Mean of test recall: %.3f' % ds['test_recall'].mean())
print('Mean of test precision: %.3f' % ds['test_precision'].mean())

Mean of test accuracy: 0.927

Mean of test recall: 0.930

Mean of test precision: 0.927


The model does well on all three basic fit classification indices. Given the high collinearity among the predictors, probably not all predictor
variables are needed.

Automated Feature Selection

The pure machine learning approach seeks to automate everything. This approach makes the most sense when there are many, tens if not
hundreds, of features. Otherwise, feature selection is best performed "hands on", analyzing correlations, variance inflation factors, p-values
from the regression analysis of all features. And there is always understanding the meaning of the individual features (predictor variables),
favoring those that are the most understandable and meaningful, and perhaps easiest or cheapest for which to collect the data.

Anyhow, let's proceed as if we have too many features to effectively model, and so we need to pare down our model, here using automated
feature selection. We begin with all 13 features.

If you have the computation time, do this after the analysis with all the features. If computation time is limited, do at least some feature
selection before the model evaluation.

Univariate Selection Procedure

There is one simple feature selection procedure called SelectKBest()  that selects the specified number of features according to the
statistical test of the difference in group means of each feature across the two levels of the target.

The get_support()  function identifies the selected features by listing a True  for each selected feature across the varaibles in a vector of
True  and False  values.

from sklearn.feature_selection import SelectKBest, f_classif
selector = SelectKBest(k=3).fit(X,y)
selected = selector.get_support()
selected

array([False,  True, False, False, False,  True,  True])

Verify the sub-setted data frame.

Height Hand Shoe

0 71 8.5 7.5

1 66 8.0 8.0

2 64 7.5 7.5

3 66 8.0 9.0

4 76 9.0 12.0

X2 = X.iloc[:, selected]
X2.head()

Multivariate Selection Procedure

A more sophisticated, though more costly in CPU time procedure, is called RFE , for recursive feature elimination. First, specify the estimation
procedure by which to initially assign weights to the features, such as linear regression, as in this example. The RFE  procedure then evaluates
the features and identifies the weakest feature, which is then pruned from the model. This description assumes the parameter step  is set at 1,
which is the number of features pruned at each step. To apply the estimator:
invoke the fit()  function on the specified feature and target
data structures, X and . Recursively repeat the process until the requested number of features, n_features_to_select , is obtained. In this
example, retain the top 3 features.

This method generally produces a better model than SelectKBest  but the issue is computation time. If the CPU time is available, RFE  is
preferred.

𝑦

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import RFE
selector = RFE(logistic_model, n_features_to_select=3, step=1).fit(X,y)

The features are selected, but now the X data frame of feature data must be pared down to just include the selected features. For this there are
two variables that RFE  created. The support_  vector indicates by True or False the selected variables. The ranking_  vector ranks the
features, with all the selected variables ranked at 1.

print(selector.support_)
print(selector.ranking_)

[False False False False  True  True  True]

[5 3 4 2 1 1 1]


Use the support_  created data variable with the iloc  method to redefine the feature data frame. Here we return to the full data set of the
features, the X data frame.

Chest Hand Shoe

0 45 8.5 7.5

1 37 8.0 8.0

2 40 7.5 7.5

3 36 8.0 9.0

4 44 9.0 12.0

X_reduced = X.iloc[:, selector.support_]
X_reduced.head()

Optional, but to view the rankings of all the features, to show the order of the variables that did not make the final 3, access the ranking_
variable.

Display in a more readable format by converting output to a data frame, sorting the values, and transpose the data frame to list horizontally.

4 5 6 3 1 2 0

Feature Chest Hand Shoe Hips Height Waist Weight

Rank 1 1 1 2 3 4 5

rnk = pd.DataFrame()
rnk['Feature'] = X.columns
rnk['Rank']= selector.ranking_
rnk.sort_values('Rank').transpose()

Validate Reduced Model

Now that we have a new model, that is, with fewer features, we need to validate the new model. Validate the reduced model with -fold cross-
validation. Then compare to the full model.

𝑘

scores = cross_validate(logistic_model, X_reduced, y, cv=skf, 
                        scoring=('accuracy', 'recall', 'precision'),
                        return_train_score=True)
ds = pd.DataFrame(scores).round(3)
print(ds)
print('\n')
print('Mean of test accuracy: %.3f' % ds['test_accuracy'].mean())
print('Mean of test recall: %.3f' % ds['test_recall'].mean())
print('Mean of test precision: %.3f' % ds['test_precision'].mean())

   fit_time  score_time  ...  test_precision  train_precision

0     0.015       0.006  ...           0.875            0.912

1     0.010       0.003  ...           0.909            0.917

2     0.010       0.003  ...           0.861            0.923

3     0.020       0.003  ...           0.943            0.910

4     0.010       0.003  ...           0.969            0.899


[5 rows x 8 columns]


Mean of test accuracy: 0.906

Mean of test recall: 0.900

Mean of test precision: 0.911


Comparing to the full model with seven predictors, there was a slight decrease in performance, less than 1% on the average of the evaluation
statistics. How many features to include in the model is a business decision, which weighs the cost of additional data and CPU time versus
forecasting accuracy. Perhaps the less than 1% decrease is acceptable, or, run with all the features, or, test the model with 4, 5, and 6 features
and compare.

Estimate and Apply the Model

Estimate

Once validated, we need the best estimate that we can get for this model. The best estimate of the model is from all of the data, but here from
only three features, those that define X_reduced. Here revise logistic_model with a model that is fit (estimated parameters) from all the data.

The logistic_model construct must have been previously instantiated as a LogisticRegression , here fit to all of the data for the specified
variables with fit() .

logistic_model.fit(X_reduced, y)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

                   intercept_scaling=1, l1_ratio=None, max_iter=500,

                   multi_class='auto', n_jobs=None, penalty='l2',

                   random_state=None, solver='lbfgs', tol=0.0001, verbose=0,

                   warm_start=False)

Access the estimated linear coefficients from the fit()  output structures intercept_  and coef_ . To enhance the display of the partial
slope coefficients, show them from within a constructed data frame, here called cf.

intercept -31.871 


0 1 2

Feature Chest Hand Shoe

Coef 0.146 2.079 0.912

print("intercept %.3f" % logistic_model.intercept_, "\n")
cf = pd.DataFrame()
cf['Feature'] = X_reduced.columns
cf['Coef']= np.transpose(logistic_model.coef_).round(3)
cf.transpose()

Model:
= −31.871 + 0.146( ) + 2.079( ) + 0.912( )𝑦 ̂ 𝐺𝑒𝑛𝑑𝑒𝑟 𝑥𝐶𝐶ℎℎ𝑒𝑒𝑠𝑠𝑡𝑡 𝑥𝐻𝑎𝑛𝑑 𝑥𝑆ℎ𝑜𝑒

Apply

Now apply this model where it most conveniently fits into the work flow. It can be added to a local app such as Excel, or coded into a web
application, available on the Internet. Or, it can be retained in Python, though of course, the entire model would not be re-estimated for each
application.

Forecast a M or F from a set of ChestChest, Hand, and Shoe measurements from new data. Suppose a customer failed to report Gender, but did
report a ChestChest of of 48 inches, a Hand size of 9 inches, and a Shoe size of 9.5. The double brackets for the array [[66, 9, 9.5]] of new data from
which to make a prediction indicate the creation of a two-dimensional array, which is the form of the input that the sklearn functions expect.

Use the predict()  function to forecast the Gender label, 0 or 1, and the predict_proba()  function to assign the corresponding probability.

Make sure that when using predict  to calculate  that the number of elements of X_new, here three, exactly match the elements when model
was fit using fit() .

𝑦 ̂ 𝑖

X_new = [[48, 9, 9.5]]
y_new = logistic_model.predict(X_new)
print("Predicted group membership:", y_new)
y_prob = logistic_model.predict_proba(X_new)
print(round(y_prob[0,1], 3))

Predicted group membership: [1]

0.926

From this person's measurements of Chest=48, Hand=9, and Shoe=9.5, the person is predicted to be a member of Group 1, Male, with highChest
probability of 0.926.

This application of the model forecasted group membership, Male or Female, only for a single set of the three feature values in the revised
model. Could also read a new data set of just X values and process them to apply the model to forecast future events with predict()  for
multiple observations.

https://matplotlib.org/3.2.2/gallery/color/named_colors.html
http://seaborn.pydata.org/generated/seaborn.heatmap.html
https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

