

The `shape` method displays the dimensions of each of the resulting two data sets, `X_train` and `X_test`. The first number is the number of rows in the corresponding data structure. Here with the size of the testing data set at 25% of all the data, there are 379 rows of data in the two training data structures and 127 rows of data in the two testing data structures. The `y` data structures have only one column. The `y` structures are `DataFrame` so their number of columns is not specified.

```
print("Size of X data structures: ", X_train.shape, X_test.shape)
print("Size of y data structures: ", y_train.shape, y_test.shape)
```

Size of X data structures: (379, 13) (127, 13)

Size of y data structures: (379,) (127,)

▼ Estimate the model parameters

All `sklearn` solution algorithms fit the model, that is, estimate the model parameters, with the `fit()` function, presumably first applied only to the training data. Expressed yet another way, the machine (i.e., algorithm implemented on the machine) learns from the training data. Only use the training data at this point in the analysis.

Here apply the `fit()` function for linear regression by applying our `reg_model` instantiation of `LinearRegression`.

```
reg_model.fit(X_train, y_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
```

The `fit()` function creates several different data structures as output, each structure stored with a pre-defined name. The name of a data structure whose values that the analysis procedure creates ends in an underline.

The estimated model coefficients are stored in the `intercept_` and `coef_` structures. To reference, precede each name, in this example, with the model's name and a period. The coefficients of the final, validated model, estimated with all of the data, are needed to apply the model to other situations.

The machine learning implementation of regression is typically not primarily directed towards understanding and interpreting the model coefficients. Instead, focus on evaluating the extent of forecasting error. The estimated coefficients are not even displayed by default. The analysis does not provide the usual regression model output with the coefficients listed along with their corresponding *t*-tests of the null hypothesis of 0, and the associated confidence interval, such as obtained from the `ols()` function in the `statsmodels` package.

The corresponding output structures are not `pandas` data frames, but rather `numpy` arrays, which do not display as nicely. To make the output more readable, convert the `numpy` array output format to a `pandas` data frame.

In the `print()` function, the `.3f` is a format that indicates to display a floating-point number, that is, one with decimal digits, and to display three decimal digits.

```
print("intercept: %.3f" % (reg_model.intercept_, "\n"))
cdf = pd.DataFrame(reg_model.coef_, X.columns, columns=['Coefficients'])
print(cdf)

intercept: 23.957
Coefficients
crim      -0.129373
zn        0.029590
indus     0.022293
chas      2.837446
nox      -15.395420
rm        5.275573
age      -0.010538
dis      -1.301708
rad       0.266393
tax      -0.010969
ptratio   -0.964830
black     0.010860
lstat     -0.378363
```

▼ Calculate \hat{y}

Given the estimated model, generate forecasts. The standard `sklearn` function to calculate a fitted value from the estimated model is `predict()`.

Here compute two sets of \hat{y} values: `y_fit` when the model is applied (fitted) to the data on which it trained, and, for model evaluation, `y_pred` when the model is applied to the test data.

```
y_fit = reg_model.predict(X_train)
y_pred = reg_model.predict(X_test)
```

Evaluate the descriptive analysis of fit by comparing `y` to \hat{y} for the training data.

Evaluate true forecasting fit by comparing `y` to \hat{y} for the testing data.

▼ Assess Fit

▼ Visual assessment of fit

If there is only one predictor variable, plot the scatter plot of `X` and `y` and the least-squares regression line through the scatterplot. If this multiple regression, then this code is not run.

The Python syntax for an `if` statement uses the double equal sign, `==`, to evaluate the equality, and a single equal sign, `=`, to create equality by assigning the value on the right to the variable on the left. Indicate the end of the conditional statement, here `n_pred==1`, with a colon, `:`. Indent two spaces for the statements that are run if the conditional statement is true.

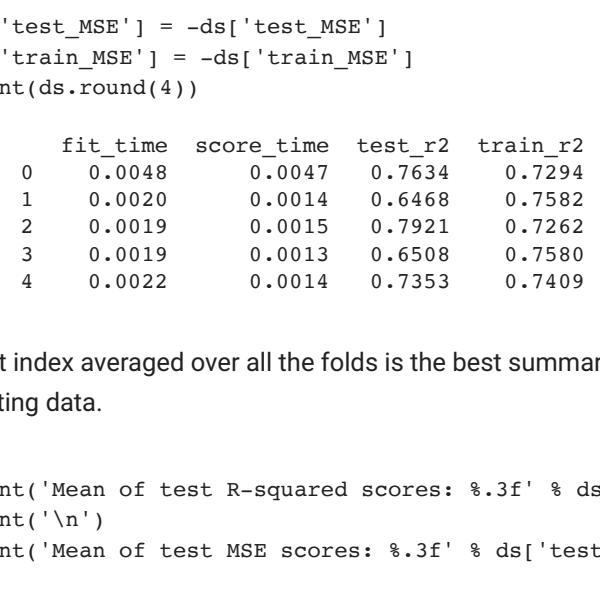
```
if n_pred == 1:
    plt.scatter(X_train, y_train, color='gray')
    plt.plot(X_train, y_fit, color='black', linewidth=2)
    plt.xlabel("Prices: $\\hat{y}_i$")
    plt.title("Y and Fitted $\\hat{y}_i$ Plotted Against x")
```

The basis of the assessment of the model is the comparison of the actual data values of `y` in the testing data, `y_test`, to the values of `y` calculated from the model, `y_pred`.

Visualize the overall fit by plotting the actual values of `y` in the test data, `y_test`, with the corresponding values of the forecasted `y`'s, \hat{y} , or `y_pred`. If the forecasting is perfect, then $y = \hat{y}$, and all points lie on the 45-degree line through the origin. By default, the horizontal axis started numbering at 10, which was explicitly overridden to start at 0 with the `xlim()` function so that both axes begin at 0.

To obtain a scatter plot with the regression line and associated confidence interval, use the `seaborn` function `regplot()`. The variables to be plotted are not in a data frame, so there is no `data` parameter. To label the axes requires the `pandas` function `Series()` to name the associated series. In my opinion, it's a bit of a contortion just to label the axes, but it works.

```
y_test = pd.Series(y_test, name="y from testing data")
y_pred = pd.Series(y_pred, name="predicted value of y")
sns.regplot(x=y_test, y=y_pred)
```



We can see that the predicted values closely match with the actual data values from the testing data.

▼ Fit metrics

This first application is not always done. It evaluates the fit of the model to the training data, comparing the actual data values, `y_train`, to the corresponding values computed by the model, `y_fit`. This is not the official evaluation of model fit and performance. It is useful, however, to compare the fit indices for the training data to the testing data. A large drop indicates *overfitting* the model to the training data.

The `metrics` module in the `sklearn` package provides the computations for the fit indices. The module provides the mean squared error, `MSE`, and R^2 fit indices with the functions `mean_squared_error()` and `r2_score()`. To get the standard deviation of the residuals, manually take the square root of the variance `MSE` with the `numpy` function `sqrt()`.

The `.3f` formatting code instructs the Python `print()` function to print a floating-point number (numeric with decimal digits) with three decimal digits.

```
from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(y_train, y_fit)
r2q = r2_score(y_train, y_fit)
print("MSE: %.3f" % mse)
se = np.sqrt(mse)
range95 = 4 * se
print("Stdev of residuals: %.3f" % se)
print("Approximate 95 per cent range of residuals: %.3f" % range95)
print("R-squared: %.3f" % r2q)
```

MSE: 20.266

Stdev of residuals: 4.502

Approximate 95 per cent range of residuals: 18.007

R-squared: 0.767

For pedagogy, here compute the standard deviation of the residuals from the data. Define the residuals as `e`. Note that the mean squared residual, both here and from the previous cell, is calculated with the full sample size, not the technically correct degrees of freedom.

```
e = y_train - y_fit
print("stddev of residuals: %.3f" % np.sqrt(np.mean(e**2)))
stdev of residuals: 4.502
```

stdev of residuals: 4.502

Here we do the actual evaluation of model performance. Evaluate how well the actual data values for `y`, `y_test`, match the forecasted or predicted values of `y`, \hat{y} . From this split of data, the value of R^2 typically drops from that obtained from the training data. Sometimes, however, by chance, the testing data may outperform the training data, again due to chance.

```
mse_f = mean_squared_error(y_test, y_pred)
r2q_f = r2_score(y_test, y_pred)
print("Forecasting Mean squared error: %.3f" % mse_f)
print("Forecasting Standard deviation of residuals: %.3f" % np.sqrt(mse_f))
print("Forecasting R-squared: %.3f" % r2q_f)
```

Forecasting Mean squared error: 29.515

Forecasting Standard deviation of residuals: 5.433

Forecasting R-squared: 0.617

We see that when applied to new data, the standard deviation of residuals, s_e , increased from 4.502 to 5.433, still a small number. R^2 decreased from 0.767 from the training data to 0.617 applying the model to the testing data. Regardless, good fit is obtained even with the forecasting model.

▼ Model Validation with Multiple Hold-Out Samples

As an alternative to the one hold-out cross-validation in the previous section, here evaluate model fit with cross-validation on *multiple* samples. The `KFold` module performs the cross-validation in which the model is estimated using $k - 1$ folds and then tested on the remaining fold. The process automatically repeats for each fold.

Here instantiate the `KFold` module with `k`, invoking the desired parameter values.

• `n_splits`: Number of splits (folds) of the training data.

• `shuffle`: Randomly shuffle the data before splitting it into the folds.

• `random_state`: Set the seed to recover the same "random" data set in a future analysis.

The number of splits can vary from 2 to $n - 1$, where n is the total number of the training data. Values of 3 and 5 are the most common. Larger data sets support a larger number of splits. Usually, shuffle the data first to keep the entire process entirely random.

Here instantiate the `KFold` module with `k`, invoking the desired parameter values.

```
from sklearn.model_selection import KFold, cross_val_score
kf = KFold(n_splits=5, shuffle=True, random_state=1)
```

The `cross_val_score()` conveniently provides for multiple evaluation scores from the same cross-validation folds without manually repeating the computation for each score. Plus, computation times are also provided.

To estimate the model for each fold, here five different estimates from five different samples, specify the estimation algorithm. We have already instantiated the `LinearRegression()` estimator earlier as `reg_model`, but repeat here for clarity. The `scoring` parameter specifies to obtain R^2 and `MSE` scores for each of the true forecasts of applying the model, for each split, from the $k-1$ folds data to the hold-out fold.

Weirdly, `MSE` is reported in the negative. The reason is that the best score is always the largest across all scoring procedures and all the related `sklearn` functions. So here, the least negative is the largest value, the most desirable value. In reality, `MSE` must be a non-negative number, so the sign of the real `MSE` is just flipped to go negative.

The `train` data evaluations are not needed for the evaluation per se, which occurs on the testing data, but sometimes helpful to compare to the corresponding testing scores. Training scores much larger than the related testing scores indicates overfitting. Obtain the training information with the parameter `return_train_score`.

Here name the output of `cross_val_score()` as `scores`, a `numpy` array.

```
scores = cross_val_score(reg_model, X, y, cv=kfold, scoring='neg_mean_squared_error',
                         n_jobs=-1, error_score='raise')
```

Mean of test R-squared scores: 23.547

Mean of test MSE scores: 20.502

Mean of test R-squared scores: 0.617

We see that when applied to new data, the standard deviation of residuals, s_e , increased from 4.502 to 5.433, still a small number. R^2 decreased from 0.767 from the training data to 0.617 applying the model to the testing data. Regardless, good fit is obtained even with the forecasting model.

▼ Strategy to Obtain the Final Model

Begin data preparation by deleting any unnecessary features, removing any obvious univariate outliers, and converting any categorical variables to indicator/dummy variables if included in the model as features. Also check for missing data as machine learning solution algorithms do not run if missing data are present.

If CPU time is an issue, `cross-validate` with only one hold-out sample. Otherwise, `cross-validate` with 3 or 5 or more hold-out samples, depending on CPU time and the size of the original data set.

All that is needed for model validation if computation time permits is the *k*-fold cross-validation with multiple scores.

The only advantage of the one train-test split approach is that the model coefficients can be obtained, but they are not of primary interest because the final model has not yet been fit on all of the data. Cross-validation with *k*-fold does what the one train-test split approach does, but the *k*-train test one split approach almost becomes a way to learn how the *k*-fold procedure works.

The initial model is usually pared down to a more parsimonious model, retaining a smaller set of relevant features that each provide unique information. Obvious candidates for features to delete can be deleted before model validation begins, that is, those with low correlations with the target and/or high correlations with other features.

More sophisticated feature deletion can occur after the model is validated. Then use the `statsmodels` package `OLS()` for ordinary least squares to estimate the model on all of the data to get the estimated model. Then use the `statsmodels` package `OLS()` for a more sophisticated feature selection procedure using your own judgement, based on *p*-values for individual features and VIF values for a model.

Features, also, use Cook's distance to investigate and possibly eliminate any rows of data that are outliers with respect to the regression model. Once a final model is selected, re-run the cross-validation on the smaller number of features to make sure the reduced model still evaluates well. Ideally, this analysis would be done on a completely new data set, but that may not be practical.

When completed, with the final `statsmodels` run you have the *b* coefficients – b_0 , b_1 , b_2 , etc. – that define the model that you now, in another context, put into production.

If `np.sqrt(ds['test_MSE'].mean())` is the standard deviation of the test `MSE`, then `np.sqrt(ds['test_MSE'].mean()**2 - ds['train_MSE'].mean()**2)` is the standard deviation of the residuals, s_e .

When completed, with the final `statsmodels` run you have the *b* coefficients – b_0 , b_1 , b_2 , etc. – that define the model that you now, in another context, put into production.

All that is needed for model validation if computation time permits is the *k*-fold cross-validation with multiple scores.

The only advantage of the one train-test split approach is that the model coefficients can be obtained, but they are not of primary interest because the final model has not yet been fit on all of the data. Cross-validation with *k*-fold does what the one train-test split approach does, but the *k*-train test one split approach almost becomes a way to learn how the *k*-fold procedure works.

The initial model is usually pared down to a more parsimonious model, retaining a smaller set of relevant features that each provide unique information. Obvious candidates for features to delete can be deleted before model validation begins, that is, those with low correlations with the target and/or high correlations with other features.

More sophisticated feature deletion can occur after the model is validated. Then use the `statsmodels` package `OLS()` for ordinary least squares to estimate the model on all of the data to get the estimated model. Then use the `statsmodels` package `OLS()` for a more sophisticated feature selection procedure using your own judgement, based on *p*-values for individual features and VIF values for a model.

Features, also, use Cook's distance to investigate and possibly eliminate any rows of data that are outliers with respect to the regression model. Once a final model is selected, re-run the cross-validation on the smaller number of features to make sure the reduced model still evaluates well. Ideally, this analysis would be done on a completely new data set, but that may not be practical.

When completed, with the final `statsmodels` run you have the *b* coefficients – b_0 , b_1 , b_2 , etc. – that define the model that you now, in another context, put into production.