~ Regression with sklearn Machine Learning

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

Table of Contents

1 Preliminaries

o 1.1 Misc
o 1.2 Import Standard Data Analysis Libraries
o 1.3 Access Solution Algorithm

2 Data

3 Data Exploration

4 Create Feature and Target Data Structures
5 Model Validation with One Hold-Out Sample

o 5.1 Split data into train and test sets
o 5.2 Estimate the model parameters
o 5.3 Calculate y
o 5.4 Assess Fit

= 54.1 Visual assessment of fit
= 5.4.2 Fit metrics

¢ 6 Model Validation with Multiple Hold-Out Samples
e 7 Strategy to Obtain the Final Model

v Preliminaries

+ Misc

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("$H:3M"))

Analysis on 2021-07-12 at 13:49

import os
os.getcwd()

' /content'
v Import Standard Data Analysis Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

v Access Solution Algorithm

The sklearn package provides many different solution algorithms to accommodate many different types of machine learning models, each in
its own module called a class. The LinearRegression module provides the functions for doing linear regression. Access an algorithm by
creating a specific instance of the algorithm, referred to by a specific name in the analysis. This process is called instantiation.

Here instantiate LinearRegression() with the name reg_model, accepting all default parameters, not passing any parameter values between
the parentheses. All subsequent references to the linear regression algorithm below are then implemented via this name reg_model.

from sklearn.linear model import LinearRegression
reg model = LinearRegression()

v Data

Boston Housing Data Set

e crim: per capita crime rate by town

¢ zn: proportion of residential land zoned for lots over 25,000 sq.ft.
¢ indus: proportion of non-retail business acres per town.

 chas: Charles River dummy variable (1 if tract bounds river; 0 otherwise)
* nox: nitric oxides concentration (parts per 10 million)

¢ rm: average number of rooms per dwelling

e age: proportion of owner-occupied units built prior to 1940

¢ dis: weighted distances to five Boston employment centres

e rad: index of accessibility to radial highways

e tax: full-value property-tax rate per 10,000 USD

e ptratio: pupil-teacher ratio by town

¢ b: 1000(Bk*: 0.63)*2 where Bk is the proportion of blacks by town
¢ [stat: % lower status of the population

¢ medv: Median value of owner-occupied homes in 1000's USD

#d = pd.read csv('data/Boston.csv')
d = pd.read csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

d.shape
(506, 15)

d.head()

Unnamed; crim zn indus chas nox rm age dis rad tax ptratio

0 1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3
1 2 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8
2 3 0.02729 0.0 7.07 0 0469 7.185 61.1 4.9671 2 242 17.8
3 4 0.08237 0.0 2.18 0 0.458 6.998 458 6.0622 3 222 18.7

Do not need the first column, so drop.

d = d.drop(['Unnamed: 0'], axis="columns")

d.head()
crim zn indus chas nox rm age dis rad tax ptratio black 1st
0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.
1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.
2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.
3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.
4 0.06905 0.0 218 0 0458 7147 K42 60622 3 222 187 396.90 5.

Check for missing data to determine if any action such as row or column deletion or any data imputation is needed.

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

crim

zn
indus
chas
nox

rm

age

dis

rad

tax
ptratio
black
lstat
medv
dtype: inté6

[=NelNelNelNeNelNelNeNeNe Moo e Nel

Total Missing: 0
No missing data.

Check out the distribution of the target with seaborn displot() . Set parameter kde to True to show the smoothed summary, called a density
plot. If going to run a model focused on forecasting the target, one should also understand the nature of the target variable. The main purpose
is to understand the distribution, not necessarily to show normality per se. Look for skewness, outliers, etc.

v Data Exploration

plt.figure(figsize=(6,6))
sns.displot(d.medv, kde=True, color='steelblue')

<seaborn.axisgrid.FacetGrid at 0x7£8385bl2e50>
<Figure size 432x432 with 0 Axes>

More or less normal, with some large values beyond normality. It appears prices more than 50,000 USD are truncated to 50,000 USD for some
reason.

Examine the relevance of each feature according to its correlation with the target. Use pandas function corr () to calculate just the
correlations of the variables with medv . Use function sort values() to sort from smallest to largest. Correlations of large magnitude,
regardless of sign, indicate relevance.

Feature chas appears the least relevant with a correlation of the target of only 0.18. Even so, not 0, so with the small data set, will retain for the
initial model analysis.

The most relevant features are Istat and rm.

(d
.corr()['medv']
.sort_values()

.round(2)

)
lstat -0.74
ptratio -0.51
indus -0.48
tax -0.47
nox -0.43
crim -0.39
rad -0.38
age -0.38
chas 0.18
dis 0.25
black 0.33
zn 0.36
rm 0.70
medv 1.00

Name: medv, dtype: float64

Data leakage: Feedback from data analysis from which the model is trained is used to evaluate the model used for forecasting.

We need to avoid data leakage. Test the final proposed forecasting model on data that has not in any way been used to estimate the model.

In practice, however, you might need to reduce computation time if you have a huge data set and a model with many predictors, particularly
with a more complicated model and solution algorithm than for linear regression. In that situation, without doing any model estimation,
perhaps eliminate some features that violate the two properties of relevance and uniqueness before model estimation.

plt.figure(figsize=(12,10))
sns.heatmap(d.corr().round(2), linewidths=2.0, annot=True,
cmap=sns.diverging palette(5, 250, as_cmap=True))

<matplotlib.axes._ subplots.AxesSubplot at 0x7£8381d45fd0>

10
£ — 0.2 041 0068 042 022 035 ﬂ 058 029 m m
=
g
= -06
o - 006 004 006 1 009 O 0. £01 004 012 005 005 018
=

x
'
=
]
=1
]
-
£ =
=]
(Y=}
=

&
i

3 024 021 021 029 0.13

£- 022 031
g - 03 0.09 4:-24 PRl 046 051 026 027 | 06 02

Eb
L
=

-0.0
3] | Bl M e M
E - 058 (031 el 004 £.29 051 . 046 0.54 --0.2
038 012 019 026 023 046 046 . £.18 037 H

'
=
=]
LI=}

o
=

2 —04
xm s i I ... o . -

2

+ - 046 m 06 005 059 06 ﬂ 049 054 037 oe
B !
"]

v Create Feature and Target Data Structures

Store the features, the predictor variables, in data structure X. Store the target variable in data structure y.

To run multiple regression with all possible predictor variables, define X as the entire data frame with medv dropped, as in
X = d.drop([medv], axis="columns")
or,
use the procedure below that manually defines a vector of the predictor variables (features) names, and then define X as the subset of d that
contains just these variables.

y = d['medv']

pred vars = ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', ‘'age', 'dis', 'rad',
'tax', ‘'ptratio', 'black', 'lstat']
X = d[pred _vars]

Useful to see how many features in the model with the Python 1en() function for length, and observe the data type of the X and y data
structures. Because this function is part of the original Python language, no package prefix is needed, just the function name.

n_pred = len(pred vars)
print ("Number of predictor variables:", n_pred)

Number of predictor variables: 13

print("X: ", type(X))
print("y: ", type(y))

X: <class 'pandas.core.frame.DataFrame'>
y: <class 'pandas.core.series.Series'>

v Model Validation with One Hold-Out Sample

Now for Python machine learning!

The sklearn package, named as an abbreviation for the full name scikit-learn, provides many machine learning algorithms, all
implemented with the same general procedure illustrated here. Many support functions such as dividing data into training and testing partitions
are also supported.

The underlying goal is to provide "Simple and efficient tools for predictive data analysis". A primary reason Python has become the leading
platform for machine learning is because of scikit-learn. The name scikit-learn is a scientific toolkit for machine learning.

v Split data into train and test sets

Cross-validation tests a model on a new data set, testing data different from the data on which the model was estimated, training data. The
concept of cross-validation has applied to regression analysis for many decades, though perhaps often recommended more than actually
accomplished. The machine learning framework provides for easily accessible cross-validation methods, and is a necessary component of the
analysis.

The sklearn function train test split(), fromthe model selection module, randomly shuffles the original data into two sets, training
data and testing data, here called X_train and X_test for the features and y_train and y_test for the target.

e Parameter test_size specifies the percentage of the original data set allocated to the test split.
e Parameter random state specifies the initial seed (or starting point) from which the process of number generation begins so that the
sequence can be repeated.

The input into the train test split() function are the X and y data structures. The function provides four outputs from a single function
call: X training and testing data, and y training and testing data. Python has the convention of listing the names for multiple outputs on the left
side of the equals sign, separated by commas, in the correct order in which the function lists the output.

Optional parameter random state specifies the initial seed so that the same random process, more properly called a pseudo-random process,
can be repeated at some future time with the same data split is obtained from train test split().Re-run with the same value, here 7,
obtain the same random split.

from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size=.25, random state=7)

https://scikit-learn.org/stable/index.html

The shape method displays the dimensions of each of the resulting two data sets, X_train and X_test. The first number is the number of rows
in the corresponding data structure. Here with the size of the testing data set at 25% of all the data, there are 379 rows of data in the two
training data structures and 127 rows of data in the two testing data structures. The y data structures have only one column. The y structures

ara nnt dAata framae cen thair niimhar Af ~raliimne ic nnt enacifiad

print("Size of X data structures: ", X train.shape, X test.shape)
print("Size of y data structures:

, Y_train.shape, y test.shape)

Size of X data structures: (379, 13) (127, 13)
Size of y data structures: (379,) (127,)

v Estimate the model parameters

All sklearn solution algorithms fit the model, that is, estimate the model parameters, with the £it () function, presumably first applied only to
the training data. Expressed yet another way, the machine (i.e., algorithm implemented on the machine) learns from the training data. Only use
the training data at this point in the analysis.

Here apply the £it() function for linear regression by applying our reg_model instantiation of LinearRegression.

reg model.fit(X train, y train)

LinearRegression(copy X=True, fit intercept=True, n_jobs=None, normalize=False)

The fit() function creates several different data structures as output, each structure stored with a pre-defined name. The name of a data
structure whose values that the analysis procedure creates ends in an underline.

The estimated model coefficients are stored in the intercept and coef structures. To reference, precede each name, in this example, with
the model's name and a period. The coefficients of the final, validated model, estimated with all of the data, are needed to apply the model to
other situations.

The machine learning implementation of regression is typically not primarily directed towards understanding and interpreting the model
coefficients. Instead, focus on evaluating the extent of forecasting error. The estimated coefficients are not even displayed by default. The
analysis does not provide the usual regression model output with the coefficients listed along with their corresponding 7-tests of the null
hypothesis of 0, and the associated confidence interval, such as obtained from the ors() function in the statsmodels package.

The corresponding output structures are not pandas data frames, but rather numpy arrays, which do not display as nicely. To make the output
more readable, convert the numpy array output format to a pandas data frame.

Inthe print() function, the %.3f is a format that indicates to display a floating-point number, that is, one with decimal digits, and to display
three decimal digits.

print("intercept: %.3f" % (reg model.intercept), "\n")

cdf = pd.DataFrame(reg model.coef , X.columns, columns=['Coefficients'])
print(cdf)

intercept: 23.957

Coefficients
crim -0.129373
zn 0.029590
indus 0.022293
chas 2.837446
nox -15.395420
rm 5.275573
age -0.010538
dis -1.301708
rad 0.266393
tax -0.010969
ptratio -0.964830
black 0.010860
lstat -0.378363

v Calculate y

Given the estimated model, generate forecasts. The standard sklearn function to calculate a fitted value from the estimated model is
predict() .

Here compute two sets of values: y_fit when the model is applied (fitted) to the data on which it trained, and, for model evaluation, y_pred
when the model is applied to the test data.

y_fit = reg model.predict(X_train)
y_pred = reg model.predict(X test)

Evaluate the descriptive analysis of fit by comparing y to J for the training data.

Evaluate true forecasting fit by comparing y to y for the testing data.

v Assess Fit

v Visual assessment of fit

If there is only one predictor variable, plot the scatter plot of X and y and the least-squares regression line through the scatterplot. If this
multiple regression, then this code is not run.

The Python syntax for an if statement uses the double equal sign, ==, to evaluate the equality, and a single equal sign, =, to create equality by
assigning the value on the right to the variable on the left. Indicate the end of the conditional statement, here n_pred==1, with a colon, : . Indent
two spaces for the statements that are run if the conditional statement is true.

if n_pred ==
plt.scatter(X train, y train, color='gray')
plt.plot(X train, y fit, color='black', linewidth=2)
plt.xlabel("Prices: $X i$")
plt.title("Y and Fitted $\hat{Y} i$ Plotted Against X")

The basis of the assessment of the model is the comparison of the actual data values of y in the testing data, y_test, to the values of y
calculated from the model, y_pred.

Visualize the overall fit by plotting the actual values of y in the test data, y_test, with the corresponding values of the forecasted y's, y, or
y_pred. If the forecasting is perfect, then y = , and all points lie on the 45-degree line through the origin. By default, the horizontal axis started
numbering at 10, which was explicitly overridden to start at 0 with the x1im() function so that both axes begin at 0.

To obtain a scatter plot with the regression line and associated confidence interval, use the seaborn function regplot() . The variables to be
plotted are not in a data frame, so there is no data parameter. To label the axes requires the pandas function series() to name the
associated series. In my opinion, it's a bit of contortion just to label the axes, but it works.

y_test = pd.Series(y_test, name="y from testing data")
y_pred = pd.Series(y_pred, name="predicted value of y")
sns.regplot(x=y_test, y=y pred)

<matplotlib.axes._ subplots.AxesSubplot at 0x7£83762b7790>

predicted value of y

We can see that the predicted values closely match with the actual data values from the testing data.
v Fit metrics

This first application is not always done. It evaluates the fit of the model to the training data, comparing the actual data values, y_train, to the
corresponding values computed by the model, y_fit. This is not the official evaluation of model fit and performance. It is useful, however, to
compare the fit indices for the training data to the testing data. A large drop indicates overfitting the model to the training data.

The metrics moduleinthe sklearn package provides the computations for the fit indices. The module provides the mean squared error,
MSE, and R? fit indices with the functions mean_squared_error() and r2 score() . To get the standard deviation of the residuals, manually
take the square root of the variance MSE with the numpy function sqrt() .

The %.3f formatting code instructs the Python print() function to print a floating-point number (numeric with decimal digits) with three
decimal digits.

from sklearn.metrics import mean squared error, r2_ score

mse = mean_squared _error(y_train, y fit)

rsq = r2_score(y_train, y fit)

print("MSE: %.3f" % mse)

se = np.sqrt(mse)

range95 = 4 * se

print("Stdev of residuals: %.3f " % se)

print("Approximate 95 per cent range of residuals: %.3f " % range95)
print("R-squared: %.3f" % rsq)

MSE: 20.266

Stdev of residuals: 4.502

Approximate 95 per cent range of residuals: 18.007
R-squared: 0.767

For pedagogy, here compute the standard deviation of the residuals from the data. Define the residuals as e. Note that the mean squared
residual, both here and from the previous cell, is calculated with the full sample size, not the technically correct degrees of freedom.

e = y train - y fit
print("stdev of residuals: %.3f " % np.sqgrt(np.mean(e**2)))

stdev of residuals: 4.502

Here we do the actual evaluation of model performance. Evaluate how well the actual data values for y, y_test, match the forecasted or
predicted values of y, y. From this split of data, the value of R? typically drops from that obtained from the training data. Sometimes, however,
by chance, the testing data may outperform the training data, again due to chance.

mse_f = mean squared error(y_test, y pred)

rsq f = r2 score(y_test, y pred)

print('Forecasting Mean squared error: %.3f' % mse f)

print('Forecasting Standard deviation of residuals: %.3f' % np.sqrt(mse f))
print('Forecasting R-squared: %.3f' % rsq f)

Forecasting Mean squared error: 29.515
Forecasting Standard deviation of residuals: 5.433
Forecasting R-squared: 0.617

We see that when applied to new data, the standard deviation of residuals, s, increased from 4.502 to 5.433, still a small number. R?
decreased from 0.767 from the training data to 0.617 applying the model to the testing data. Regardless, good fit is obtained even with the
forecasting model.

v Model Validation with Multiple Hold-Out Samples

As an alternative to the one hold-out cross-validation in the previous section, here evaluate model fit with cross-validation on multiple samples.
The sklearn KFold module performs the cross-validation in which the model is estimated using k — 1 folds and then tested on the
remaining fold. The process automatically repeats for each fold.

Here pass specific parameter values to Kfold.

» n_splits: Number of splits (folds) of the training data.
¢ shuffle: Randomly shuffle the data before splitting into the folds.
¢ random_state: Set the seed to recover the same "random" data set in a future analysis.

The number of splits can vary from 2 to n — 1, where n is the total number of rows in the training data. Values of 3 and 5 are the most
common. Larger data sets support a larger number of splits. Usually, shuffle the data first to keep the entire process entirely random.

Here instantiate the kFol1d module with kf, invoking the desired parameter values.

from sklearn.model selection import KFold, cross_validate
kf = KFold(n_splits=5, shuffle=True, random state=1)

The cross_validate() conveniently provides for multiple evaluation scores from the same cross-validation folds without manually repeating
the computations for each score. Plus, computation times are also provided.

To estimate the model for each fold, here five different estimates from five different samples, specify the estimation algorithm. We have already
instantiated the LinearRegression() estimator earlier as reg_model, but repeat here for clarity. The scoring parameter specifies to obtain R?
and MSE scores for each of the true forecasts of applying the model, for each split, from the k-1 folds data to the hold-out fold.

Weirdly, MSE is reported in the negative. The reason is that the best score is always the largest across all scoring procedures and all estimation
algorithms and is thus consistent with other model-tuning algorithms that expect this behavior and consistent with the internal code of the
related sklearn functions. So here, the least negative is the largest value, the most desirable value. In reality, MSE must be a non-negative
number, so the sign of the real MSE is just flipped to go negative.

The training data evaluations are not needed for the evaluation per se, which occurs on the testing data, but sometimes helpful to compare to
the corresponding testing scores. Training scores much larger than the related testing scores indicates overfitting. Obtain the training
information with the parameter return_train_score.

Here name the output of cross_validate() as scores, a numpy array.

scores = cross_validate(reg model, X, y, cv=kf,
scoring=('r2', 'neg_mean_squared_error'),
return_train score=True)

Our scores array contains much information regarding the fit of each model over the five different analyses, but not so directly readable. To
make it more readable, convert scores to a data frame, rename the long column names to more compact versions, convert the MSE scores to
positive numbers, and average the results. The display includes the time to fit the training data for each fold and the time to calculate the
evaluation scores, which includes getting the predicted values.

The parameter inplace setto True means making the change in the specified data frame and saving the data frame with those changes.
This parameter removes the need to copy to a new data frame.

ds = pd.DataFrame(scores)
ds.rename(columns = {'test neg mean squared error': 'test MSE',
'train_neg mean squared_error': 'train MSE'},
inplace=True)

ds['test MSE'] = -ds['test MSE']
ds['train MSE'] = -ds['train MSE']

print(ds.round(4))

fit time score_time test r2 train r2 test MSE train MSE

0 0.0048 0.0047 0.7634 0.7294 23.3808 21.8628
1 0.0020 0.0014 0.6468 0.7582 28.6143 20.5029
2 0.0019 0.0015 0.7921 0.7262 15.1606 23.7937
3 0.0019 0.0013 0.6508 0.7580 27.2082 20.8185
4 0.0022 0.0014 0.7353 0.7409 23.3712 21.6071

A fit index averaged over all the folds is the best summary of how well the model fits, either to the training data, or more interestingly to the
testing data.

print('Mean of test R-squared scores: %$.3f' % ds['test r2'].mean())
print('\n")
print('Mean of test MSE scores: %.3f' % ds['test MSE'].mean())

se = np.sqrt(ds['test MSE'].mean())
print('Standard deviation of mean test MSE scores: %.3f' % se)

Mean of test R-squared scores: 0.718

Mean of test MSE scores: 23.547
Standard deviation of mean test MSE scores: 4.853

This 13-predictor model fits well, with an average R? across the five folds of 0.72. (Note that we never see the actual estimated model from
each fold.) The average MSE and s, is also low in terms of the more interpretable standard deviation of the residuals. Once the model is
validated, fit it to the entire, full data set.

v Strategy to Obtain the Final Model

Begin data preparation by deleting any unnecessary features, removing any obvious univariate outliers, and converting any categorical variables
to indicator/dummy variables if included in the model as features. Also check for missing data as machine learning solution algorithms do not
run if missing data are present.

If CPU time is an issue, cross-validate with only one hold-out sample. Otherwise, cross-validate with 3 or 5 or more hold-out samples,
depending on CPU time and the size of the original data set.

All that is needed for model validation if computation time permits is the k-fold cross-validation with multiple-scores.

The only advantage of the one train-test split approach is that the model coefficients can be obtained, but they are not of primary interest
because the final model has not yet been estimated on all of the data. Cross-validation with k-fold does what the one train-test split approach
does, but now k times. The train-test one split approach almost becomes pedagogical as a way to learn how the k-fold procedure works.

The initial model is usually pared down to a more parsimonious model, retaining a smaller set of relevant features that each provide unique
information. Obvious candidates for features to delete can be deleted before model validation begins, that is, those with low correlations with
the target and/or high correlations with other features.

More sophisticated feature deletion can occur after the model if the model is validated. Then use the statsmodels regression function oLs ()
for ordinary least squares to estimate the model on all of the data to get the estimated model on the largest sample possible. Do a more
sophisticated feature selection procedure using your own judgement, based on p-values for individual features and VIF values for individual
features. Also, use Cook's distance to investigate and possibly eliminate any rows of data that are outliers with respect to the regression model.

Once a final model is selected, re-run the cross-validation on the smaller number of features to make sure the reduced model still evaluates
well. Ideally, this analysis would be done on a completely new data set, but that may not be practical.

When completed, with the final statsmodels run you have the b coefficients - by, by, by, etc. - that define the model that you now, in another
context, put into production.

