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Preliminaries

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-07-01 at 19:02


After the data are prepared as a tidied data table and read into the analysis system such as Python, the first analysis step summarizes the data
with descriptive statistics and visualizations. As always in data analysis, distinguish between categorical variables and continuous variables in
the analysis.

If reading data from your computer's file system or a networked computer, identify the current working directory. This folder is the reference
point in your file system for which file references begin. Then import the needed libraries and read the data for analysis.

As an option, list the current working directory, which, by default, is where this Jupyter notebook file is located. Your current working direction
is the default location for reading and writing files. The working directory of /content  is from running on Google Colab.

/content' '

import os
os.getcwd()

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Display matplotlib visualizations in the notebook. Not needed for Colab. If using, remove the #  comment, the first character in the following
code.

#%matplotlib inline

Can also display standard HTML links. For example, here view a list of all available color names to use when creating a visualization.

named colors with a sample of each color

Can read the data from the Excel data file employee.xlsx on the web. Or, download to your computer or Google Drive and read from there as
described the previous week, especially if going to be working on your computer without internet.

d = pd.read_excel('http://lessRstats.com/data/employee.xlsx')
#d = pd.read_excel('data/employee.xlsx')

Always verify that the data were read as you intended.

d.shape

(37, 9)

Name Years Gender Dept Salary JobSat Plan Pre Post

0 Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92

1 Wu, James NaN M SALE 94494.58 low 1 62 74

2 Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

3 Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62

4 Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86

d.head()

Categorical Variables

Counts

One Categorical Variable

Compute the counts of categorical data values with pandas  function value_counts() , here categorical variable Dept within data frame d.
Multiple ways to specify a variable as part of a data frame. First specify with the .  notation.

d.Dept.value_counts()

SALE    15
ADMN     6
MKTG     6
ACCT     5
FINC     4
Name: Dept, dtype: int64

Alternatively, use the []  notation.

d['Dept'].value_counts()

SALE    15
ADMN     6
MKTG     6
ACCT     5
FINC     4
Name: Dept, dtype: int64

Yet a third notation to get the counts. Illustrated here to highlight that virtually any operation can be done multiple ways. If you are used to one
way of coding an analysis, do not be surprised if someone else does it differently.

d.value_counts('Dept')

Dept

SALE    15
MKTG     6
ADMN     6
ACCT     5
FINC     4
dtype: int64

And a fourth way to get the counts, just to emphasize that there is typically no standard one way to do an analysis. Also, note that
value_counts()  is a pandas  function, but when preceded by a data frame name and a dot in the function call, the leading pd.  is not
needed. A data frame is a pandas  object, so the reference to pandas  is understood. But when by itself, the pd.  must precede the function
call.

pd.value_counts(d.Dept)

SALE    15
ADMN     6
MKTG     6
ACCT     5
FINC     4
Name: Dept, dtype: int64

To obtain the relative frequencies or proportions instead of the frequencies or counts, set the normalize  paramaeter to True .

d.Dept.value_counts(normalize=True)

SALE    0.416667

ADMN    0.166667

MKTG    0.166667

ACCT    0.138889

FINC    0.111111

Name: Dept, dtype: float64

The categorical variable JobSat has categories 'low', 'med', and 'high'. Python does not understand the English language, and so has no way of
knowing how these categories should be ordered. Python does not know that 'low' is less than 'high', for example. Instead, use the
Categorical()  function to explicitly define a variable as categorical with the option to specify the ordering of the categories when accessed
in subsequent analyses.

In this example, JobSat is converted from type object  as read to type category .

d['JobSat'] = pd.Categorical(d['JobSat'], categories=['low', 'med', 'high'], ordered=True)
d.dtypes

Name        object

Years      float64

Gender      object

Dept        object

Salary     float64

JobSat    category

Plan         int64

Pre          int64

Post         int64

dtype: object

Two Categorical Variables

Use the pandas  function crosstab()  for cross-tabulation, to compute two-way frequency distributions for categorical variables. Can refer to
the variables with the .  notation.

Gender F M

Dept

ACCT 3 2

ADMN 4 2

FINC 1 3

MKTG 5 1

SALE 5 10

pd.crosstab(d.Dept,d.Gender)

Alternatively, use the [ ] notation in the call to crosstab() .

Gender F M

Dept

ACCT 3 2

ADMN 4 2

FINC 1 3

MKTG 5 1

SALE 5 10

ct = pd.crosstab(d['Dept'], d['Gender'])
ct

Bar Charts

The primary data visualization package for Python data analysis is matplotlib . A more recent development is the seaborn  package which
builds upon matplotlib , designed to provide more elegant graphics with less work. Most of the examples presented here are from seaborn ,
with the abbreviation sns . They could also be replicated with matplotlib , continuing the theme that almost always, there is more than one
way to proceed.

seaborn  offers the function countplot()  to count the number of occurrences for each category of a categorical variable. The function
requires to include the parameter name with the value of each parameter, not relying upon the position of the value in the parameter list. For
example, a positional system would not require the parameter name for the first parameter listed in the function definition.

One Categorical Variable

<matplotlib.axes._subplots.AxesSubplot at 0x7ff22a56e390>

 sns.countplot(x='JobSat', data=d)

If the categorical variable was not defined as an ordered categorical variable with the function Categorical() , you can specify the ordering
of the categories in the call to countplot() .

<matplotlib.axes._subplots.AxesSubplot at 0x7ff229479090>

sns.countplot(x=d['JobSat'], order=['low', 'med', 'high'])

With parameter y , request that the categories be placed on the y-axis, that is, a horizontal bar chart. With parameter color , specify a custom
color.

<matplotlib.axes._subplots.AxesSubplot at 0x7ff228ff8410>

 sns.countplot(y='JobSat', data=d, color='darkred')

The seaborn  package has multiple functions that yield bar charts. The previously illustrated countplot()  function plots the height of the
bars according to the count (frequency) or proportion (relative frequency) of each category. The function named barplot()  applies to one
categorical variable and then a numerical variable that defines the height of the bars.

By default, the mean of the numerical variable for each category is plotted, along with a corresponding error bar that illustrates the 95%
confidence interval.

<matplotlib.axes._subplots.AxesSubplot at 0x7ff228f122d0>

sns.barplot(x='Dept', y='Salary', data=d)

The default statistic plotted for the height of the bars is the mean of the numerical variable. Use the parameter estimator  to specify another
statistic. The numpy  package defines these statistics, so precede the statistic's name with np.  when calling the barplot()  function.

<matplotlib.axes._subplots.AxesSubplot at 0x7ff22a05b8d0>

sns.barplot(x='Dept', y='Salary', data=d, estimator=np.median)

Two Categorical Variables

The bar chart of two categorical variables is presented in one of two basic forms, stacked or unstacked. This first example is unstacked, with
the bars separated for the levels of the second variable, Gender, at each level of the first variable, Dept.

<matplotlib.axes._subplots.AxesSubplot at 0x7ff228e0ff50>

sns.countplot(x='Dept', hue='Gender', data=d)

The seaborn  version of the stacked form of the bar chart, indicated by the dodge  parameter, does not appear to work. The bars for
categories SALE and FINC work, but the remaining bars do not show the Male counts.

<matplotlib.axes._subplots.AxesSubplot at 0x7ff228e8a790>

sns.countplot(x='Dept', hue='Gender', dodge=False, data=d)

Go to the foundational matplotlib  with its plot()  function to get the stacked bar chart to work. Indicate a bar chart with the kind
parameter and set stacked  to True . For matplotlib  we need to feed the output of crosstabs() , which we previously called ct, into the
plot()  function to visualize the cross-tabulation table as a bar chart of two categorical variables. Add some optional colors with the color
parameter. Find a full list of named colors.

One way to use plot()  is to enter the cross-tabulation matrix into the analysis. Do so by beginning the function call with the name of the
matrix, here ct.

<matplotlib.axes._subplots.AxesSubplot at 0x7ff228cd3490>

ct.plot(kind='bar', color=['thistle','skyblue'], stacked=True)

The 100% bar chart for these two categorical variables shows the percentage of Gender distributed across each department. This visualization
compares the second categorical variable, here Gender, across the levels of the first variable, particularly useful when there are unequal group
sizes.

Specify the grouping of the categorical variables with the pandas  function groupby() . The key to getting the 100% stacked bar chart is to set
the normalize  parameter to True , which, as shown previously, converts the counts to frequencies. With matplotlib , plot the 100% stacked
bar chart, where each bar goes the complete 100%. This example uses the chain method explained in the previous week, where each function
call appears on a separate line.

<matplotlib.axes._subplots.AxesSubplot at 0x7ff228c6d6d0>

(d
 .groupby('Dept')['Gender']
 .value_counts(normalize=True)
 .unstack('Gender')
 .plot.bar(stacked=True)
)

Here apply barplot()  to two categorical variables, specified with parameters of x  and hue . Specify the numeric variable for analysis with
parameter y .

<matplotlib.axes._subplots.AxesSubplot at 0x7ff228bfc190>

sns.barplot(x='Dept', y='Salary', hue='Gender', data=d)

Continuous Variables

Statistics

Methods are available for individual statistics.

Calculate the mean of a variable with the pandas  function mean() .

d["Salary"].mean()

73795.55675675675

Usually better to also invoke the round()  function to not have so many decimal digits. In this example, save the mean in its own variable, m,
then round to two decimal digits.

m = d["Salary"].mean()
round(m, 2)

73795.56

The pandas  function describe()  computes summary statistics of continuous variables over the entire data frame. Unmodified it applies to
all the continuous variables. The basic summary statistics that describe the sample values of a continuous variable: number of non-missing
values (count), mean (mean), standard deviation (std), minimum (min), first quartile (25%), median (50%), third quartile (75%), and maximum
(max).

Years Salary Plan Pre Post

count 36.000000 37.000000 37.000000 37.000000 37.000000

mean 9.388889 73795.556757 1.783784 78.783784 81.000000

std 5.723524 21799.533464 0.712396 12.037292 11.592622

min 1.000000 46124.970000 1.000000 59.000000 59.000000

25% 5.000000 56772.950000 1.000000 70.000000 72.000000

50% 9.000000 69547.600000 2.000000 80.000000 84.000000

75% 13.000000 87785.510000 2.000000 90.000000 91.000000

max 24.000000 134419.230000 3.000000 100.000000 100.000000

d.describe()

Or, apply to one or more selected variables, here the variable Salary.

d.Salary.describe()

count        37.000000

mean      73795.556757

std       21799.533464

min       46124.970000

25%       56772.950000

50%       69547.600000

75%       87785.510000

max      134419.230000

Name: Salary, dtype: float64

Pivot Tables

Summarizing numerical data over different sub-groups of a data set is a standard analysis technique. Calculate descriptive statistics across
groups of data.

Aggregation: Summarize a numerical variable with descriptive statistics computed over combinations of groups defined by one
or more categorical variables.

The analysis aggregates statistics across the numerical variables grouped by levels of one or more categorical variables. Excel refers to a
table of aggregated statistics as a pivot table.

One possibility for aggregation is the pandas  function groupby() , applied to data frames. Here compute the mean of the different groups for
all numerical variables in the data frame across the levels of Dept.

Note: Available functions include count() , sum() , mean() , median() , min() , max() , mode() , std() , and var() .

Note: This is easier than all that clicking and mousing to get the same result with the Excel pivot table function. (Can also easily write the
results back to Excel with function to_excel() .)

Years Salary Plan Pre Post

Dept

ACCT 5.600000 61792.776000 2.00 76.600000 78.600000

ADMN 10.166667 81277.116667 2.00 80.833333 82.000000

FINC 10.250000 69010.675000 1.75 79.750000 82.250000

MKTG 9.833333 70257.128333 2.00 79.666667 84.000000

SALE 10.285714 78830.064667 1.60 79.000000 81.133333

d.groupby('Dept').mean()

To define a two-way grouping, provide a vector of variable names to groupby() .

Years Salary Plan Pre Post

Dept Gender

ACCT F 4.666667 63237.163333 2.000000 73.333333 77.333333

M 7.000000 59626.195000 2.000000 81.500000 80.500000

ADMN F 7.500000 81434.002500 2.250000 80.000000 79.750000

M 15.500000 80963.345000 1.500000 82.500000 86.500000

FINC F 7.000000 57139.900000 2.000000 90.000000 86.000000

M 11.333333 72967.600000 1.666667 76.333333 81.000000

MKTG F 8.200000 64496.022000 1.800000 79.400000 84.000000

M 18.000000 99062.660000 3.000000 81.000000 84.000000

SALE F 6.600000 64188.254000 1.600000 76.200000 78.600000

M 12.333333 86150.970000 1.600000 80.400000 82.400000

d.groupby(['Dept', 'Gender']).mean()

Use the agg()  function to aggregate the values of multiple numerical variables. With this function, need to precede the function names with
np.  as they are functions defined in the numpy  package.

Here write the code for the aggregation in chain function notation.

Years Salary Plan Pre Post

mean median mean median mean median mean median mean median

Dept Gender

ACCT F 4.666667 3.0 63237.163333 71084.020 2.000000 2.0 73.333333 74.0 77.333333 84.0

M 7.000000 7.0 59626.195000 59626.195 2.000000 2.0 81.500000 81.5 80.500000 80.5

ADMN F 7.500000 5.0 81434.002500 71058.595 2.250000 2.0 80.000000 80.5 79.750000 80.0

M 15.500000 15.5 80963.345000 80963.345 1.500000 1.5 82.500000 82.5 86.500000 86.5

FINC F 7.000000 7.0 57139.900000 57139.900 2.000000 2.0 90.000000 90.0 86.000000 86.0

M 11.333333 10.0 72967.600000 66312.890 1.666667 1.0 76.333333 80.0 81.000000 83.0

MKTG F 8.200000 8.0 64496.022000 61356.690 1.800000 2.0 79.400000 80.0 84.000000 90.0

M 18.000000 18.0 99062.660000 99062.660 3.000000 3.0 81.000000 81.0 84.000000 84.0

SALE F 6.600000 8.0 64188.254000 56508.320 1.600000 2.0 76.200000 74.0 78.600000 72.0

M 12.333333 13.0 86150.970000 82442.740 1.600000 1.0 80.400000 75.0 82.400000 79.0

(d
 .groupby(['Dept', 'Gender'])
 .agg([np.mean, np.median])
)

Of course, as seen before, there are multiple ways to proceed. Another possibility uses the pandas  function pivot_table()  for aggregating
(pivoting) the values of one or more continuous variables over different groups defined by one or more categorical variables.

Specify the continuous variables over which to aggregate with the values  parameter. The index  parameter specifies the categorical
variables that define the groups. The aggfunc  parameter specifies the statistic for the aggregation, here the mean. Note that the calculation
of the mean here is from the numpy  package, abbreviated np  upon which pandas  depends.

Plan Post Pre Salary Years

Dept Gender

ACCT F 2.000000 77.333333 73.333333 63237.163333 4.666667

M 2.000000 80.500000 81.500000 59626.195000 7.000000

ADMN F 2.250000 79.750000 80.000000 81434.002500 7.500000

M 1.500000 86.500000 82.500000 80963.345000 15.500000

FINC F 2.000000 86.000000 90.000000 57139.900000 7.000000

M 1.666667 81.000000 76.333333 72967.600000 11.333333

MKTG F 1.800000 84.000000 79.400000 64496.022000 8.200000

M 3.000000 84.000000 81.000000 99062.660000 18.000000

SALE F 1.600000 78.600000 76.200000 64188.254000 6.600000

M 1.600000 82.400000 80.400000 86150.970000 12.333333

pd.pivot_table(d, values=['Years', 'Salary', 'Plan', 'Pre', 'Post'],
               index=['Dept', 'Gender'], aggfunc=np.mean)

If you do not specify the values  parameter, then all numeric variables are analyzed.

Plan Post Pre Salary Years

Dept Gender

ACCT F 2.000000 77.333333 73.333333 63237.163333 4.666667

M 2.000000 80.500000 81.500000 59626.195000 7.000000

ADMN F 2.250000 79.750000 80.000000 81434.002500 7.500000

M 1.500000 86.500000 82.500000 80963.345000 15.500000

FINC F 2.000000 86.000000 90.000000 57139.900000 7.000000

M 1.666667 81.000000 76.333333 72967.600000 11.333333

MKTG F 1.800000 84.000000 79.400000 64496.022000 8.200000

M 3.000000 84.000000 81.000000 99062.660000 18.000000

SALE F 1.600000 78.600000 76.200000 64188.254000 6.600000

M 1.600000 82.400000 80.400000 86150.970000 12.333333

pd.pivot_table(d, index=['Dept', 'Gender'], aggfunc=np.mean)

Visualizations

The distribution of a continuous variable can be presented several different ways. Perhaps the two most encountered visualizations are
histograms and box plots.

Histogram

seaborn  provides two functions for generating histograms, histplot()  and displot() . Here we focus on the later.

<seaborn.axisgrid.FacetGrid at 0x7ff228bf4d10>

sns.displot(d, x='Salary')

Reference the parameter color for a custom color. Specify the number of bins with the bins  parameter. Could also use the binwidth
parameter.

<seaborn.axisgrid.FacetGrid at 0x7ff228c03e10>

sns.displot(d, x='Salary', color='slategray', bins=8)

The seaborn  package provides more advanced plots. For example, easily overlay a smoothed frequency-type curve, called a density plot, on
the histogram with the function displot() .

<seaborn.axisgrid.FacetGrid at 0x7ff228a9f250>

sns.displot(d, x='Salary', color='slategray', bins=8, kde=True)

<seaborn.axisgrid.FacetGrid at 0x7ff21e16ac90>

from numpy.random import normal
sim_data = normal(size=1000)
sns.displot(x=sim_data)

Throughout the various seaborn  functions, generate multiple visualizations on the same panel according to different groups with the hue
parameter.

<seaborn.axisgrid.FacetGrid at 0x7ff21e15f210>

sns.displot(d, x='Salary', hue='Gender')

A closely related visualization to a histogram is a frequency polygon, which may provide a helpful portrayal of the distributions for overlapping
distributions. For example, in the above histogram, overlapping values are shown in gray. In the frequency polygon version, the polygons
overlap as a blending of their respective colors.

Specify with the element  parameter.

<seaborn.axisgrid.FacetGrid at 0x7ff21e131910>

sns.displot(d, x='Salary', hue='Gender', element='poly')

Box Plot

The box plot has already been demonstrated in an earlier notebook, but included here for completeness as a standard visualization of a
distribution, emphasizing detecting outliers. Use the seaborn  function boxplot() . The height of the box plot is not relevant, and by default is
quite large, so set to a small number, 1.5, with the matplotlib  figure()  function.

Text(0.5, 0, 'Annual Salary (USD)')

plt.figure(figsize=(6,1.5))
sns.boxplot(x=d['Salary'], color='steelblue')
plt.xlabel('Annual Salary (USD)', fontsize=14)

The box plot is an excellent way to visualize the distribution of a continuous variable across levels of a categorical variable. Here compare
Salary across the different Dept or departments of a company.

<matplotlib.axes._subplots.AxesSubplot at 0x7ff228c73e50>

sns.boxplot(x='Dept', y='Salary', data=d)

Can go one step further and specify a second categorical variable at each level of the first categorical variable. Here, with the hue  parameter,
show box plots for Gender at each Dept. Change the colors from the default blue and orange with the palette  parameter.

<matplotlib.axes._subplots.AxesSubplot at 0x7ff21deb3850>

plt.figure(figsize=(8,6))
sns.boxplot(x='Dept', y='Salary', hue='Gender', palette=['steelblue', 'gold'], data=d)

Correlational Structure

The correlational structure refers to the (linear) relations among the variables, pairwise, that is, two at a time. The sample or population
correlation varies between -1 and 1, which respectively indicate perfect − or + linear relationship. A correlation of 0 indicates no linear
relationship.

Scatterplot

The classic visualization of the relation between two numerical variables is the scatterplot, which plots each pair of values for the two variables
for a row of data as a point. The coordinates of the plotted point are the values of the two variables for that row of data.

A seaborn  scatterplot function is relplot() . The aspect  parameter controls the ratio of height and width.

<seaborn.axisgrid.FacetGrid at 0x7ff22022e8d0>

sns.relplot(x='Years', y='Salary', data=d, aspect=1.2)

Consistent with other seaborn  functions, introduce a grouping variable with the hue  parameter. Control the size of the points with the s
parameter.

<seaborn.axisgrid.FacetGrid at 0x7ff21dce4890>

sns.relplot(x='Years', y='Salary', hue='Gender', s=60, data=d, aspect=1.2)

Correlation matrix

The correlation coefficient varies from -1 for a perfectly negative or inverse relationship, to 0 for no relationship, to +1 for a perfectly positive
relationship.

Get correlations with the pandas  function corr() . Here calculate the correlation between number of Years worked for the company and
annual Salary. Clearly an employee's salary is related to the length of time working for the company.

d['Years'].corr(d['Salary']).round(2)

0.85

The correlation matrix in traditional form, a square matrix that, given a list of variables, contains the correlation for each variable in the list,
twice, because the correlation coefficient is the same regardless of the order of the two variables: . 1's run down what is called the
principle diagonal, indicating that each variable correlates with itself a perfect 1.0. It is distracting and generally useless to display more than
two decimal digits for each of the displayed correlations.

=𝑟12 𝑟21

d.corr().round(2)

Heat map

The heat map visualizes the correlation matrix, color coded according to the intensity of each correlation. Get the heat map with the seaborn
function heatmap() . Specify the parameter annot  for annotation to be True  to also provide the numerical value of the correlations. Here use
the loc  method to select the variables for the heat map.

keep_vars = ['Years', 'Salary', 'Pre', 'Post']
d2 = d.loc[:, keep_vars]
sns.heatmap(d2.corr().round(2), linewidths=2.0, annot=True)

Scatterplot matrix

The scatterplot matrix has the form of a correlation matrix, but replaces each correlation with the corresponding scatterplot. The diagonal
elements of the correlation matrix are replaced with a plot of the distribution of the variable.

Get the scatterplot matrix with the seaborn function pairplot() .

Can also use the kind  parameter to specify a regression line for each scatterplot, and the diag_kind  parameter to specify kernel density
plots (kde) in the diagonal. If there is no hue  parameter, the default is a histogram for each diagonal element.

sns.pairplot(data=d, vars=["Years", "Salary"], kind="reg", 
             diag_kind="kde")

The pairplot can be obtained for multiple levels of a categorical variable. The parameter hue  specifies a categorical variable from which to
map its levels to different colors in scatterplot matrix.

sns.pairplot(d, vars=["Years", "Salary", "Pre", "Post"], hue='Gender')

https://matplotlib.org/mpl_examples/color/named_colors.hires.png
https://matplotlib.org/mpl_examples/color/named_colors.hires.png

