
Regression Analysis with One Predictor

David Gerbing

The School of Business

Portland State University

gerbing@pdx.edu

1  Preliminaries
2  Read the Data
3  Form X and y Data Structures
4  Model Analysis

4.1  Estimation
4.2  Fit

5  Postscript

Table of Contents

This template shows how to do regression analysis with a single predictor using the statsmodel  package. The statsmodel  functions do
general statistical analysis, including regression. This week we move beyond just Python to focus on understanding the concept of regression
analysis as our introduciton to machine learning. Next week we do a regression analysis with the more useful multiple regression models,
multiple predictors, using the most popular Python machine learning framework.

Preliminaries

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-07-05 at 00:45


/content' '

import os
os.getcwd() 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Read the Data

The data consist of variables based on regions of Boston from some decades back, with a focus on houses and housing prices.

#d = pd.read_csv('data/Boston.csv')
d = pd.read_csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

d.shape

(506, 15)

Unnamed:
0

crim zn indus chas nox rm age dis rad tax ptratio

0 1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 3

1 2 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 3

2 3 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 3

3 4 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 3

d.head()

Do not need the first column, so drop.

crim zn indus chas nox rm age dis rad tax ptratio black lst

0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.

1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.

2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.

3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.

4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.

d = d.drop(["Unnamed: 0"], axis="columns")
d.head()

Do a missing data check before analysis.

d.isnull().sum()

crim       0

zn         0

indus      0

chas       0

nox        0

rm         0

age        0

dis        0

rad        0

tax        0

ptratio    0

black      0

lstat      0

medv       0

dtype: int64

No missing data here, so can proceed as is.

Form X and y Data Structures

Build a model that forecasts/explains the median house price, medv in terms of the average number of rooms, rm.

medv: Median value of owner-occupied homes in $1000's
rm: Average number of rooms per dwelling

Store the features, the predictor variables, of which there is only one in this example, in data structure X. Store the target variable in data
structure . The uppercase X is used because in real-world applications, X invariably contains multiple variables.𝑦

y = d['medv']
X = d['rm']

A technical point, but one worth considering when doing data analysis, is to understand the type of data structures created throughout an
analysis. The data as read are read into a pandas  data structure called a dataframe. However, when the data frame is sub-setted into X and y,
both of which consist of only a single variable in this example, the result is a one-dimensional pandas  data structure called a series . Actually,
a dataframe consists of columns, and each column is a series . That is why reduction of the data frame to a single column results in a
series .

For this particular analysis pursued here, being aware of this distinction is not necessary. But, in general, always good to know the underlying
data structures. Thinking the data is of one type, when it is actually of another type, in many situations leads to programming errors.

To check the type of a variable, use the Python function type() .

print("d: ", type(d))
print("X: ", type(X))
print("y: ", type(y))

d:  <class 'pandas.core.frame.DataFrame'>

X:  <class 'pandas.core.series.Series'>

y:  <class 'pandas.core.series.Series'>


Understand the distribution of the target variable, medv, to make sure that the distribution is not too weird. Show the distribution with its
histogram and density estimate (smoothed histogram), obtained with the seaborn  method displot() . Get the smoothed summary curve
(called a density function) by setting the kde  parameter to True .

<seaborn.axisgrid.FacetGrid at 0x7ff6a0973ed0>
<Figure size 324x360 with 0 Axes>

plt.figure(figsize=(4.5,5))
sns.displot(x='medv', color='steelblue', kde=True, data=d)

Before doing linear regression, first make sure that the relationship between the  and  variables is at least roughly linear. Check via a
scatterplot with the seaborn  function relplot() .

𝑥 𝑦

ax = sns.relplot(x="rm", y="medv", data=d)

Can also use the pandas  function corr()  to get the correlation between predictor and target.

d['rm'].corr(d['medv']).round(2)

0.7

The variables are highly correlated with , and the scatterplot indicates an apparent linear relationship. The only "weird" issue is that
apparently housing prices over 50,000 USD are truncated and listed at 50,000 USD. Probably a good idea to filter these rows of data out of the
data table and generalize the results to houses with less than that value, but we will leave for now.

𝑟 = 0.70

Model Analysis

Estimation

For some reason, by default, the estimation procedure assumes a -intercept of 0 unless there is constant value in the feature data. To
compensate, before estimating the model, explicitly add a column of 1.0's to the X data structure so that the estimated model will have a -
intercept, and therefore fit better without requiring the assumption of a value of 0. Add the constant with the statsmodels  package
add_constant()  function.

𝑦

𝑦

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWa
  import pandas.util.testing as tm


const rm

0 1.0 6.575

1 1.0 6.421

2 1.0 7.185

3 1.0 6.998

4 1.0 7.147

import statsmodels.api as sm
from statsmodels.regression.linear_model import RegressionResults
X = sm.add_constant(X)
X.head()

Specify the model with the OLS()  function from the statsmodel  package. OLS means ordinary least squares, the default and usual estimation
procedure for regression models. Specify the target variable first, followed by the data structure with the features. Do the least-squares
regression analysis of the defined model by applying the fit()  function.

Save the results of this regression analysis to a statsmodel  data structure we name results. The summary()  function summarizes the main
results of the analysis.

model = sm.OLS(y, X)
results = model.fit()
print(results.summary())

                            OLS Regression Results                            

==============================================================================

Dep. Variable:                   medv   R-squared:                       0.484

Model:                            OLS   Adj. R-squared:                  0.483

Method:                 Least Squares   F-statistic:                     471.8

Date:                Mon, 05 Jul 2021   Prob (F-statistic):           2.49e-74

Time:                        00:45:56   Log-Likelihood:                -1673.1

No. Observations:                 506   AIC:                             3350.

Df Residuals:                     504   BIC:                             3359.

Df Model:                           1                                         

Covariance Type:            nonrobust                                         

==============================================================================

                 coef    std err          t      P>|t|      [0.025      0.975]

------------------------------------------------------------------------------

const        -34.6706      2.650    -13.084      0.000     -39.877     -29.465

rm             9.1021      0.419     21.722      0.000       8.279       9.925

==============================================================================

Omnibus:                      102.585   Durbin-Watson:                   0.684

Prob(Omnibus):                  0.000   Jarque-Bera (JB):              612.449

Skew:                           0.726   Prob(JB):                    1.02e-133

Kurtosis:                       8.190   Cond. No.                         58.4

==============================================================================


Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.


The primary results of the model are in this section:

                coef    std err          t      P>|t|      [0.025      0.975]


------------------------------------------------------------------------------


const        -34.6706      2.650    -13.084      0.000     -39.877     -29.465


rm             9.1021      0.419     21.722      0.000       8.279       9.925

The estimated values of the intercept,  and  are -34.67 and 9.10, respectively. So write the estimated model as:

In this data set only, for each increase in the average number of rooms, the average selling price increases by 9,102 USD. We do, however, need
inferential statistics to generalize to the population as a whole.

Hypothesis test: The -values for the -statistics for each of the two estimated coefficients, P>|t| , are well below the cutoff of . For
the slope, assuming that there is no relationship between rm and medv, then the probability of getting an estimated slope coefficient as large
as 9.10 is an extremely improbable event, indistinguishable from 0 to three decimal digits. So reject the null hypothesis of no relationship, and
conclude there is a positive relationship between rm and medv. As rm increases, so does medv.

Confidence interval: Accordingly, the 95% confidence interval for the slope, which contains the plausible values of the true, population value of
the slope coefficient, is, with 95% confidence, in the interval from 8.279 to 9.925. That is, with 95% confidence, for each increase in the average
number of rooms, the average selling price increases somewhere between 8,279 USD and 9,925 USD.

𝑏0 𝑏1

= −34.67 + 9.10( )𝑦 ̂ 
𝑚𝑒𝑑𝑣 𝑥𝑟𝑚

𝑝 𝑡 𝛼 = 0.05

Fit

The seaborn  plotting function regplot()  automatically plots the scatterplot and the regression line through the scatterplot. Also provided is
the confidence interval of the regression line (values computed over hypothetical repeated samples). Values of X futher from the middle have
more variability, analogous to a teeter-tottor in which each end swings further than a place on the teeter-tottor closer to the middle, the fulcrum.

ax = sns.regplot(x="rm", y="medv", data=d)

From the line through the scatterplot, fit looks reasonable. There is, of course, scatter about the line, but not so much.

To evaluate fit of the model with statistics, access various values computed by the fit()  function, here stored in the structure called results.
Use the functions ssr() , mse_resid() , and rsquared() . The RMSE or standard deviation of the residuals is not provided directly, so
compute as the square root of the MSE. Use the function sqrt()  from the numpy  package. All values are rounded to two decimal digits with
the round()  function.

print("Sum of squared residuals:", results.ssr.round(2))
print("Mean squared error:", results.mse_resid.round(2))
RMSE = np.sqrt(results.mse_resid)
print("Stdev of residuals:", RMSE.round(2))
res_range = 4 * RMSE
print("95% range of residuals:", res_range.round(2))
print("R-squared:", results.rsquared.round(2))

Sum of squared residuals: 22061.88

Mean squared error: 43.77

Stdev of residuals: 6.62

95% range of residuals: 26.46

R-squared: 0.48


The sum of the squared residuals is provided for reference, upon which the more meaningful fit indices are derived. The standard deviation of
the residuals, consistent with not too much scatter about the scatterplot, is fairly small, indicating reasonable fit, with 95% of residuals
spanning a range of about 26 and 1/2 USD.

 is almost 0.5, which indicates room for improvement, but a demonstration that the model improves much over the null model. That is, using
rm to predict medv does much better than simply using the mean of medv to predict medv.
𝑅2

Postscript

In practice, regression models, and all machine learning models, typically involve much more than a single feature, predictor variable.
Subsequent material expands this model to multiple regression, that is, multiple features.

Saved successfully!


