~ Regression Analysis with One Predictor

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

Table of Contents

e 1 Preliminaries

2 Read the Data

3 Form X and y Data Structures
4 Model Analysis

o 4.1 Estimation
o 4.2 Fit

5 Postscript

This template shows how to do regression analysis with a single predictor using the statsmodel package. The statsmodel functions do
general statistical analysis, including regression. This week we move beyond just Python to focus on understanding the concept of regression
analysis as our introduciton to machine learning. Next week we do a regression analysis with the more useful multiple regression models,
multiple predictors, using the most popular Python machine learning framework.

v Preliminaries

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("$H:%M"))

Analysis on 2021-07-05 at 00:45

import os
os.getcwd()

' /content'

B St Sttt

import matplotlib.pyplot as plt
import seaborn as sns

v Read the Data

The data consist of variables based on regions of Boston from some decades back, with a focus on houses and housing prices.

#d = pd.read csv('data/Boston.csv')
d = pd.read csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

d.shape
(506, 15)

d.head()

Unnamed; crim zn indus chas nox rm age dis rad tax ptratio

0 1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3
1 2 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8
2 3 0.02729 0.0 7.07 0 0469 7.185 61.1 4.9671 2 242 17.8
3 4 0.08237 0.0 2.18 0 0.458 6.998 458 6.0622 3 222 18.7

Do not need the first column, so drop.

d = d.drop(["Unnamed: 0"], axis="columns")

d.head()
crim zn indus chas nox rm age dis rad tax ptratio black 1st
0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.
1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.
2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.
3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.
4 0.06905 0.0 218 0 0458 7147 K42 60622 3 222 187 396.90 5.

Do a missing data check before analysis.

d.isnull().sum()

crim 0
zn 0
indus 0
chas 0
nox 0
rm 0
age 0
dis 0
rad 0
tax 0
ptratio 0
black 0
lstat 0
medv 0
dtype: inté64

No missing data here, so can proceed as is.

v Form X and y Data Structures

Build a model that forecasts/explains the median house price, medv in terms of the average number of rooms, rm.

e medv: Median value of owner-occupied homes in $1000's
¢ rm: Average number of rooms per dwelling

Store the features, the predictor variables, of which there is only one in this example, in data structure X. Store the target variable in data
structure y. The uppercase X is used because in real-world applications, X invariably contains multiple variables.

= d['medv']
d['rm']

X<
o

A technical point, but one worth considering when doing data analysis, is to understand the type of data structures created throughout an
analysis. The data as read are read into a pandas data structure called a dataframe. However, when the data frame is sub-setted into X and y,
both of which consist of only a single variable in this example, the result is a one-dimensional pandas data structure called a series. Actually,
a dataframe consists of columns, and each columnis a series. That is why reduction of the data frame to a single column results in a

series.

For this particular analysis pursued here, being aware of this distinction is not necessary. But, in general, always good to know the underlying
data structures. Thinking the data is of one type, when it is actually of another type, in many situations leads to programming errors.

To check the type of a variable, use the Python function type() .

print("d: ", type(d))
print("X: ", type(X))
print("y: ", type(y))
d: <class 'pandas.core.frame.DataFrame'>

X: <class 'pandas.core.series.Series'>
y: <class 'pandas.core.series.Series'>

Understand the distribution of the target variable, medv, to make sure that the distribution is not too weird. Show the distribution with its
histogram and density estimate (smoothed histogram), obtained with the seaborn method displot() . Get the smoothed summary curve
(called a density function) by setting the kde parameter to True.

plt.figure(figsize=(4.5,5))
sns.displot(x='medv', color='steelblue', kde=True, data=d)

<seaborn.axisgrid.FacetGrid at 0x7ff6a0973ed0>
<Figure size 324x360 with 0 Axes>

Before doing linear regression, first make sure that the relationship between the x and y variables is at least roughly linear. Check via a
scatterplot with the seaborn function relplot().

ax = sns.relplot(x="rm", y="medv", data=d)

50 . . s & & s e W
s "
'.o
- E. ’ .'
40 1]

20 A

10 A

Can also use the pandas function corr() to get the correlation between predictor and target.

d['rm'].corr(d['medv']).round(2)

0.7

The variables are highly correlated with » = (.70, and the scatterplot indicates an apparent linear relationship. The only "weird" issue is that
apparently housing prices over 50,000 USD are truncated and listed at 50,000 USD. Probably a good idea to filter these rows of data out of the
data table and generalize the results to houses with less than that value, but we will leave for now.

v Model Analysis

v Estimation

For some reason, by default, the estimation procedure assumes a y-intercept of 0 unless there is constant value in the feature data. To
compensate, before estimating the model, explicitly add a column of 1.0's to the X data structure so that the estimated model will have a y-
intercept, and therefore fit better without requiring the assumption of a value of 0. Add the constant with the statsmodels package
add_constant () function.

import statsmodels.api as sm

from statsmodels.regression.linear model import RegressionResults
X = sm.add_constant (X)

X.head()

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/ testing.py:19: Futurew:
import pandas.util.testing as tm

const rm
0 1.0 6.575
1 1.0 6.421
2 1.0 7.185
3 1.0 6.998

4 1.0 7.147

Specify the model with the ons() function from the statsmodel package. OLS means ordinary least squares, the default and usual estimation
procedure for regression models. Specify the target variable first, followed by the data structure with the features. Do the least-squares
regression analysis of the defined model by applying the fit () function.

Save the results of this regression analysis to a statsmodel data structure we name results. The summary() function summarizes the main
results of the analysis.

model = sm.OLS(y, X)
results = model.fit()
print(results.summary())

OLS Regression Results

Dep. Variable: medv R-squared: 0.484
Model: OLS Adj. R-squared: 0.483
Method: Least Squares F-statistic: 471.8
Date: Mon, 05 Jul 2021 Prob (F-statistic): 2.49e-74
Time: 00:45:56 Log-Likelihood: -1673.1
No. Observations: 506 AIC: 3350.
Df Residuals: 504 BIC: 3359.
Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
const -34.6706 2.650 -13.084 0.000 -39.877 -29.465
rm 9.1021 0.419 21.722 0.000 8.279 9.925
Omnibus: 102.585 Durbin-Watson: 0.684
Prob(Omnibus): 0.000 Jarque-Bera (JB): 612.449
Skew: 0.726 Prob(JB): 1.02e-133
Kurtosis: 8.190 Cond. No. 58.4
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The primary results of the model are in this section:

coef std err t P>|t]| [0.025 0.975]
const -34.6706 2.650 -13.084 0.000 -39.877 -29.465
rm 9.1021 0.419 21.722 0.000 8.279 9.925

The estimated values of the intercept, by and b; are -34.67 and 9.10, respectively. So write the estimated model as:

Vmedv = —34.67 + 9.10(x,.,)
In this data set only, for each increase in the average number of rooms, the average selling price increases by 9,102 USD. We do, however, need
inferential statistics to generalize to the population as a whole.

Hypothesis test: The p-values for the f-statistics for each of the two estimated coefficients, p>|t|, are well below the cutoff of @ = 0.05. For
the slope, assuming that there is no relationship between rm and medyv, then the probability of getting an estimated slope coefficient as large
as 9.10 is an extremely improbable event, indistinguishable from 0 to three decimal digits. So reject the null hypothesis of no relationship, and
conclude there is a positive relationship between rm and medv. As rm increases, so does medv.

Confidence interval: Accordingly, the 95% confidence interval for the slope, which contains the plausible values of the true, population value of
the slope coefficient, is, with 95% confidence, in the interval from 8.279 to 9.925. That is, with 95% confidence, for each increase in the average
number of rooms, the average selling price increases somewhere between 8,279 USD and 9,925 USD.

v Fit

The seaborn plotting function regplot() automatically plots the scatterplot and the regression line through the scatterplot. Also provided is
the confidence interval of the regression line (values computed over hypothetical repeated samples). Values of X futher from the middle have
more variability, analogous to a teeter-tottor in which each end swings further than a place on the teeter-tottor closer to the middle, the fulcrum.

ax = sns.regplot(x="rm", y="medv", data=d)

medv

From the line through the scatterplot, fit looks reasonable. There is, of course, scatter about the line, but not so much.

To evaluate fit of the model with statistics, access various values computed by the £it() function, here stored in the structure called results.
Use the functions ssr(), mse resid(),and rsquared(). The RMSE or standard deviation of the residuals is not provided directly, so
compute as the square root of the MSE. Use the function sqrt() from the numpy package. All values are rounded to two decimal digits with
the round() function.

print("Sum of squared residuals:", results.ssr.round(2))
print("Mean squared error:", results.mse resid.round(2))
RMSE = np.sqrt(results.mse resid)

print("Stdev of residuals:", RMSE.round(2))

res_range = 4 * RMSE

print("95% range of residuals:", res range.round(2))
print("R-squared:", results.rsquared.round(2))

Sum of squared residuals: 22061.88
Mean squared error: 43.77

Stdev of residuals: 6.62

95% range of residuals: 26.46
R-squared: 0.48

The sum of the squared residuals is provided for reference, upon which the more meaningful fit indices are derived. The standard deviation of
the residuals, consistent with not too much scatter about the scatterplot, is fairly small, indicating reasonable fit, with 95% of residuals
spanning a range of about 26 and 1/2 USD.

R? is almost 0.5, which indicates room for improvement, but a demonstration that the model improves much over the null model. That is, using
rm to predict medv does much better than simply using the mean of medv to predict medyv.

v Postscript

In practice, regression models, and all machine learning models, typically involve much more than a single feature, predictor variable.
Subsequent material expands this model to multiple regression, that is, multiple features.

