

Regression Analysis with One Predictor

David Gerbing
The School of Business
Portland State University
gerbing@pdx.edu

Table of Contents

- [1 Preliminaries](#)
- [2 Read the Data](#)
- [3 Form X and y Data Structures](#)
- [4 Model Analysis](#)
 - [4.1 Estimation](#)
 - [4.2 Fit](#)
- [5 Postscript](#)

This template shows how to do regression analysis with a single predictor using the `statsmodels` package. The `statsmodels` functions do general statistical analysis, including regression. This week we move beyond just Python to focus on understanding the concept of regression analysis as our introduction to machine learning. Next week we do a regression analysis with the more useful multiple regression models, multiple predictors, using the most popular Python machine learning framework.

Preliminaries

```
from datetime import datetime as dt
now = dt.now()
print("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-07-05 at 00:45

import os
os.getcwd()

'/content'

Saved successfully!
```

Read the Data

The data consist of variables based on regions of Boston from some decades back, with a focus on houses and housing prices.

```
#d = pd.read_csv('data/Boston.csv')
d = pd.read_csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

d.shape
(506, 15)

d.head()

      Unnamed: 0      crim      zn      indus      chas      nox      rm      age      dis      rad      tax      ptratio
0      1.00632    18.0    2.31      0.538    6.575    65.2    4.0900    1.296    15.3
1      2.02731    0.0    7.07      0.469    6.421    78.9    4.9671    2.242    17.8
2      3.02729    0.0    7.07      0.469    7.185    61.1    4.9671    2.242    17.8
3      4.03237    0.0    2.18      0.458    6.998    45.8    6.0622    3.222    18.7
4      0.06905    0.0    2.18      0.458    7.147    54.2    6.0622    3.222    18.7
```

Do not need the first column, so drop.

```
d = d.drop(['Unnamed: 0'], axis="columns")
d.head()

      crim      zn      indus      chas      nox      rm      age      dis      rad      tax      ptratio      black      lstat
0      1.00632    18.0    2.31      0.538    6.575    65.2    4.0900    1.296    15.3    396.90      4.
1      2.02731    0.0    7.07      0.469    6.421    78.9    4.9671    2.242    17.8    396.90      9.
2      3.02729    0.0    7.07      0.469    7.185    61.1    4.9671    2.242    17.8    392.83      4.
3      4.03237    0.0    2.18      0.458    6.998    45.8    6.0622    3.222    18.7    394.63      2.
4      0.06905    0.0    2.18      0.458    7.147    54.2    6.0622    3.222    18.7    396.90      5.
```

Do a missing data check before analysis.

```
d.isnull().sum()

      crim      zn      indus      chas      nox      rm      age      dis      rad      tax      ptratio      black      lstat
0      1.00632    18.0    2.31      0.538    6.575    65.2    4.0900    1.296    15.3    396.90      4.
1      2.02731    0.0    7.07      0.469    6.421    78.9    4.9671    2.242    17.8    396.90      9.
2      3.02729    0.0    7.07      0.469    7.185    61.1    4.9671    2.242    17.8    392.83      4.
3      4.03237    0.0    2.18      0.458    6.998    45.8    6.0622    3.222    18.7    394.63      2.
4      0.06905    0.0    2.18      0.458    7.147    54.2    6.0622    3.222    18.7    396.90      5.
```

No missing data here, so can proceed as is.

Form X and y Data Structures

Build a model that forecasts/explains the median house price, `medv` in terms of the average number of rooms, `rm`.

- `medv`: Median value of owner-occupied homes in \$1000's
- `rm`: Average number of rooms per dwelling

Store the features, the predictor variables, of which there is only one in this example, in data structure `X`. Store the target variable in data structure `y`. The uppercase `X` is used because in real-world applications, `X` invariably contains multiple variables.

```
y = d['medv']
X = d['rm']
```

A technical point, but one worth considering when doing data analysis, is to understand the type of data structures created throughout an analysis. The data as read are read into a `pandas` data structure called a `dataframe`. However, when the data frame is sub-setted into `X` and `y`, both of which consist of only a single variable in this example, the result is a one-dimensional `pandas` data structure called a `series`. Actually, a `dataframe` consists of columns, and each column is a `series`. That is why reduction of the data frame to a single column results in a `series`.

For this particular analysis pursued here, being aware of this distinction is not necessary. But, in general, always good to know the underlying data structures. Thinking the data is of one type, when it is actually of another type, in many situations leads to programming errors.

To check the type of a variable, use the Python function `type()`.

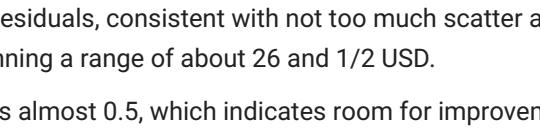
```
print("d: ", type(d))
print("X: ", type(X))
print("y: ", type(y))

d: <class 'pandas.core.frame.DataFrame'>
X: <class 'pandas.core.series.Series'>
y: <class 'pandas.core.series.Series'>
```

Understand the distribution of the target variable, `medv`, to make sure that the distribution is not too weird. Show the distribution with its histogram and density estimate (smoothed histogram), obtained with the `seaborn` method `displot()`. Get the smoothed summary curve (called a density function) by setting the `kde` parameter to `True`.

```
plt.figure(figsize=(4.5,5))
sns.displot(x='medv', color='steelblue', kde=True, data=d)
```

```
<Figure size 324x360 with 0 Axes>
```



Before doing linear regression, first make sure that the relationship between the `x` and `y` variables is at least roughly linear. Check via a scatterplot with the `seaborn` function `relplot()`.

```
ax = sns.relplot(x="rm", y="medv", data=d)
```


Can also use the `pandas` function `corr()` to get the correlation between predictor and target.

```
d['rm'].corr(d['medv']).round(2)
```

0.7

The variables are highly correlated with $r = 0.70$, and the scatterplot indicates an apparent linear relationship. The only "weird" issue is that apparently housing prices over 50,000 USD are truncated and listed at 50,000 USD. Probably a good idea to filter these rows of data out of the data table and generalize the results to houses with less than that value, but we will leave for now.

Model Analysis

Estimation

For some reason, by default, the estimation procedure assumes a y-intercept of 0 unless there is a constant value in the feature data. To compensate, before estimating the model, explicitly add a column of 1's to the X data structure so that the estimated model will have a y-intercept, and therefore fit better without requiring the assumption of a value of 0. Add the constant with the `statsmodels` package `add_constant()` function.

```
import statsmodels.api as sm
from statsmodels.formula.api import OLS
X = add_constant(X)
```

```
X.head()
```

```
      const      rm
0      1.00632    18.0
1      2.02731    0.0
2      3.02729    0.0
3      4.03237    0.0
4      0.06905    0.0
```

```
dtype: float64
```

```
rm: <class 'pandas.core.series.Series'>
```

```
const: <class 'pandas.core.series.Series'>
```

```
      Unnamed: 0      crim      zn      indus      chas      nox      rm      age      dis      rad      tax      ptratio
0      1.00632    18.0    2.31      0.538    6.575    65.2    4.0900    1.296    15.3
1      2.02731    0.0    7.07      0.469    6.421    78.9    4.9671    2.242    17.8
2      3.02729    0.0    7.07      0.469    7.185    61.1    4.9671    2.242    17.8
3      4.03237    0.0    2.18      0.458    6.998    45.8    6.0622    3.222    18.7
4      0.06905    0.0    2.18      0.458    7.147    54.2    6.0622    3.222    18.7
```

```
      black      lstat
0      396.90      4.
1      396.90      9.
2      392.83      4.
3      394.63      2.
4      396.90      5.
```

```
      Unnamed: 0      crim      zn      indus      chas      nox      rm      age      dis      rad      tax      ptratio
0      1.00632    18.0    2.31      0.538    6.575    65.2    4.0900    1.296    15.3
1      2.02731    0.0    7.07      0.469    6.421    78.9    4.9671    2.242    17.8
2      3.02729    0.0    7.07      0.469    7.185    61.1    4.9671    2.242    17.8
3      4.03237    0.0    2.18      0.458    6.998    45.8    6.0622    3.222    18.7
4      0.06905    0.0    2.18      0.458    7.147    54.2    6.0622    3.222    18.7
```

```
      black      lstat
0      396.90      4.
1      396.90      9.
2      392.83      4.
3      394.63      2.
4      396.90      5.
```

```
      Unnamed: 0      crim      zn      indus      chas      nox      rm      age      dis      rad      tax      ptratio
0      1.00632    18.0    2.31      0.538    6.575    65.2    4.0900    1.296    15.3
1      2.02731    0.0    7.07      0.469    6.421    78.9    4.9671    2.242    17.8
2      3.02729    0.0    7.07      0.469    7.185    61.1    4.9671    2.242    17.8
3      4.03237    0.0    2.18      0.458    6.998    45.8    6.0622    3.222    18.7
4      0.06905    0.0    2.18      0.458    7.147    54.2    6.0622    3.222    18.7
```

```
      black      lstat
0      396.90      4.
1      396.90      9.
2      392.83      4.
3      394.63      2.
4      396.90      5.
```

```
      Unnamed: 0      crim      zn      indus      chas      nox      rm      age      dis      rad      tax      ptratio
0      1.00632    18.0    2.31      0.538    6.575    65.2    4.0900    1.296    15.3
1      2.02731    0.0    7.07      0.469    6.421    78.9    4.9671    2.242    17.8
2      3.02729    0.0    7.07      0.469    7.185    61.1    4.9671    2.242    17.8
3      4.03237    0.0    2.18      0.458    6.998    45.8    6.0622    3.222    18.7
4      0.06905    0.0    2.18      0.458    7.147    54.2    6.0622    3.222    18.7
```

```
      black      lstat
0      396.90      4.
1      396.90      9.
2      392.83      4.
3      394.63      2.
4      396.90      5.
```

```
      Unnamed: 0      crim      zn      indus      chas      nox      rm      age      dis      rad      tax      ptratio
0      1.00632    18.0    2.31      0.538    6.575    65.2    4.0900    1.296    15.3
1      2.02731    0.0    7.07      0.469    6.421    78.9    4.9671    2.242    17.8
2      3.02729    0.0    7.07      0.469    7.185    61.1    4.9671    2.242    17.8
3      4.03237    0.0    2.18      0.458    6.998    45.8    6.0622    3.222    18.7
4      0.06905    0.0    2.18      0.458    7.147    54.2    6.0622    3.222    18.7
```

```
      black      lstat
0      396.90      4.
1      396.90      9.
2      392.83      4.
3      394.63      2.
4      396.90      5.
```

```
      Unnamed: 0      crim      zn      indus      chas      nox      rm      age      dis      rad      tax      ptratio
0      1.00632    18.0    2.31      0.538    6.575    65.2    4.0900    1.296    15.3
1      2.02731    0.0    7.07      0.469    6.421    78.9    4.9671    2.242    17.8
2      3.02729    0.0    7.07      0.469    7.185    61.1    4.9671    2.242    17.8
3      4.03237    0.0    2.18      0.458    6.998    45.8    6.0622    3.222    18.7
4      0.06905    0.0    2.18      0.458    7.147    54.2    6.0622    3.222    18.7
```

```
      black      lstat
0      396.90      4.
1      396.90      9.
2      392.83      4.
3      394.63      2.
4      396.90      5.
```

```
      Unnamed: 0      crim      zn      indus      chas      nox      rm      age      dis      rad      tax      ptratio
0      1.00632    18.0    2.31      0.538    6.575    65.2    4.0900    1.296    15.3
1      2.02731    0.0    7.07      0.469    6.421    78.9    4.9671    2.242    17.8
2      3.02729    0.0    7.07      0.469    7.185    61.1    4.9671    2.242    17.8
3      4.03237    0.0    2.18      0.458    6.998    45.8    6.0622    3.222    18.7
4      0.06905    0.0    2.18      0.458    7.147    54.2    6.0622    3.222    18.7
```

```
      black      lstat
0      396.90      4.
1      396.90      9.
2      392.83      4.
3      394.63      2.
4      396.90      5.
```

```
      Unnamed: 0      crim      zn      indus      chas      nox      rm      age      dis      rad      tax      ptratio
0      1.00632    18.0    2.31      0.538    6.575    65.2    4.0900    1.296    15.3
1      2.02731    0.0    7.07      0.469    6.421    78.9    4.9671    2.242    17.8
2     
```