
Data Wrangling

David Gerbing

The School of Business

Portland State University

gerbing@pdx.edu

Data in the real world typically does not arrive ready for analysis. Instead usually manipulate the data in various ways to derive a nice, clean,
tidy data frame of rows by columns with all the data values in a column of the same type, such as character strings, integers, or floating point
numbers (i.e., with decimal digits).

Data Wrangling: The process of cleaning, tidying, and otherwise preparing data for analysis.

The following examples demonstrate some useful data manipulations that are applicable to all data analysis: subsetting a data table,
converting variable types, and variable transformations. Merging data frames, another common data manipulation, is shown elsewhere.

This task of data wrangling is where most data scientists spend most of their time, up to 80% is a common understanding. Larger
organizations have added a new job category called data engineer, a specialist in data wrangling and other aspects of handling data, such as
data collection.

The material in this and related notebooks covers some of the basic, and most common, data wrangling procedures.

Preliminaries

Packages

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-06-27 at 14:06

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Read

#d = pd.read_excel('data/employee.xlsx')
d = pd.read_excel('http://lessRstats.com/data/employee.xlsx')

d.shape

(37, 9)

Name Years Gender Dept Salary JobSat Plan Pre Post

0 Ritchie,
Darnell 7.0 M ADMN 53788.26 med 1 82 92

1 Wu, James NaN M SALE 94494.58 low 1 62 74

2 Hoang,
Binh 15.0 M SALE 111074.86 low 3 96 97

Jones

d.head()

Data Frame Row Identifiers

Columns in a data frame represent the variables in the analysis. Columns can be identified by the corresponding variable name or by their
numerical position in the data frame.

Index: An integer that specifies the numerical row or column position.

Unfortunately (in my opinion), Python begins all counting with 0 instead of 1. However, the principle of identifying a row or a column by the
corresponding integer remains.

In the d data frame that contains the read data, as shown above, the default row identifiers are the row indices. However, if there is column of
unique identifiers in the data table, that column can be designated as the row identifiers.

In the above d data table, the Name column appears as any other variable in the data frame. However, Name is not a variable per se to analyze
but an ID field, with a unique value for each row. Replace the default integer row labels with the values of the column Name with the
set_index() function.

Note that data manipulation methods typically do not change the original data frame. To save changes, explicitly save the manipulation into a
variable, such as below, where the change to the d data frame is saved back into the d data frame. If there is no assigned variable for the
output, the output is directed to the console. You will be able to view the output, but no changes are saved.

Years Gender Dept Salary JobSat Plan Pre Post

Name

Ritchie,
Darnell 7.0 M ADMN 53788.26 med 1 82 92

Wu, James NaN M SALE 94494.58 low 1 62 74

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62

d = d.set_index('Name')
d.head()

Or, set the row names as the data values directly when read with a function such as read_excel() . Use the parameter index_col to set the
column index. The variable Name in the original data frame is in the first column, that is, Column 0.

Years Gender Dept Salary JobSat Plan Pre Post

Name

Ritchie,
Darnell 7.0 M ADMN 53788.26 med 1 82 92

Wu, James NaN M SALE 94494.58 low 1 62 74

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62

d = pd.read_excel('http://lessRstats.com/data/employee.xlsx', index_col=0)
#d = pd.read_excel('data/employee.xlsx', index_col=0)
d.head()

Subset Rows and Columns

A data frame is the Python representation of a rectangular data table with rows and columns. In many situations, we wish to view or analyze
just a portion of the entire data frame, a subset, an extraction from the original. Many possibilities of subsetting exist: a single data value (cell),
a single row, a single column, and a range of rows or columns.

Express all references to data values in a data frame in terms of those rows and columns. Reference data values within data frame d by its
rows and columns:

 d[row_reference, column_reference]

The reference can be a corresponding name of a row or column or its associated integer index. If referencing location by name, use the
.loc() function for "location".
Reference the integer index with the .iloc() function for "integer location" or "index location". The "weird"
part, as with all Python counting, is that counting rows or columns starts with 0 instead of starting at 1.

Note: There is no assignment of the sub-setted information to the new data frame in the examples below, just a display of the requested
information.

Select a Single Cell

We see from the original data table that Binh Hoang's salary is $111,074.86.

To display the data value stored in a single, specific cell, specify a single row reference and a single column reference. Here reference the
location of the data value by the row name and column name, so use the loc method for "location".

Note that the output is not assigned to another data frame, so the output is directed to the space right below where the cell is located.

d.loc['Hoang, Binh', 'Salary']

111074.86

Or, reference the location of the data value by its row and column index according to their integer positions in the data frame with iloc . The
data for Binh Hoang are in the third row, Row 2 because Python starts counting at 0. The variable Salary is in the fourth column, Column 3.

d.iloc[2,3]

111074.86

Select Multiple Cells

A colon, : , indicates a range of either rows (before the comma) or columns (after the comma).

Gender Dept Salary JobSat

Name

Wu, James M SALE 94494.58 low

Hoang, Binh M SALE 111074.86 low

Jones, Alissa F NaN 53772.58 NaN

d2 = d.loc['Wu, James':'Jones, Alissa', 'Gender':'JobSat']
d2.head()

When subsetting row or column indices in pandas with the colon operator, : , always reference the counting system that begins with 0. And
then reference the row after the last row you wish to select.

For example, to select the second through the fourth row, the pandas row indices are 1 through 3. So specify a row range of 1:4. To select the
second through fourth row, specify a column range of 1:5. (Why do the Python people have to complicate such a simple issue as counting?)

To illustrate, show here again the first five rows of the d data frame.

Years Gender Dept Salary JobSat Plan Pre Post

Name

Ritchie,
Darnell 7.0 M ADMN 53788.26 med 1 82 92

Wu, James NaN M SALE 94494.58 low 1 62 74

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62

d.head()

Now select the second through the fourth rows, getting three rows indicated by indices 1 through 3, and the second through the fifth columns,
getting four columns, indicated by indices 1 through 4.

Gender Dept Salary JobSat

Name

Wu, James M SALE 94494.58 low

Hoang, Binh M SALE 111074.86 low

Jones, Alissa F NaN 53772.58 NaN

d2 = d.iloc[1:4, 1:5]
d2

Subset Rows

Select a Single Row

The : by itself after the comma, that is, no columns specified, indicates to retrieve all columns for the specified row(s). The colon for columns
is optional, but good practice to include.

d.loc['Hoang, Binh', :]

Years 15

Gender M

Dept SALE

Salary 111075

JobSat low

Plan 3

Pre 96

Post 97

Name: Hoang, Binh, dtype: object

Unfortunately, Python's specification of row and column ranges with the : is unnecessarily complex. The straightforward way to proceed is to
identify each row or column with its ordinal position, that is, counting from 1. Instead, Python starts counting from 0, so the index of the first
column and of the first row is 0.

Another complication is that the range itself indicates the beginning index but does not include the ending index. To illustrate, a range of 2:3, if
placed before the comma, references only Row Index 2, which is the third row.

Years Gender Dept Salary JobSat Plan Pre Post

Name

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

d.iloc[2:3, :]

Specify a row without a range results in the vertical listing of the information for that row, here Row 3.

d.iloc[2, :]

Years 15

Gender M

Dept SALE

Salary 111075

JobSat low

Plan 3

Pre 96

Post 97

Name: Hoang, Binh, dtype: object

Subset Rows by Data Values

Retrieve just those rows of data that match a logical condition. Here identify all rows of data for employees with a Salary more than $100,000
per year. The first example only displays the result. The second example creates a new data frame with the result, and then displays the subset
data frame.

This first example invokes the most straightforward method of selecting rows that satisfy a logical condition: The query() function. Note the
logical condition is enclosed in quotes.

Years Gender Dept Salary JobSat Plan Pre Post

Name

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

Correll,
Trevon 21.0 M SALE 134419.23 low 1 97 94

James,
Leslie 18.0 F ADMN 122563.38 low 3 70 70

d.query('Salary > 100000')

The query() function may be more straightforwared, but there is another expression for the extraction that many people use. This expression
involves repeating the name of the data frame, which becomes awkward for long data frame names and a logical expression that involves
multiple variables. Still, this form is frequently encountered in pandas data manipulation.

Years Gender Dept Salary JobSat Plan Pre Post

Name

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

Correll,
Trevon 21.0 M SALE 134419.23 low 1 97 94

James,
Leslie 18.0 F ADMN 122563.38 low 3 70 70

dd = d[d['Salary'] > 100000]
dd

Here query all Males in Finance. The amperssand, & , indicates "and". Because the entire expression is enclosed in single quotes, ' , enclose
character constants within the string with double quotes, " .

Years Gender Dept Salary JobSat Plan Pre Post

Name

Sheppard, Cory 14.0 M FINC 95027.55 low 3 66 73

Link, Thomas 10.0 M FINC 66312.89 low 1 83 83

Cassinelli, 10 0 M FINC 57562 36 high 1 80 87

d.query('Dept == "FINC" & Gender == "M"')

The str.contains() function selects values that contain a specified character string. However, the method only works with complete data,
so first remove missing data values in d with the dropna() function.

Years Gender Dept Salary JobSat Plan Pre Post

Name

Downs,
Deborah 7.0 F FINC 57139.90 high 2 90 86

Sheppard, Cory 14.0 M FINC 95027.55 low 3 66 73

Link, Thomas 10.0 M FINC 66312.89 low 1 83 83

d2 = d.dropna()
d2[d2['Dept'].str.contains('FI')]

Subset Columns

The easiest way to subset variables, select columns, is with the filter() function.

Years Gender Dept Salary JobSat Plan Pre Post

Name

Ritchie,
Darnell 7.0 M ADMN 53788.26 med 1 82 92

Wu, James NaN M SALE 94494.58 low 1 62 74

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62

d.head()

In many situations in data analysis, we wish to refer simultaneously to multiple values instead of a single value. With Python in general and
pandas specifically, define a vector of values using square brackets [] .

Vector: A variable that consists of multiple values.

Note to R users: R uses the c() function to accomplish the same result.

In this example, create a vector of two variable names. To emphasize the definition of a vector, define the vector separately from the call to the
filter() function.

Gender Salary

Name

Ritchie, Darnell M 53788.26

Wu, James M 94494.58

Hoang, Binh M 111074.86

Jones, Alissa F 53772.58

Downs Deborah F 57139 90

d2 = d.filter(['Gender', 'Salary'])
d2.head()

To emphasize the definition of a vector, define the vector of variable names separately from the call to the filter() function.

Gender Salary

Name

Ritchie, Darnell M 53788.26

Wu, James M 94494.58

Hoang, Binh M 111074.86

Jones, Alissa F 53772.58

Downs Deborah F 57139 90

my_vector = ['Gender', 'Salary']
d2 = d.filter(my_vector)
d2.head()

To select variables by their names can also use the more general loc() function. Need to specify both rows and columns with loc , separated
by a colon : . If not simulateounsly selecting rows, put nothing before the : .

Gender Salary

Name

Ritchie, Darnell M 53788.26

Wu, James M 94494.58

Hoang, Binh M 111074.86

Jones, Alissa F 53772.58

Downs Deborah F 57139 90

d2 = d.loc[:, ['Gender', 'Salary']]
d2.head()

Or, can use iloc for "index location" if specifying the relevant numerical index.

check 0s completed at 11:06 AM

Gender Salary

Name

Ritchie, Darnell M 53788.26

Wu, James M 94494.58

Hoang, Binh M 111074.86

Jones, Alissa F 53772.58

Downs, Deborah F 57139.90

d2 = d.iloc[:, [1,3]]
d2.head()

Select by Variable Type

The select function for selecting by variable types is select_dtypes() , either with the parameter exclude or include .

Years Salary Plan Pre Post

Name

Ritchie, Darnell 7.0 53788.26 1 82 92

Wu, James NaN 94494.58 1 62 74

Hoang, Binh 15.0 111074.86 3 96 97

Jones, Alissa 5.0 53772.58 1 65 62

Downs, Deborah 7.0 57139.90 2 90 86

d_num = d.select_dtypes(exclude=['object'])
d_num.head()

Gender Dept JobSat

Name

Ritchie, Darnell M ADMN med

Wu, James M SALE low

Hoang, Binh M SALE low

Jones, Alissa F NaN NaN

Downs, Deborah F FINC high

d_obj = d.select_dtypes(include=['object'])
d_obj.head()

Chained Functions

Likely the most straightforward to accomplish data frame subsets is with the query() and filter() functions. However, when doing
multiple function calls, one after the other, you can chain these calls into a single call. This chaining elucidates a complex, multi-step data
manipulation process with highly readable, structured code.

To specify a set of chained functions, include the entire expression within parentheses (), then separate each function call on its own line. In
this example, subset by rows, then by columns, then sort on the Salary column with the sort_values() function.

Gender Salary

Name

Correll, Trevon M 134419.23

James, Leslie F 122563.38

Hoang, Binh M 111074.86

Capelle, Adam M 108138.43

(d
 .query('Salary > 100000')
 .filter(['Gender', 'Salary'])
 .sort_values(['Salary'], ascending=False)
)

Delete Rows or Columns

Delete a Row

Start with 37 rows of data.

d.shape

(37, 8)

Use the drop() function to delete a row by row name, to result in 36 rows.

d2 = d.drop('Wu, James')
d2.shape

(36, 8)

Delete a row by row index, here the second row, to result in 36 rows.

d2 = d.drop([d.index[1]])

d2.shape

(36, 8)

The data for James Wu is gone.

Years Gender Dept Salary JobSat Plan Pre Post

Name

Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62

Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86

Afshari, Anbar 6.0 F ADMN 69441.93 high 2 100 100

d2.head()

Delete a Column

The function drop() deletes a row or column from the data frame, as specified by the axis parameter. The default value of axis is 'rows' ,
so if dropping a column, need to explicitly specify. Here drop the variable Plan from the resulting data frame of only numeric variables because
it is an integer coded categorical variable. Dropping that variable leaves only continuous variables.

Years Gender Dept Salary JobSat Pre Post

Name

Ritchie, Darnell 7.0 M ADMN 53788.26 med 82 92

Hoang, Binh 15.0 M SALE 111074.86 low 96 97

Jones, Alissa 5.0 F NaN 53772.58 NaN 65 62

Downs, Deborah 7.0 F FINC 57139.90 high 90 86

Afshari, Anbar 6.0 F ADMN 69441.93 high 100 100

d_num = d2.drop(['Plan'], axis='columns')
d_num.head()

Other Issues

A kind of "weird" issue exists (especially if you are used to R). Subsets (slices) of data frames by default do not create clean copies. The new
data frame is still linked to the original data frame. Changes to the newly created data frame change the original as well! Modifications to the
data or indices of the copy are reflected back to the original object.

To make the subset data frame completely independent of d, what pandas calls a deep copy, invoke the subset extraction with the copy()
function. This function is not needed if there will not be further manipulation of the contents of the newly created data frame. Unless memory
is an issue for very large data sets, or you know that there will be no further modification, using copy() is a good practice.

d2 = d.loc[:, 'Salary'].copy()
d2.head()

Name

Ritchie, Darnell 53788.26

Wu, James 94494.58

Hoang, Binh 111074.86

Jones, Alissa 53772.58

Downs, Deborah 57139.90

Name: Salary, dtype: float64

A short-hand specification to select a column does not call any method or function and only includes the names of the relevant columns. When
learning a language, better to focus on the more complete implementation of a concept. However, there is a need to know this abbreviated
form because it appears often in real-world applications.

d2 = d['Salary']
d2.head()

Name

Ritchie, Darnell 53788.26

Wu, James 94494.58

Hoang, Binh 111074.86

Jones, Alissa 53772.58

Downs, Deborah 57139.90

Name: Salary, dtype: float64

Variable Transformation

Transform the values of a numerical variable with an equation, a function that specifies how each value is to be transformed. Transform the
values of a categorical variable with a recoding that specifies how each individual value is to be replaced with a new value.

Numeric Variable

To transform the values of a numeric variable is straightforward: Enter the corresponding equation that defines the transformation. Refer to a
variable within a data frame with the data frame name, such as d, and then the variable name within quotes and square brackets. For example,
the refer to the Salary variable in the d data frame: d['Salary'] .

This example creates a new variable, Salary000, defined as the original Salary variable with values divided by 1000, rounded to two decimal
digits. The new variable is added to the already existing variables in the d data frame. Running the equation creates the values of the new
variable for all rows of data in the data frame.

Years Gender Dept Salary JobSat Plan Pre Post Salary000

Name

Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92 53.79

Wu, James NaN M SALE 94494.58 low 1 62 74 94.49

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97 111.07

Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62 53.77

Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86 57.14

d['Salary000'] = round(d['Salary'] / 1000, 2)
d.head()

Categorical Variable

The function replace() recodes individual values of a categorical variable. Parameter to_replace indicates the values to be replaced, and
parameter value indicates the replacement value. Here replace across the entire data frame. Here recode both values of Gender with one
statement.

d.dtypes

Years float64

Gender object

Dept object

Salary float64

JobSat object

Plan int64

Pre int64

Post int64

Salary000 float64

dtype: object

This way to recode with replace() replaces any 'F' and 'M' in the entire data table, which turns out to be just for the values of Gender in this
example.

Years Gender Dept Salary JobSat Plan Pre Post Salary000

Name

Ritchie, Darnell 7.0 Male ADMN 53788.26 med 1 82 92 53.79

Wu, James NaN Male SALE 94494.58 low 1 62 74 94.49

Hoang, Binh 15.0 Male SALE 111074.86 low 3 96 97 111.07

Jones, Alissa 5.0 Female NaN 53772.58 NaN 1 65 62 53.77

Downs, Deborah 7.0 Female FINC 57139.90 high 2 90 86 57.14

d_obj = d.replace(to_replace=['F', 'M'], value=['Female', 'Male'])
d_obj.head()

This following use of replace() targets just values of the variable Gender. The curly brackets { and } indicate a specific pandas data type
called a dictionary. As with any dictionary, there is a keyword, and then the meaning. For example, the keyword 'F' has meaning 'Female'.

This example presents a dictionary within a dictionary. The keyword Gender as meaning 'F' and 'M', which each has their own meaning.

Years Gender Dept Salary JobSat Plan Pre Post Salary000

Name

Ritchie, Darnell 7.0 Male ADMN 53788.26 med 1 82 92 53.79

Wu, James NaN Male SALE 94494.58 low 1 62 74 94.49

Hoang, Binh 15.0 Male SALE 111074.86 low 3 96 97 111.07

Jones, Alissa 5.0 Female NaN 53772.58 NaN 1 65 62 53.77

Downs, Deborah 7.0 Female FINC 57139.90 high 2 90 86 57.14

dd = d.replace({'Gender': {'F': 'Female', 'M': 'Male'}})
dd.head()

Rename a Variable

Use the rename() function, which allows to specify both the old name and the new name. If defining a new data frame, safer to add the
copy() function to make sure it is a clean copy with no relation to the original data frame. Or, if wishing to just change the names in the
current data frame, no need to set d to another data frame. Set the inplace parameter to True instead.

In this example, a Python dictionary defines the values to replace each specified individual value. That is, replace the variable name Dept with
Section, and JobSat with Satisfaction.

Years Gender Section Salary Satisfaction Plan Pre Post Salary000

Name

Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92 53.79

Wu, James NaN M SALE 94494.58 low 1 62 74 94.49

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97 111.07

Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62 53.77

Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86 57.14

d2 = d.rename(columns = {'Dept': 'Section',
 'JobSat': 'Satisfaction'}).copy()
d2.head()

Convert to Category Variable Type

In any data analysis, always be aware of two fundamental types of variables: Numerical and categorical.

Categorical variable: A variable that consists of only a relatively small number of unique values.

An example of a categorical variable is the department in which an employee works, such as sales, marketing, etc. Another example is eye
color, with values of Blue, Green, Brown, Black, and Gray. The values of categorical variables may also be integers, such as the responses to an
attitude question on a survey from Strongly Disagree to Strongly Agree encoded as as integers from 1 to 7.

To represent the values of a categorical variable, Python presents the category variable type. Variables with character string values are
initially read as type object . Variables with integer values are initially read as type int64 . If the variable is categorical, then best to convert
the variable to type category . This conversion saves memory, and can change the order of the display of the categories (values).

Assign a new variable type with the astype() function.

d = pd.read_excel('http://lessRstats.com/data/employee.xlsx', index_col=0)
#d = pd.read_excel('data/employee.xlsx')

d.Gender = d.Gender.astype('category')
d.Dept = d.Dept.astype('category')
d.JobSat = d.JobSat.astype('category')
d.Plan = d.Plan.astype('category')
d.dtypes

Years float64

Gender category

Dept category

Salary float64

JobSat category

Plan category

Pre int64

Post int64

dtype: object

Loop: A computer instruction that repeats until a specified condition is reached.

Python has a type of loop called a for loop, which processes one or more expressions over a range of values.

Here use a for loop to consider each variable one at a time instead of a separate equation for each variable, as was done in the previous cell.
The loop applies the astype() function to each of the specified variables, beginning with Gender. The expression d[col] refers to each
specified variable, one at a time, beginning with Gender and ending with Plan.

d = pd.read_excel('http://lessRstats.com/data/employee.xlsx')
#d = pd.read_excel('data/employee.xlsx')
for col in ['Gender', 'Dept', 'JobSat', 'Plan']:
 d[col] = d[col].astype('category')
d.dtypes

Name object

Years float64

Gender category

Dept category

Salary float64

JobSat category

Plan category

Pre int64

Post int64

dtype: object

Name Years Gender Dept Salary JobSat Plan Pre Post

0 Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92

1 Wu, James NaN M SALE 94494.58 low 1 62 74

2 Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97

3 Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62

4 Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86

d.head()

Binning

Pandas function qcut() bins a continuous variable into discrete categories according to the specified quantiles. The optional labels
parameter provides names for the bins, otherwise integers numbered from 0.

Years Gender Section Salary Satisfaction Plan Pre Post Salary000 Sal_bin

Name

Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92 53.79 Low

Wu, James NaN M SALE 94494.58 low 1 62 74 94.49 Top

Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97 111.07 Top

Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62 53.77 Low

Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86 57.14 Med

Afshari, Anbar 6.0 F ADMN 69441.93 high 2 100 100 69.44 Med

d2['Sal_bin'] = pd.qcut(d2['Salary'], q=[0,.25,.50,.75,1],
 labels=['Low', 'Med', 'High', 'Top'])
d2.head(6)

