6/24/2021 02PreProcess.ipynb - Colaboratory

~ Data Pre-Processing

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

1 Preliminaries

o 1.1 Packages
o 1.2 Read

2 Create Dummy Variables
3 Missing Data

o

3.1 Assess Amount of Missing Data
3.2 Show Rows with Missing Data
3.3 Delete rows with Missing Data

o

o

o 3.4 Impute Missing Data

4 Search for Outliers

5 Transform Variables to Similar Scale

o 5.1 Min-Max Scaling

= 5.1.1 Apply to Original Data
= 5.1.2 Apply to New Data

o 5.2 Standardization Scaling
o 5.3 Robust Scaling

v Preliminaries

v~ Packages

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%3m-%d"), "at", now.strftime("$H:%M"))

Analysis on 2021-06-25 at 01:11
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

v Read

#d = pd.read excel('data/employee.xlsx')
d = pd.read_excel('http://lessRstats.com/data/employee.xlsx"')

The data values in the Name column are not values per se to analyze, but instead serve as row identifiers, ID's. As such, replace the default
integer row labels with the values of the column Name. Do so with the set_index() function.

d = d.set_index('Name')

d.head()

Years Gender Dept Salary JobSat Plan Pre Post

Name
Ritchie, Darnell 7.0 M ADMN 53788.26 med 1 82 92
Wu, James NaN M SALE 94494.58 low 1 62 74
Hoang, Binh 15.0 M SALE 111074.86 low 3 96 97
Jones, Alissa 5.0 F NaN 53772.58 NaN 1 65 62
Downs, Deborah 7.0 F FINC 57139.90 high 2 90 86

v Create Dummy Variables

designateMachine learning procedures cannot directly process categorical variables with non-numeric values. For example, consider a data set
with two values of Gender, coded as M and F. The variable Gender with this non-numerical coding cannot be entered into a machine learning
analysis, which requires numerical variables only.

Categorical variables with non-numerical values, however, can be converted to numerical representations. Many such conversions are possible.
Here we consider the most widely used conversion.

Dummy Variable: A numerically encoded variable for each level of a categorical variable, with a value of 1 if the level is present
and 0O if not.

The Gender variable becomes two dummy variables, Gender_F and Gender_M. For example, if a person's Gender is listed as F, then Gender_F is
0 and Gender_Mis 1.

Pandas provides the function get dummies() to covert a categorical variable to a corresponding set of dummy values, one for each category.
The parameter columns designates the variables to be converted.

One adjustment is needed. If you know the value of Gender_F for an individual is 1, then you also know that Gender_M is 0. So the value of
either one of two dummy variables implies the value of the other. To avoid redundancy, in general, for k levels of the categorical variables, the
number of dummy variables retained in the analysis is k — 1. For two levels of Gender, arbitrarily retain 2 — 1 = 1 of the dummy variables in
the analysis.

With get dummies (), drop the first dummy variable with the drop first parameter setto True. Alphabetically, F comes before M, so in the
following analysis, Gender_F is dropped. The original Gender variable is replaced with Gender_M.

For JobSat with three levels - High, Low, and Med -- create three dummy variables, each corresponding to the one of the three values. JobSat is
then replaced by two dummy variables for the Low and Med values. For example, if you know the values of JobSat_low and JobSat_med are
both 0, then you know that the value of JobSat_High is 1. Knowing two values implies the third, so retain only two dummy variables for JobSat
in the analysis.

d = pd.get dummies(d, columns=["Gender", "JobSat"], drop first=True)

d.head()

Years Dept Salary Plan Pre Post Gender M JobSat_low JobSat_med

Name
Ritchie, Darnell 7.0 ADMN 53788.26 1 82 92 1 0 1
Wu, James NaN SALE 9449458 1 62 74 1 1 0
Hoang, Binh 15.0 SALE 111074.86 3 96 97 1 1 0
Jones, Alissa 5.0 NaN 53772.58 1 65 62 0 0 0
Downs, Deborah 7.0 FINC 57139.90 2 90 86 0 0 0

Usually which particular dummy variable is dropped for each categorical variable is irrelevant. If, however, it is desired to drop a dummy variable
other than the first, then run get dummies() without the drop first parameter and manually drop the specified dummy variable from the
data frame.

v Missing Data

v Assess Amount of Missing Data

Machine learning functions generally do not work in the presence of missing data. Before machine learning analysis, examine the data for
missing data and adjust accordingly, either delete the row or column or impute the value.

A missing data value is indicated by the notation nan, an abbreviation for Not a Number. Sometimes functions or discussion of missing data
refer to missing data as na, which means Not Available.

Here James Wu has a missing value for the number of years he worked at the company. Data values for James Wu occupy the second row of
data, identified by row index 1. The row definition of 1:2 (confusingly) also refers to the second row. However, specifying the row as a range
results in the output's more visually appealing horizontal placement.

d.iloc[1l:2, 0:5]

Years Dept Salary Plan Pre
Name

Wu, James NaN SALE 94494.58 1 62

The isna() function indicates if a data value is missing. Follow with the sum() function to sum the number of missing values for a variable,
here all variables in the d data frame because no specific variable is specified. Follow with a second sum() function to sum the sums, that is,
the total number of missing values in the entire data frame.

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Years

Dept

Salary

Plan

Pre

Post
Gender_ M
JobSat_low
JobSat_med
dtype: inté64

O OO OO0 OO

Total Missing: 2

As a programming note, without using the print () function, the last row of code in a Jupyter cell that specifies output generates the default
output. If there is more than a single line of code that generates output, or if customization of the output is desired, such as adding a
descriptive label, then invoke print (), as in this example.

v~ Show Rows with Missing Data

The code for viewing all rows of missing data begins with the isna() function, which returns True if a data value is missing. The any()
function evaluates the data frame column-by-column and then returns True if there are any True values in the corresponding row. Putting the
expression within d[] selects only the rows with True, that is, with missing according to isna() .

d[d.isna().any(axis='columns')]

Years Dept Salary Plan Pre Post Gender_M JobSat_low JobSat_med

Name
Wu, James NaN SALE 94494.58 1 62 74 1 1 0
Jones, Alissa 5.0 NaN 53772.58 1 65 62 0 0 0

v Delete rows with Missing Data

The simplest method to address missing data deletes a row if it contains any missing data, what is called case deletion, or list-wise deletion.
The dropna() function deletes rows with missing data from d. It is also possible to apply the function to columns with parameter axis, which
indicates if the analysis applies to rows or columns. Often in Python coding people use 0 instead of the more descriptive rows'.

The process in this example removes the three rows with missing data, from 37 rows to 34 rows.

d.shape

(37, 9)

d = d.dropna()
d.shape

(35, 9)

The problem with dropping rows that contain missing data is that for some data sets much or most of the data can be deleted. Appropriate if
many data values in an entire row are missing, but perhaps not if just one missing data value across data for many variables. Or, sometimes a
single variable may contain many missing values, so better to delete the bad variable than delete so may corresponding rows of data (cases).

To illustrate, re-display the variable names and the first five rows of data. In the original data frame, James Wu is missing Years worked for the
company, and Alissa Jones is missing the Dept worked in as well and the Job Satisfaction rating. Both rows of data are now deleted from the
revised data frame.

d.head()

Years Dept Salary Plan Pre Post Gender M JobSat_low JobSat_med

Name
Ritchie, Darnell 7.0 ADMN 53788.26 1 82 92 1 0 1
Hoang, Binh 15.0 SALE 111074.86 3 96 97 1 1 0
Downs, Deborah 7.0 FINC 57139.90 2 90 86 0 0 0
Afshari, Anbar 6.0 ADMN 69441.93 2 100 100 0 0 0
Knox, Michael 18.0 MKTG 99062.66 3 81 84 1 0 1

v Impute Missing Data

A data frame can contain many variables, including variables not relevant to a particular analysis. Later we show that when doing machine
learning, we isolate a relevant set of variables for a given model in their own data structure. In machine learning, by tradition name this data
structure X, the uppercase representation to indicate more than a single variable in general.

To make this code more applicable to subsequent machine learning analyses, we subset the variables from the original data frame into a data
frame named X, the data that contains just the features (predictor variables) for the machine learning analysis.

X = d.loc[:, ['Years', 'Salary', 'Pre', 'Post']]

X.head()
Years Salary Pre Post
Name
Ritchie, Darnell 7.0 53788.26 82 92
Hoang, Binh 15.0 111074.86 96 97

Downs, Deborah 7.0 57139.90 90 86

Afshari, Anbar 6.0 6944193 100 100
Knox, Michael 18.0 99062.66 81 84
type(X)

pandas.core.frame.DataFrame

Instead of deleting rows or columns with missing data, an alternative approach imputes missing data values. Provide some reasonable guess
regarding a missing data value and then set this value in place of the missing data code. Impute with the simpleImputer () function. The
mean of each variable is the default value to replace missing data for a variable. A typical better choice replaces the mean with the median to
avoid the impact of potential outliers.

Specify the median with the strategy parameter. The missing values parameter indicates the value defined as a missing value, here Nan
as indicated by the numpy array value of nan. To impute the median, only select variables with numerical values.

Remember, first we have the Python language, then we have the numpy package built on top of base Python, then we have the pandas
package built on top of numpy . So when doing machine learning, we encounter functions from the original Python plus from both numpy and

pandas .

The £it() function computes the values to be used to fill in missing values. The transform() does the imputation.

from sklearn.impute import SimpleImputer

imp med = SimpleImputer(missing values=np.nan, strategy='median')
imp med = imp med.fit(X)

X = imp med.transform(X)

The transform() function outputs an array from the original input data frame.

type(X)

numpy .ndarray
The missing data for James Wu for Years now has a value of 9.0, that is, the value in the second row and first column of d.

X[1,0]

15.0

The best way to impute missing data involves predicting each missing data value from the remaining non-missing data values. This is more
complex and requires much more computer time, so maybe not practical for very large data sets.

v Search for Outliers

Sometimes some data values do not appear to part of the same distribution as the other data values.
Outlier: Value considerably different from most remaining values of the distribution.

Note that this definition of an outlier applies to the analysis of a single variable and so identifies what is called a univariate outlier. However, the
concept can also be applied to considering several variables simultaneously.

One motivation for outlier detection is that an outlier could represent a simple data collection or transcription error. Alternatively, an outlier
could represent a data value sampled from a population distinct from the population that generated the remaining data values and therefore
would bias the analysis regarding generalizations to what was intended to be the population of interest. So, an essential aspect of the data
analytic process first identifies and then explains the process that generated the anomalous values.

One approach to identify outliers for a single variable follows from the interquartile range (IQR). To compute, sort the values of the distribution
from smallest to largest.

Quartiles: Three values that divide the entire sorted distribution of values into quarters, four-equal size groups.

The first one-quarter of the values lie between the smallest value and the first quartile. The second quartile is the median, which occupies the
middle spot between the smallest and largest values in the sorted distribution. The third quartile separates the largest 25% of the values from
the smaller values.

Interquartile Range (IQR): Range of values that contains the middle 50% of the values in magnitude, the positive difference
between the 3rd and 1st quartiles.

Boxplot: The body of the box extends from approximately the 1st to the 3rd quartiles, with a line through the median and
perpendicular lines called whiskers extending out from the edges, with outliers plotted beyond the whiskers.

<« —>

lowest 25% | next 25%| next 25% largest 25%

of the values | of the of the values | of the values

values
hisk hiski
Iwm er | IR > whisker I *

smallest va!ue ls'r. median 3rd. largest vaIL}e outlier
not an outlier quartile quartile not an outlier

Values far from the edges of the box are labeled as outliers. The classic definition is that data values beyond 1.5 IQR’s and 3 IQR’s beyond the
1st and 3rd quartiles are labeled as potential outliers and outliers.

To plot a boxplot with seaborn, use the function boxplot () . By default, the boxplot is quite high. Can use the figure function with the
figsize parameter to specified a more narrow height.

plt.figure(figsize=(6,1.5))
sns.boxplot (x=d['Salary'], color='steelblue')
plt.xlabel('Annual Salary (USD)', fontsize=14)
plt.show()

+
I

T T T T
60000 80000 100000 120000
Annual Salary (USD)

Identify the row of data that has the maximum value for Salary with the idmax () function. The index is the pandas name for the row names,
which in the d data frame are the actual employee names, not integers. and display just the value of Salary instead of all the data values for that
row (case). (Another approach would be to use filter rows expression from the data wrangingly notebook and list all records larger than about
125,000 or something.)

d['Salary'].idxmax()

'Correll, Trevon'

round(d['Salary'].loc[d['Salary'].idxmax()], 2)

134419.23

The implication for data analysis is to examine the process that generated this anomalous data value. Is the person making that large salary a
high-level manager with the other salaries are for hourly workers? If different processes generate the salaries, then the outlier should be deleted
from further analysis, and the results of further analyses generalized to the appropriate population, that of hourly workers, in this example.

~ Transform Variables to Similar Scale

Machine learning algorithms tend to generate more useful results when the variables on which they operate are all on about the same scale.
That means the data values for each of the variables have about the same range at least, and maybe even about the same mean and standard
deviation. Variables with the values as they originally exist do not generally arrive for analysis sharing the same scale. Weight in pounds, for
example, is scaled in entirely different units than Height in inches, or Annual_Income in USD.

Transform the data values of variables with different scaling to obtain similar scales. The re-scalings discussed here are all linear.

Linear transformation: Does not change the shape of the underlying distribution, nor its relations with other variables, just its
scale.

After the re-scaling, an approximately normal distribution remains approximately normal, and a skewed distribution remains skewed.

For a linear transformation, multiply each data value by a constant and add another constant. That is, transform variable x to y with
y = a + bx. An example is converting measurement of length in feet to inches in which the data values are divided by 12, that is, b = 1/12
and a = 0. That is, to convert feet to inches, divide each data value expressed in feet by 12.

The Python package for machine learning, sklearn, module preprocessing, provides several rescaling possibilities.
from sklearn import preprocessing

Specify the variables to transform in their own data frame.

As a programming note, subsets (slices) of data frames by default do not create clean copies. Changes to the values of X can lead back to
changes in the original data frame from which X was derived. To make X completely independent of d, invoke the subset slice with the copy ()
function.

X = d[['Years', 'Salary', 'Pre']].copy()
X.loc[:,'Pre'] = X.loc[:, 'Pre'].astype('float64"')

X.head()
Years Salary Pre
Name
Ritchie, Darnell 7.0 53788.26 82.0
Hoang, Binh 15.0 111074.86 96.0

Downs, Deborah 7.0 57139.90 90.0
Afshari, Anbar 6.0 69441.93 100.0

Knox, Michael 18.0 99062.66 81.0

How do know what (if any) preprocessing methods to choose? There are some guidelines, but the most general answer follows the typical
machine learning approach: Try the various possibilities and choose the algorithm that provides the most accurate forecasting.

Suppose we wish to explain a score on a post test from years worked at the company, annual salary, and scores on a corresponding pre-test. In
the following examples, isolate those three variables into a data structure called X.

v~ Min-Max Scaling

A common rescaling used in machine learning transforms the variables to have the same minimum and maximum values.
Min-Max Scaling: Convert all data values for a variable so that the minimum value is 0 and the maximum value is 1.

Write this transformation for the value of x in the i’ row of data values of variable x as:

_ x; — min(x)
Vi max(x) — min(x)
Express as a linear function with a = —(min(x)/range(x)) and b = 1/range(x).

The MinMaxScaler provides the needed transformation from the minimum and maximum values of each variable to which the transformation
is applied.

from sklearn.preprocessing import MinMaxScaler
mm_scaler = preprocessing.MinMaxScaler()

v Apply to Original Data

At this point, X is a (pandas) data frame.

type(X)

pandas.core.frame.DataFrame

The £it() function calculates the needed information to provide the rescaling: the minimum and maximum needed for each variable. The
transform() function performs the rescaling using this information. Combine both methods with a single invocation of fit transform().

The MinMaxScaler works with and retains missing data. Any entered non-numeric variables, however, cannot be processed and cause the
routine to terminate.

Xmm = mm_scaler.fit transform(X)

After processing by the MinMaxScaler and transformed, X is now a (numpy) array. This is one of the complications of Python applied to data
analysis, the need for external packages, here both numpy and pandas . Unfortunately, sometimes, as in this example, data structures are
created that conform to those of another package than what was input. A numpy array is the equivalent data structure to a pandas data frame.

type (Xmm)

numpy .ndarray

Some statistical computations use panda data frames instead of numpy arrays. The default display of the data frame also is more aesthetic
than the array. Convert the transformed X back to a data frame. The column names also have to be manually added as the numpy array deletes
the original names.

Examine the first five rows of the data frame. The values of each of the variables Years, Salary, and Pre were initially on discordant scales, but
now have values that range from 0 to 1.

Xmm = pd.DataFrame(Xmm, columns=['Years', 'Salary', 'Pre'])
Xmm.head()
Years Salary Pre
0 0.260870 0.086793 0.560976
1 0.608696 0.735607 0.902439
2 0.260870 0.124753 0.756098
3 0.217391 0.264082 1.000000

4 0.739130 0.599560 0.536585

Confirm the success of the transformations of the three variables by using the pandas data frame methods min and max.

Xmm.min()

Years 0.
Salary 0.
Pre 0.

0
0
0
dtype: floaté

4
Xmm.max ()
Years 1.
Salary 1.
Pre 1.

0
0
0
dtype: floaté6

4
Can transform any data with the same values from the previous application of fit (). Here manually transform the second row of data in X.

mm_scaler.transform([[15.0, 111074.86, 96.0]1])

array([[0.60869565, 0.73560716, 0.90243902]])

You can also transform manually. The linear equation by which each data value is transformed is available from the computed scale and
min_ data structures. Each computed data structure contains one value for each variable in the data frame that is transformed.

print('Multiplier:', mm scaler.scale .round(3))
print('Additive:', mm_scaler.min_ .round(3))

Multiplier: [0.043 0. 0.024]
Additive: [-0.043 -0.522 -1.439]

To illustrate, manually compute the transformed value of Salary for the second row of data in X, which equals the corresponding value in the
above display portion of the X data frame.

mm_scaler.scale [1]*111074.86 + mm scaler.min [1]

0.7356071617792598

v~ Apply to New Data

The purpose of supervised learning is to develop a model for forecasting from the values of the feature variables. If the data have undergone a
scaling transformation such as Min-Max, then any new data must undergo that same transformation before generating a forecast.

The new data can be transformed manually, as in the immediately previous example. Or, apply the information already obtained from the
fit() function encoded in mm_scaler to the transformation with the transform() function.

In this example, suppose an employee has worked at the company for 8 years, has a salary of 76,492 USD, and scored an 89 on the pre-test.
Next, compute the person's forecasted salary.

X new = [[8,76492, 89]]

X new = mm_scaler.transform(X_ new)

X_new

array([[0.30434783, 0.34392983, 0.73170732]])

In this example, only a single line of values for the three features was processed. Of course, the number of rows of X_new can be a full data
frame of new values, all processed at once.

https://colab.research.google.com/drive/1DjjUjF7_pcVBOBeVF8a3pjEgmApkK755#scrollTo=9bvD1GwODIVQ 172

6/24/2021

02PreProcess.ipynb - Colaboratory

v Standardization Scaling

Another linear transformation of the data values converts the original data values to z-scores, this one taught in all introductory stat courses.
Standard score: The number of standard deviations a data value is from the mean.

Write the transformation of the data values for variable x as:

X;i—m

zZi= ———
N

To standardize, for each data value of a variable, for the i’ row of data, subtract the mean of the data and divide by the standard deviation of
the data. The result, a distribution of z-scores, has a mean of 0 and a standard deviation of 1.

For this linear transformation, set a = —(m/s) and b = 1/s, where s is the sample standard deviation and m is the sample mean.

The standardscaler provides the computations for standardization of variables. IF (not a requirement for standardization) a variable is
normal, then most values will be within 2.5 or 3 standard deviations from the mean, that is, standard scores of less than 3.0 and greater than
-3.0.

from sklearn.preprocessing import StandardScaler
s_scaler = preprocessing.StandardScaler()

Get the mean and standard deviation of each variable with the £it () function. Do the rescaling with the transform() function. Combine both

with the fit transform() function.

Xst = s_scaler.fit transform(X)
Xst = pd.DataFrame(Xst, columns=['Years', 'Salary', 'Pre'])

Xst.head()
Years Salary Pre
0 -0.443135 -0.926820 0.201793
1 0.966840 1.729495 1.407629
2 -0.443135 -0.771408 0.890842
3 -0.619382 -0.200977 1.752154
4 1.495581 1.172503 0.115662

The success of the transformation is shown by examining the mean and standard deviation of the three transformed, now standardized,
variables.

round(Xst.mean(), 4)

Years 0.0
Salary 0.0
Pre -0.0

dtype: float64

round(Xst.std(), 4)

Years 1.0146
Salary 1.0146
Pre 1.0146

dtype: float64

The range of the data roughly approximates that of normal data, though skewed right. In a perfectly normal distribution the standardized values

would range from about -2.5 to 2.5.

Xst.min()
Years -1.500617
Salary -1.282158
Pre -1.779224

dtype: floaté64

Xst.max()
Years 2.553063
Salary 2.811947
Pre 1.752154

dtype: float64
Can transform any data with the same values from fit().

s_scaler.transform([[15.0, 111074.86, 96.0]])

array([[0.96684042, 1.72949472, 1.4076293]])

Can also transform manually. The computed values by which each data value is transformed is available from the computed scale and
mean_ data structures. Each computed data structure contains one value for each variable in the data frame that is transformed.

print('mean:', s_scaler.mean_)
print('sd:', s_scaler.scale)

mean: [9.51428571e+00 7.37762411e+04 7.96571429e+01]
sd: [5.67385698e+00 2.15661941e+04 1.16101996e+01]

To illustrate, compute the transformed value of Salary for the second row of data in X.

(111074.86 - s_scaler.mean [1]) / s_scaler.scale [1]

1.7294947196040262

X.head()

Years Salary Pre

Name
Ritchie, Darnell 7.0 53788.26 82.0
Hoang, Binh 15.0 111074.86 96.0
Downs, Deborah 7.0 57139.90 90.0
Afshari, Anbar 6.0 69441.93 100.0
Knox, Michael 18.0 99062.66 81.0

v Robust Scaling

Robust scaling resembles standardization, except it is more robust to the presence of outliers. The presence of outliers does not dramatically

change the resulting scaled values as much as standardization in which an outlier can have a significant impact on the mean and an even
bigger impact on increasing the size of the standard deviation (which depends on squared deviation scores).

Robust scaling accomplishes this robustness by replacing the mean in the standard score formula with the more robust median and the

standard deviation with the more robust interquartile range. The median is the second quartile, and the IQR is the difference between the third

and first quartiles. Unlike the mean and standard deviation, no matter how extreme a few values are in a distribution, the quartiles remain the
same.

Robust scale score: The number of IQR's a data value is from the median.

Write the transformation of the data values for variable x as:
x; — median

bust =
robustscore TOR

That is, to do a robust scaling, for each data value of a variable, for the j** row of data, subtract the median of the data and divide by the IQR of

the data.

from sklearn.preprocessing import RobustScaler
r _scaler = preprocessing.RobustScaler()

Xrb = r_scaler.fit transform(X)
Xrb = pd.DataFrame(Xrb, columns=['Years', 'Salary', 'Pre'])

Xrb.head()
Years Salary Pre
0 -0.250 -0.554057 0.108108
1 0750 1.459989 0.864865
2 -0.250 -0.436222 0.540541
3 -0.375 -0.003715 1.081081
4 1125 1.037672 0.054054

The specific characteristics of the transformed variables differ from standardization, but the general results remain. The means are somewhat

close to 0. The standard deviations are less than 1 but certainly much closer to 1 than from the original distributions. The minimum and
maximum values are less than the range of the standardized variables but roughly similar, again, especially compared to the original
distributions.

round(Xrb.mean(), 4)

Years 0.0643
Salary 0.1487
Pre -0.0185

dtype: float64

round(Xrb.std(), 4)

Years 0.7196
Salary 0.7693
Pre 0.6367

dtype: float64

round(Xrb.min(), 4)

Years -1.0000
Salary -0.8235
Pre -1.1351

dtype: floaté64

round(Xrb.std(), 4)

Years 0.7196
Salary 0.7693
Pre 0.6367

dtype: float64

v 0s completed at 10:11 PM o

https://colab.research.google.com/drive/1DjjUjF7_pcVBOBeVF8a3pjEgmApkK755#scrollTo=9bvD1GwODIVQ

2/2

