~ Cluster Analysis with the sklearn ML Framework

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

Table of Contents

The following data file contains information on 1199 products regarding gross revenue and number of customers.

Data: http://web.pdx.edu/~gerbing/data/Products.csv

from datetime import datetime as dt
now dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"),

"at", now.strftime("%H:%3M"))
Analysis on 2021-08-06 at 00:00

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

a. Read the data into a data frame, display its basic characteristics.

d = pd.read csv('http://web.pdx.edu/~gerbing/data/Products.csv’')
d.shape

(1197, 2)
d.head()

Customers Revenue

0 5.0 15.253

1 3.0 12.710

2 4.0 3.548

3 4.0 9.874

4 12.0 1.000

b. Create the X data structure for this cluster analysis.

X d[['Customers', 'Revenue']]
X.head()

Customers Revenue

0 5.0 15.253
1 3.0 12.710
2 4.0 3.548
3 4.0 9.874
4 12.0 1.000
n_features = X.shape[l]

print('Number of features:', n_features)

Number of features: 2

Missing data check.

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Customers 0
Revenue 0
dtype: inté64

Total Missing: 0

c. Standardize the data.

from sklearn import preprocessing

from sklearn.preprocessing import StandardScaler
s_scaler preprocessing.StandardScaler()

X s_scaler.fit transform(X)

X = pd.DataFrame(X, columns=['Customers', 'Revenue'])
X.head()
Customers Revenue
0 -0.720023 2.436975
1 -1.331928 1.819275
2 -1.025976 -0.406194
3 -1.025976 1.130405
4 1.421644 -1.025108

d. Verify the standardization.

Use describe() to verify the transformations correctly resulted in z-scores for each of the X variables.

X.describe().round(3)

Customers Revenue
count 1197.000 1197.000
mean 0.000 0.000
std 1.000 1.000
min -1.944 -1.499
25% -0.720 -0.842
50% -0.108 -0.464
75% 0.810 0.671
max 2.645 2.486

The mean and standard deviation of each standardized variable are 0 and 1, respectively.

e. Do a hyper-parameter tuning from 2 to 15 clusters to help determine the number of clusters that best describe this data set. Compute inertia
and silhouette for each model.

Create the inertia and silhouette data frames, initially as empty containers. Fitting the model, named model, with a specified number of clusters
creates computed variables model.inertia_ and model.labels_.

from sklearn.cluster import KMeans

from sklearn import metrics

from sklearn.metrics import pairwise distances

from sklearn.metrics import silhouette samples, silhouette_ score
max_nc = 15

inertia = []

silhouette = []

for i in range(2, max nc):
model KMeans(n_clusters=i, init='k-means++', n_init=100, random_ state=11)
model.fit(X)
inertia.append(model.inertia)

s_score = metrics.silhouette score(X, model.labels , metric='euclidean')
silhouette.append(s_score)

f. Create a table of inertia and the silhouette index for each model.

print('{:>2}{:>11}{:>9}"'.format('nc',

"% 24)

for i in range(2, max nc):
print('{:>2d}{:>8.3f}{:>12.3f}"'.format(i,

'Silhouette', 'Inertia'))

print('-

silhouette[i-2], inertia[i-2]))

nc Silhouette Inertia
2 0.623 668.607
3 0.587 419.614
4 0.509 269.091
5 0.462 218.206
6 0.441 174.582
7 0.430 154.043
8 0.415 134.885
9 0.416 121.310
10 0.400 111.669
11 0.387 101.875
12 0.384 94.910
13 0.368 88.391
14 0.376 82.887

g. Create a plot of inertia and a plot of silhouette for each model.

plt.plot(range(2, max_nc), inertia, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')

Text (0,

0.5, 'Inertia')

] 8 10
Number of clusters

P A
=

plt.plot(range(2, max_nc), silhouette, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Silhouette')

plt.show()

0.60 1

0.55 1

0.50 1

Silhouette

0.45 1

0.40 1

] B 10
MNumber of clusters

h. What appears to be the optimal number of clusters? Why?

A clear three-cluster solution. Inertia drops quickly to three clusters, then levels off. Average silhouette score drops quicly after three clusters.

i. Do the cluster analysis just for the optimal number of clusters.

model KMeans (n_clusters=3,
model.fit(X)

init="'k-means++', n_init=100, random state=11)

KMeans (algorithm='auto', copy x=True, init='k-means++', max iter=300,
n _clusters=3, n init=100, n_jobs=None, precompute distances='auto',
random_state=11, tol=0.0001, verbose=0)

j. Evaluate fit just for this one cluster analysis.

s_score = metrics.silhouette score(X, model.labels , metric='euclidean')
% model.inertia)

print('Error: %.3f

print('Mean silhouette score: %.3f' % s_score)
Error: 419.614
Mean silhouette score: 0.587

k. Construct the histogram of the individual silhouette coefficients. Comment on fit.

s_values
plt.hist(s_values.round(3))
plt.xlabel('Silhouette Coefficient')
plt.ylabel('Count')

silhouette samples (X, model.labels)

Text(0, 0.5, 'Count')

350 1

300 A

250 1

S 200 -
S

150 A

100 A

50 -

D_

00 0.1 0.2 03 04 05 0.6 0.7 0.8

Silhouette Coefficient

The four-cluster solution appears to fit the data well. Most individual silhouette are above 0.5, with the largest group, by far with values above
0.7. Moreover, there are no negative values.

I. Assign the cluster membership and corresponding silhouette score to each sample in the data frame of the original data.

d['Cluster']
d['S'] = s_values.round(3)

#d.to_csv("Clustered.csv", header=True)

model.labels

d.head()
Customers Revenue Cluster S
0 5.0 15.253 2 0.565
1 3.0 12.710 2 0.749
2 4.0 3.548 1 0.436
3 4.0 9.874 1 0.037
4 12.0 1.000 0 0.703

m. How many samples are in each cluster?

lab = pd.DataFrame(model.labels , columns=['labels'])
count = lab['labels'].value counts()
count

0 610

1 431

2 156

Name: labels, dtype: int64

n. Show the standardized cluster centers. Interpret.

dcc pd.DataFrame(model.cluster centers ,
columns=['Customers', 'Revenue']).round(3)
dcc['Freq'] count

dcc.sort_values('Freq', ascending=False)

Customers Revenue Freq

0 0.822
1 -0.690
2 -1.308

Negative standardized values are below the mean. Cluster 0 drivers drive below average distance and have below average speeding.

-0.838 610
0.505 431
1.881 156

*0. Get the cluster centroids for the original, unstandardized data.

avg = d.groupby(d['Cluster']).mean().round(2)

d_avg
d_avg|

d_avg

'Freq']

count

#d_avg.to_csv("ClustCenters.csv", header=True)

d avg = d_avg.reset_ index()
d_avg
Cluster Customers Revenue Freq
0 0 10.04 1.77 610
1 1 5.10 7.30 431
2 2 3.08 12.96 156

pd.DataFrame(avg, columns=['Customers', 'Revenue’']).round(3)

d _avg.sort values('Customers', ascending=False)

Cluster 0 drivers drive on average about 50 miles less than Cluster 1 drivers, per trip. Cluster 0 drivers speed 5 mpg over teh speed limit about 9
and one-half percent less than Cluster 1 drivers.

p. Plot the scatterplot of the data and the cluster centroids.

if n_ features
sns.scatterplot(d['Customers'], d['Revenue'], s=50,
hue=d['Cluster'], palette=sns.color palette(n_colors=3))
sns.scatterplot(d_avg['Customers'], d_avg['Revenue'], s=125,
color="DimGray", legend=False)

plt.grid()

/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43: FutureWarning

FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43: FutureWarning
FutureWarning
(]
15.0 4 ¢ & & H Cluster
82 .i H e e 0
518w 8 § © e 1
1] & @ e 2
s g .
10.0 A = 8 8 & o o
BEEEERE
i1}] - - 1
2 754 ® 2 5 : &
o s T 5 H -
= - - - »
u LI s s ©
== - - L J
5.0 1 H s
g] 8 8 0
25 | AEREEEER
) 'BEENEEREEEE
- SRR ERE
0.0 4 i o5 ¢ e & o
T T T T T T T T
2 4 & B 10 12 14 16

Customers

http://web.pdx.edu/~gerbing/data/Products.csv

