
Cluster Analysis with the sklearn ML Framework

David Gerbing

The School of Business

Portland State University

gerbing@pdx.edu

Table of Contents

The following data file contains information on 1199 products regarding gross revenue and number of customers.

Data: http://web.pdx.edu/~gerbing/data/Products.csv

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-08-06 at 00:00


import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

a. Read the data into a data frame, display its basic characteristics.

d = pd.read_csv('http://web.pdx.edu/~gerbing/data/Products.csv')
d.shape

(1197, 2)

Customers Revenue

0 5.0 15.253

1 3.0 12.710

2 4.0 3.548

3 4.0 9.874

4 12.0 1.000

d.head()

b. Create the X data structure for this cluster analysis.

Customers Revenue

0 5.0 15.253

1 3.0 12.710

2 4.0 3.548

3 4.0 9.874

4 12.0 1.000

X = d[['Customers','Revenue']]
X.head()

n_features = X.shape[1]
print('Number of features:', n_features)

Number of features: 2


Missing data check.

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Customers    0

Revenue      0

dtype: int64


Total Missing: 0


c. Standardize the data.

from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler 
s_scaler = preprocessing.StandardScaler()
X = s_scaler.fit_transform(X)

Customers Revenue

0 -0.720023 2.436975

1 -1.331928 1.819275

2 -1.025976 -0.406194

3 -1.025976 1.130405

4 1.421644 -1.025108

X = pd.DataFrame(X, columns=['Customers','Revenue'])
X.head()

d. Verify the standardization.

Use describe()  to verify the transformations correctly resulted in -scores for each of the X variables.𝑧

Customers Revenue

count 1197.000 1197.000

mean 0.000 0.000

std 1.000 1.000

min -1.944 -1.499

25% -0.720 -0.842

50% -0.108 -0.464

75% 0.810 0.671

max 2.645 2.486

X.describe().round(3)

The mean and standard deviation of each standardized variable are 0 and 1, respectively.

e. Do a hyper-parameter tuning from 2 to 15 clusters to help determine the number of clusters that best describe this data set. Compute inertia
and silhouette for each model.

Create the inertia and silhouette data frames, initially as empty containers. Fitting the model, named model, with a specified number of clusters
creates computed variables model.inertia_ and model.labels_.

from sklearn.cluster import KMeans
from sklearn import metrics
from sklearn.metrics import pairwise_distances
from sklearn.metrics import silhouette_samples, silhouette_score
 
max_nc = 15
inertia = []
silhouette = []
 
for i in range(2, max_nc):
    model = KMeans(n_clusters=i, init='k-means++', n_init=100, random_state=11)
    model.fit(X)
    inertia.append(model.inertia_)
    s_score = metrics.silhouette_score(X, model.labels_, metric='euclidean')
    silhouette.append(s_score)

f. Create a table of inertia and the silhouette index for each model.

print('{:>2}{:>11}{:>9}'.format('nc', 'Silhouette', 'Inertia'))
print('-' * 24)
for i in range(2, max_nc):
    print('{:>2d}{:>8.3f}{:>12.3f}'.format(i, silhouette[i-2], inertia[i-2]))

nc Silhouette  Inertia

------------------------

 2   0.623     668.607

 3   0.587     419.614

 4   0.509     269.091

 5   0.462     218.206

 6   0.441     174.582

 7   0.430     154.043

 8   0.415     134.885

 9   0.416     121.310

10   0.400     111.669

11   0.387     101.875

12   0.384      94.910

13   0.368      88.391

14   0.376      82.887


g. Create a plot of inertia and a plot of silhouette for each model.

Text(0, 0.5, 'Inertia')

plt.plot(range(2, max_nc), inertia, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')

plt.plot(range(2, max_nc), silhouette, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Silhouette')
plt.show()

h. What appears to be the optimal number of clusters? Why?

A clear three-cluster solution. Inertia drops quickly to three clusters, then levels off. Average silhouette score drops quicly after three clusters.

i. Do the cluster analysis just for the optimal number of clusters.

model = KMeans(n_clusters=3, init='k-means++', n_init=100, random_state=11)
model.fit(X)

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,

       n_clusters=3, n_init=100, n_jobs=None, precompute_distances='auto',

       random_state=11, tol=0.0001, verbose=0)

j. Evaluate fit just for this one cluster analysis.

s_score = metrics.silhouette_score(X, model.labels_, metric='euclidean')
print('Error: %.3f ' % model.inertia_)
print('Mean silhouette score: %.3f' % s_score)

Error: 419.614 

Mean silhouette score: 0.587


k. Construct the histogram of the individual silhouette coefficients. Comment on fit.

Text(0, 0.5, 'Count')

s_values = silhouette_samples(X, model.labels_)
plt.hist(s_values.round(3))
plt.xlabel('Silhouette Coefficient')
plt.ylabel('Count')

The four-cluster solution appears to fit the data well. Most individual silhouette are above 0.5, with the largest group, by far with values above
0.7. Moreover, there are no negative values.

l. Assign the cluster membership and corresponding silhouette score to each sample in the data frame of the original data.

Customers Revenue Cluster S

0 5.0 15.253 2 0.565

1 3.0 12.710 2 0.749

2 4.0 3.548 1 0.436

3 4.0 9.874 1 0.037

4 12.0 1.000 0 0.703

d['Cluster'] = model.labels_
d['S'] = s_values.round(3)
#d.to_csv("Clustered.csv", header=True)
d.head()

m. How many samples are in each cluster?

lab = pd.DataFrame(model.labels_, columns=['labels'])
count = lab['labels'].value_counts()
count 

0    610

1    431

2    156

Name: labels, dtype: int64

n. Show the standardized cluster centers. Interpret.

Customers Revenue Freq

0 0.822 -0.838 610

1 -0.690 0.505 431

2 -1.308 1.881 156

dcc = pd.DataFrame(model.cluster_centers_, 
          columns=['Customers','Revenue']).round(3)
dcc['Freq'] = count
dcc.sort_values('Freq', ascending=False)

Negative standardized values are below the mean. Cluster 0 drivers drive below average distance and have below average speeding.

*o. Get the cluster centroids for the original, unstandardized data.

Cluster Customers Revenue Freq

0 0 10.04 1.77 610

1 1 5.10 7.30 431

2 2 3.08 12.96 156

avg = d.groupby(d['Cluster']).mean().round(2)
d_avg = pd.DataFrame(avg, columns=['Customers','Revenue']).round(3)
d_avg['Freq'] = count
d_avg = d_avg.sort_values('Customers', ascending=False)
#d_avg.to_csv("ClustCenters.csv", header=True)
d_avg = d_avg.reset_index()
d_avg

Cluster 0 drivers drive on average about 50 miles less than Cluster 1 drivers, per trip. Cluster 0 drivers speed 5 mpg over teh speed limit about 9
and one-half percent less than Cluster 1 drivers.

p. Plot the scatterplot of the data and the cluster centroids.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning
  FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning
  FutureWarning


if n_features == 2:
    sns.scatterplot(d['Customers'], d['Revenue'], s=50, 
                    hue=d['Cluster'], palette=sns.color_palette(n_colors=3))
    sns.scatterplot(d_avg['Customers'], d_avg['Revenue'], s=125, 
                    color="DimGray", legend=False)
    plt.grid()

http://web.pdx.edu/~gerbing/data/Products.csv

