~ Classification with the sklearn ML Framework

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

Table of Contents

1 Preliminaries

o 1.1 Misc
o 1.2 Access Solution Algorithm

2 Get and Structure Data

3 Grid search: Hyperparameter tuning with cross-validation
4 Estimate Model on All Data

5 lllustrate the Model

e 6 Apply_the Model

Preliminaries

A classic application of supervised machine learning classification is customer churn. The ability to successfully forecast a customer of a
company's services and products about to no longer be a customer allows the company to commit resources to attempt to salvage the
relationship.

The following data file contains information on over 7000 customers of a telecom service, including former customers who left the service plan
within the last 30 days the data was collected.

Data: http://web.pdx.edu/~gerbing/data/churn_clean.csv

The data has been cleaned according to the analysis for last week, so no need to repeat the cleaning process, or the data exploration.

Misc

from datetime import datetime as dt
dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"),

now
"at", now.strftime("%H:%M"))

Analysis on 2021-08-02 at 00:55

import os
os.getcwd()

' /content'

import pandas as pd
import matplotlib.pyplot as plt

Get and Structure Data

a. Read the cleaned data into a data frame, and display its dimensions.

d = pd.read_csv('http://web.pdx.edu/~gerbing/data/churn clean.csv')
#d = pd.read_csv('data/churn_clean.csv')
d.shape

(7032, 10)

b. Display the variable names and the first six rows of data and verify variable types.

d.head()
Charges TotalCharges MtoM Paperless Check Phone tenure Dependents Inte
0 29.85 29.85 1 1 0 0 1 0
1 56.95 1889.50 0 0 1 1 34 0
2 53.85 108.15 1 1 1 1 2 0
3 42.30 1840.75 0 0 0 0 45 0
4 70.70 151.65 1 1 0 1 2 0
d.dtypes
Charges float64
TotalCharges float64
MtoM inté64
Paperless int64
Check inté64
Phone int64
tenure inté64
Dependents inté64
Internet inté64
Churn int64

dtype: object

All variables are numeric, either float (with decimal digits) or integers. The target variable Churn is already scaled as the needed 0/1 integer
coding.

c. Create the features and target data structures. Arbitrarily score 1 for Male. Create the lists classes and features for the graph later on.

classes = ['Stay', 'Churn'] # for graph
y = d[ 'Churn']
features = ['Charges', 'MtoM', 'Paperless', 'Check',
'Phone', 'tenure', 'Dependents', 'Internet']
X = d[features]
X.shape
(7032, 8)

d. Do a MinMax transformation to get all data into a 0 to 1 range. Verify.

from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler
mm_scaler

preprocessing.MinMaxScaler()

X = mm_scaler.fit transform(X)

X = pd.DataFrame(X, columns=features)

X.head()

Charges MtoM Paperless Check Phone tenure Dependents Internet

0 0.115423 1.0 1.0 0.0 0.0 0.000000 0.0 0.0
1 0.385075 0.0 0.0 1.0 1.0 0.464789 0.0 0.0
2 0.354229 1.0 1.0 1.0 1.0 0.014085 0.0 0.0
3 0.239303 0.0 0.0 0.0 0.0 0.619718 0.0 0.0
4 0.521891 1.0 1.0 0.0 1.0 0.014085 0.0 0.0

Variables Charges and tenure are now on a scale from 0 to 1.

print(X.Charges.min())
print(X.Charges.max())

0.0
0.9999999999999999

print(X.tenure.min())
print(X.tenure.max())

0.0
1.0

Grid search: Hyperparameter tuning with cross-validation

from sklearn.tree import DecisionTreeClassifier
dt_model

DecisionTreeClassifier (max depth=5)

e. Do a grid search with a 3-fold cross-validation. Search on the following parameters and values: maximum depth with values of 3 and 4, and
maximum features with values of 4, 6, and 8.

from sklearn.model selection import KFold

kf3 KFold(n_splits=3, shuffle=True, random_ state=1)

from sklearn.model_ selection import GridSearchCvV

params = {'max depth': [3, 4],
'max_ features': [4, 6, 8]}
grid search = GridSearchCV(dt model, param grid=params, cv=kf3,

'recall’,
return train_ score=True)

scoring=('accuracy', 'precision'), refit=False,

grid_search.fit(X,y)

GridSearchCV(cv=KFold(n_splits=3, random_ state=1, shuffle=True),
error_score=nan,
estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,

criterion="'gini', max depth=5,
max_features=None,
max leaf nodes=None,
min_impurity decrease=0.0,
min_impurity_ split=None,
min_samples_leaf=1,
min samples split=2,
min_weight fraction leaf=0.0,
presort='deprecated’,
random_state=None,
splitter='best'),
iid='deprecated', n_jobs=None,
param grid={'max_depth': [3, 4], 'max features': [4, 6, 8]},
pre_dispatch='2*n_jobs', refit=False, return_train_score=True,
scoring=('accuracy', 'recall',6 'precision'), verbose=0)

f. Display all the results of the cross-validation grid search.

d_results = pd.DataFrame(grid search.cv_results_).round(3)

d_results

d results.drop([ 'params'], axis='columns')

d results.

transpose()

0 1 2 3 4 5

mean_fit_time 0.011 0.006 0.005 0.005 0.006 0.006
std_fit_time 0.006 0.001 0 0 0 0
mean_score_time 0.008 0.006 0.005 0.005 0.005 0.006
std_score_time 0.003 0 0 0 0 0.002
param_max_depth 3 3 3 4 4 4
param_max_features 4 6 8 4 6 8
split0_test_accuracy 0.765 0.794 0.797 0.79 0.799 0.799
split1_test_accuracy 0.78 0.781 0.781 0.767 0.788 0.788
split2_test accuracy 0.778 0.778 0.778 0.749 0.784 0.784
mean_test_accuracy 0.774 0.784 0.785 0.769 0.79 0.79
std_test_accuracy  0.007 0.007 0.008 0.017 0.006 0.006
rank_test_accuracy 5 4 3 6 1 1
split0_train_accuracy 0.759 0.779 0.782 0.787 0.79 0.789
split1_train_accuracy 0.791 0.79 0.79 0.778 0.796 0.794
split2_train_accuracy 0.791 0.791 0.791 0.749 0.793 0.795
mean_train_accuracy 0.78 0.787 0.787 0.772 0.793 0.793
std_train_accuracy 0.015 0.005 0.004 0.016 0.002 0.002
split0_test_recall 0.527 0.427 0.404 0.432 0.496 0.496
split1_test_recall 0.363 0.374 0.374 0.22 0.482 0.491
split2_test_recall 0.355 0.355 0.355 0.548 0.358 0.462
mean_test_recall 0.415 0.385 0.378 0.4 0.445 0.483
std_test_recall 0.079 0.031 0.02 0.136 0.062 0.015
rank_test_recall 3 5 6 4 2 1
split0_train_recall 0.511 0.393 0.373 0.433 0.489 0.488
split1_train_recall 0.393 0.399 0.399 0.242 0.484 0.494
split2_train_recall 0.372 0.372 0.372 0.569 0.373 0.477
mean_train_recall 0.425 0.388 0.381 0.415 0.448 0.487
std_train_recall 0.061 0.012 0.012 0.134 0.054 0.007
split0_test_precision 0.549 0.66 0.685 0.643 0.647 0.647
split1_test_precision 0.655 0.653 0.653 0.699 0.634 0.63
split2_test_precision 0.675 0.675 0.675 0.538 0.699 0.643

g. Display the most relevant results, the means.

d_summary

d results|[[ 'param max depth',
'mean_test recall’,

'param max features',

'mean_test precision',

'mean_test_accuracy',
'mean_train_accuracy',

'mean_train_recall',

'mean_train precision']]

d_summary

d_summary.rename(columns= {
'param max_depth':

'"depth’,

'param max features':
'mean_test_accuracy':
'mean_test recall':
'mean_ test precision':

'features',
'test_accuracy',

'test_recall',

'test_precision’,

'mean_train_accuracy': 'train_accuracy',

'mean_train recall': 'train recall’,

'mean_train precision': 'train precision'})

d_summary

depth features test_accuracy test_recall test_precision train_accuracy

0 3 4 0.774 0.415 0.626 0.780
1 3 6 0.784 0.385 0.662 0.787
2 3 8 0.785 0.378 0.671 0.787
3 4 4 0.769 0.400 0.627 0.772
4 4 6 0.790 0.445 0.660 0.793
5 4 8 0.790 0.483 0.640 0.793

h. Main management goal is to detect churners before they churn, which means focus on avoiding false positives. So, focus on precision. Why is
the model with a depth of 3 and 6 features a good model to choose?

The model is parsimonious, not quite the best fit but not much loss in precision from the best-fitting model.

Estimate Model on All Data

i. Given sufficient fit, estimate the model on the full data set as the best estimates are generally obtained with the most data.

model DecisionTreeClassifier(max features=6, max depth=3,

min_samples_split=5, min_samples_leaf=4)

mf model.fit(X,y)

j. Calculate y.

y_fit = model.predict(X)

from sklearn.metrics import accuracy_score, recall score, precision_score, fl score

print ('Accuracy: %.3f' % accuracy_ score(y, y_£fit))
print ('Recall: %.3f' % recall score(y, y_£fit))

print ('Precision: %.3f' % precision score(y, y_£fit))
print ('Fl: %.3f' % fl score(y, y_f£fit))

from sklearn.metrics import confusion matrix
pd.DataFrame(confusion matrix(y, y_ fit))

0.775
0.470
0.599

Accuracy:
Recall:

Precision:
Fl: 0.526

0 1
0 4574 589

1 991 878

[llustrate the Model

k. Draw the tree diagram.

from sklearn import tree

plt.figure(figsize=(14,8))

tree.plot_tree(mf, feature names=features, class_names=classes, rounded=True, filled=True)
plt.savefig('dt Churn.pdf')

Internet == 0.5
gini = 0.39
samples = 7032
walue = [5163, 1869]

MoM <= 0.5
gini = 0.434

samples = 5512
value = [3736, 1756]

tenure == 0.134
gini = 0.497
samples = 3351
value = [1795, 1556]
class = Stay

Paperless <= 0.5
gini = 0.453
samples = 166
value = [108, 58]
class = Stay

gini = 0.11 gini = 0.259 gini = 0.481 gini = 0.461 gini = 0.414 gini = 0.498
52l =1383 samples = 778 samples = 1467 samples = 1884 samples = 113 samples = 33
wvalue = [1302, B1]| |walue = [659, 119]| |value =[58%, 873]| |value = [1206, 678] walue = [80, 33] value = [28, 25]

class = Stay class = Stay class = Chum class = Stay class = Stay class = Stay

I. Focus on specific leaves.
¢ Specify the decision rules that does the best job of detecting churners.
The leaf with the best detection of churning is the only leaf that classifies the customer as a future churner,
MtoM <= 0.5, Charges <= 0.501, Paperless <= 0.5, 753 churners out of 753+400=1153 customers
e Specify the decision rules that does the worst job in the sense of too many false positives.
The largest number of false positives, predicted to stay when actually churn:

MtoM <= 0.5, Charges <= 0.501, tenure <= 0.035, 261 churners out of 321+261=582 customers

v Apply the Model
m. Apply the model to a person who has ...
e Charges =45
e MtoM =29
e Paperless = 1
e Check =1
e Phone=0
e tenure=0
e Dependents =1
¢ Internet=0
print(X.columns)
Index([ 'Charges', 'MtoM', 'Paperless', 'Check', 'Phone', 'tenure',
'Dependents', 'Internet'],
dtype='object"')
#X _new = [[45, 29, 1,1,0,0,1,0]]
X new = [[45, 29, 1,1,0,0,1,0]]
y_new = model.predict(X_ new)
print("Predicted group membership:", y new)

y_prob
print(round(y_prob[0,1],

model.predict_ proba(X_ new)

3))

Predicted group membership:
0.599

[1]


http://web.pdx.edu/~gerbing/data/churn_clean.csv




