
Classification with the sklearn ML Framework

David Gerbing

The School of Business

Portland State University

gerbing@pdx.edu

1 Preliminaries

1.1 Misc
1.2 Access Solution Algorithm

2 Get and Structure Data
3 Grid search: Hyperparameter tuning with cross-validation
4 Estimate Model on All Data
5 Illustrate the Model
6 Apply the Model

Table of Contents

Preliminaries

A classic application of supervised machine learning classification is customer churn. The ability to successfully forecast a customer of a
company's services and products about to no longer be a customer allows the company to commit resources to attempt to salvage the
relationship.

The following data file contains information on over 7000 customers of a telecom service, including former customers who left the service plan
within the last 30 days the data was collected.

Data: http://web.pdx.edu/~gerbing/data/churn_clean.csv

The data has been cleaned according to the analysis for last week, so no need to repeat the cleaning process, or the data exploration.

Misc

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-08-02 at 00:55

/content' '

import os
os.getcwd()

import pandas as pd
import matplotlib.pyplot as plt

Get and Structure Data

a. Read the cleaned data into a data frame, and display its dimensions.

d = pd.read_csv('http://web.pdx.edu/~gerbing/data/churn_clean.csv')
#d = pd.read_csv('data/churn_clean.csv')
d.shape

(7032, 10)

b. Display the variable names and the first six rows of data and verify variable types.

Charges TotalCharges MtoM Paperless Check Phone tenure Dependents Inte

0 29.85 29.85 1 1 0 0 1 0

1 56.95 1889.50 0 0 1 1 34 0

2 53.85 108.15 1 1 1 1 2 0

3 42.30 1840.75 0 0 0 0 45 0

4 70.70 151.65 1 1 0 1 2 0

d.head()

d.dtypes

Charges float64

TotalCharges float64

MtoM int64

Paperless int64

Check int64

Phone int64

tenure int64

Dependents int64

Internet int64

Churn int64

dtype: object

All variables are numeric, either float (with decimal digits) or integers. The target variable Churn is already scaled as the needed 0/1 integer
coding.

c. Create the features and target data structures. Arbitrarily score 1 for Male. Create the lists classes and features for the graph later on.

classes = ['Stay', 'Churn'] # for graph
y = d['Churn']
features = ['Charges', 'MtoM', 'Paperless', 'Check',
 'Phone', 'tenure', 'Dependents', 'Internet']
X = d[features]
X.shape

(7032, 8)

d. Do a MinMax transformation to get all data into a 0 to 1 range. Verify.

Charges MtoM Paperless Check Phone tenure Dependents Internet

0 0.115423 1.0 1.0 0.0 0.0 0.000000 0.0 0.0

1 0.385075 0.0 0.0 1.0 1.0 0.464789 0.0 0.0

2 0.354229 1.0 1.0 1.0 1.0 0.014085 0.0 0.0

3 0.239303 0.0 0.0 0.0 0.0 0.619718 0.0 0.0

4 0.521891 1.0 1.0 0.0 1.0 0.014085 0.0 0.0

from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler
mm_scaler = preprocessing.MinMaxScaler()
X = mm_scaler.fit_transform(X)
X = pd.DataFrame(X, columns=features)
X.head()

Variables Charges and tenure are now on a scale from 0 to 1.

print(X.Charges.min())
print(X.Charges.max())

0.0

0.9999999999999999

print(X.tenure.min())
print(X.tenure.max())

0.0

1.0

Grid search: Hyperparameter tuning with cross-validation

from sklearn.tree import DecisionTreeClassifier
dt_model = DecisionTreeClassifier(max_depth=5)

e. Do a grid search with a 3-fold cross-validation. Search on the following parameters and values: maximum depth with values of 3 and 4, and
maximum features with values of 4, 6, and 8.

from sklearn.model_selection import KFold

kf3 = KFold(n_splits=3, shuffle=True, random_state=1)

from sklearn.model_selection import GridSearchCV

params = {'max_depth': [3, 4],
 'max_features': [4, 6, 8]}
grid_search = GridSearchCV(dt_model, param_grid=params, cv=kf3,
 scoring=('accuracy', 'recall', 'precision'), refit=False,
 return_train_score=True)
grid_search.fit(X,y)

GridSearchCV(cv=KFold(n_splits=3, random_state=1, shuffle=True),

 error_score=nan,

 estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,

 criterion='gini', max_depth=5,

 max_features=None,

 max_leaf_nodes=None,

 min_impurity_decrease=0.0,

 min_impurity_split=None,

 min_samples_leaf=1,

 min_samples_split=2,

 min_weight_fraction_leaf=0.0,

 presort='deprecated',

 random_state=None,

 splitter='best'),

 iid='deprecated', n_jobs=None,

 param_grid={'max_depth': [3, 4], 'max_features': [4, 6, 8]},

 pre_dispatch='2*n_jobs', refit=False, return_train_score=True,

 scoring=('accuracy', 'recall', 'precision'), verbose=0)

f. Display all the results of the cross-validation grid search.

0 1 2 3 4 5

mean_fit_time 0.011 0.006 0.005 0.005 0.006 0.006

std_fit_time 0.006 0.001 0 0 0 0

mean_score_time 0.008 0.006 0.005 0.005 0.005 0.006

std_score_time 0.003 0 0 0 0 0.002

param_max_depth 3 3 3 4 4 4

param_max_features 4 6 8 4 6 8

split0_test_accuracy 0.765 0.794 0.797 0.79 0.799 0.799

split1_test_accuracy 0.78 0.781 0.781 0.767 0.788 0.788

split2_test_accuracy 0.778 0.778 0.778 0.749 0.784 0.784

mean_test_accuracy 0.774 0.784 0.785 0.769 0.79 0.79

std_test_accuracy 0.007 0.007 0.008 0.017 0.006 0.006

rank_test_accuracy 5 4 3 6 1 1

split0_train_accuracy 0.759 0.779 0.782 0.787 0.79 0.789

split1_train_accuracy 0.791 0.79 0.79 0.778 0.796 0.794

split2_train_accuracy 0.791 0.791 0.791 0.749 0.793 0.795

mean_train_accuracy 0.78 0.787 0.787 0.772 0.793 0.793

std_train_accuracy 0.015 0.005 0.004 0.016 0.002 0.002

split0_test_recall 0.527 0.427 0.404 0.432 0.496 0.496

split1_test_recall 0.363 0.374 0.374 0.22 0.482 0.491

split2_test_recall 0.355 0.355 0.355 0.548 0.358 0.462

mean_test_recall 0.415 0.385 0.378 0.4 0.445 0.483

std_test_recall 0.079 0.031 0.02 0.136 0.062 0.015

rank_test_recall 3 5 6 4 2 1

split0_train_recall 0.511 0.393 0.373 0.433 0.489 0.488

split1_train_recall 0.393 0.399 0.399 0.242 0.484 0.494

split2_train_recall 0.372 0.372 0.372 0.569 0.373 0.477

mean_train_recall 0.425 0.388 0.381 0.415 0.448 0.487

std_train_recall 0.061 0.012 0.012 0.134 0.054 0.007

split0_test_precision 0.549 0.66 0.685 0.643 0.647 0.647

split1_test_precision 0.655 0.653 0.653 0.699 0.634 0.63

split2_test_precision 0.675 0.675 0.675 0.538 0.699 0.643

mean_test_precision 0.626 0.662 0.671 0.627 0.66 0.64

std_test_precision 0.055 0.009 0.014 0.067 0.028 0.007

rank_test_precision 6 2 1 5 3 4

split0_train_precision 0.556 0.647 0.669 0.659 0.643 0.643

split1_train_precision 0.685 0.679 0.679 0.761 0.657 0.646

split2_train_precision 0.688 0.688 0.688 0.521 0.7 0.649

mean_train_precision 0.643 0.671 0.678 0.647 0.667 0.646

std_train_precision 0.062 0.017 0.008 0.098 0.024 0.003

d_results = pd.DataFrame(grid_search.cv_results_).round(3)
d_results = d_results.drop(['params'], axis='columns')
d_results.transpose()

g. Display the most relevant results, the means.

depth features test_accuracy test_recall test_precision train_accuracy t

0 3 4 0.774 0.415 0.626 0.780

1 3 6 0.784 0.385 0.662 0.787

2 3 8 0.785 0.378 0.671 0.787

3 4 4 0.769 0.400 0.627 0.772

4 4 6 0.790 0.445 0.660 0.793

5 4 8 0.790 0.483 0.640 0.793

d_summary = d_results[['param_max_depth', 'param_max_features', 'mean_test_accuracy',
 'mean_test_recall', 'mean_test_precision', 'mean_train_accuracy',
 'mean_train_recall', 'mean_train_precision']]
d_summary = d_summary.rename(columns= {
 'param_max_depth': 'depth',
 'param_max_features': 'features',
 'mean_test_accuracy': 'test_accuracy',
 'mean_test_recall': 'test_recall',
 'mean_test_precision': 'test_precision',
 'mean_train_accuracy': 'train_accuracy',
 'mean_train_recall': 'train_recall',
 'mean_train_precision': 'train_precision'})
d_summary

h. Main management goal is to detect churners before they churn, which means focus on avoiding false positives. So, focus on precision. Why is
the model with a depth of 3 and 6 features a good model to choose?

The model is parsimonious, not quite the best fit but not much loss in precision from the best-fitting model.

Estimate Model on All Data

i. Given sufficient fit, estimate the model on the full data set as the best estimates are generally obtained with the most data.

model = DecisionTreeClassifier(max_features=6, max_depth=3,
 min_samples_split=5, min_samples_leaf=4)
mf = model.fit(X,y)

j. Calculate .𝑦 ̂

y_fit = model.predict(X)

Accuracy: 0.775

Recall: 0.470

Precision: 0.599

F1: 0.526

0 1

0 4574 589

1 991 878

from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
print ('Accuracy: %.3f' % accuracy_score(y, y_fit))
print ('Recall: %.3f' % recall_score(y, y_fit))
print ('Precision: %.3f' % precision_score(y, y_fit))
print ('F1: %.3f' % f1_score(y, y_fit))

from sklearn.metrics import confusion_matrix
pd.DataFrame(confusion_matrix(y, y_fit))

Illustrate the Model

k. Draw the tree diagram.

from sklearn import tree
plt.figure(figsize=(14,8))
tree.plot_tree(mf, feature_names=features, class_names=classes, rounded=True, filled=True)
plt.savefig('dt_Churn.pdf')

l. Focus on specific leaves.

Specify the decision rules that does the best job of detecting churners.

The leaf with the best detection of churning is the only leaf that classifies the customer as a future churner,

MtoM <= 0.5, Charges <= 0.501, Paperless <= 0.5, 753 churners out of 753+400=1153 customers

Specify the decision rules that does the worst job in the sense of too many false positives.

The largest number of false positives, predicted to stay when actually churn:

MtoM <= 0.5, Charges <= 0.501, tenure <= 0.035, 261 churners out of 321+261=582 customers

Apply the Model

m. Apply the model to a person who has ...

Charges = 45
MtoM = 29
Paperless = 1
Check = 1
Phone = 0
tenure = 0
Dependents = 1
Internet = 0

print(X.columns)

Index(['Charges', 'MtoM', 'Paperless', 'Check', 'Phone', 'tenure',

 'Dependents', 'Internet'],

 dtype='object')

#X_new = [[45, 29, 1,1,0,0,1,0]]
X_new = [[45, 29, 1,1,0,0,1,0]]
y_new = model.predict(X_new)
print("Predicted group membership:", y_new)
y_prob = model.predict_proba(X_new)
print(round(y_prob[0,1], 3))

Predicted group membership: [1]

0.599

http://web.pdx.edu/~gerbing/data/churn_clean.csv

