

Logistic Regression: Solutions #5

David Gerbing
The School of Business
Portland State University
gerbing@pdx.edu

Table of Contents

- [1. Preliminaries](#)
- [2. Read and Prepare data](#)
 - [2.1. Read and Verify Data](#)
 - [2.2. Pre-Process Data](#)
 - [2.3. Pre-Analysis Understanding and Feature Selection](#)
 - [2.4. Target Distribution](#)
 - [2.5. Feature Relevance](#)
 - [2.6. Feature Redundancy](#)
 - [2.7. Create Feature and Target Data Structures](#)
- [3. Fit Model and Evaluate with one Hold-Out Sample](#)
- [4. Fit Model, then Predict, Evaluate with Multiple Hold-Out Samples](#)
- [5. Automated Feature Selection](#)
 - [5.1. Univariate Selection](#)
 - [5.2. Multivariate Selection](#)
 - [5.3. Estimate Validated Model on All Data](#)
- [6. Apply the Model](#)

Preliminaries

```
from datetime import datetime as dt
now = dt.now()
print("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-07-26 at 00:37

import os
os.getcwd()
'content'

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.linear_model import LogisticRegression
logistic_model = LogisticRegression(solver='lbfgs', max_iter=500)
```

Read and Prepare data

The following data file contains information on over 7000 customers of a telecom service, including former customers who left the service plan within the last 30 days the data was collected. Build a model to predict customer churn (customer exists the service plan).

Data: <http://web.pdx.edu/~gerbing/data/CustomerChurn.csv>

Read and Verify Data

a.

- Read the data into a data frame.
- Display the number of rows and columns in the data file, and the first five lines of the data file, including the variable names.
- Display all variable names and corresponding data values by transposing the output table.
- Display the data type for each variable.

```
d = pd.read_csv('http://web.pdx.edu/~gerbing/data/CustomerChurn.csv')
```

```
#d = pd.read_csv('data/CustomerChurn.csv')
```

d.shape

(7043, 21)

d.head().transpose()

	0	1	2	3	4
customerID	7590-VHVEG	GNVDE	3668-QPYEIK	7795-CFOCW	9237-HQITU
gender	Female	Male	Male	Male	Female
SeniorCitizen	0	0	0	0	0
Partner	Yes	No	No	No	No
Dependents	No	No	No	No	No
tenure	1	34	2	45	2
PhoneService	No	Yes	Yes	No	Yes
MultipleLines	No phone service	No	No	No phone service	No
InternetService	DSL	DSL	DSL	DSL	Fiber optic
OnlineSecurity	No	Yes	Yes	Yes	No
OnlineBackup	Yes	No	Yes	No	No
DeviceProtection	No	Yes	No	Yes	No
TechSupport	No	No	No	Yes	No
StreamingTV	No	No	No	No	No
StreamingMovies	No	No	No	No	No
Contract	Month-to-month	One year	Month-to-month	One year	Month-to-month
PaperlessBilling	Yes	No	Yes	No	Yes
PaymentMethod	Electronic check	Mailed check	Mailed check	Bank transfer (automatic)	Electronic check
MonthlyCharges	29.85	56.95	53.85	42.3	70.7

d.dtypes

```
customerID    object
```

```
gender        object
```

```
SeniorCitizen int64
```

```
Partner        object
```

```
Dependents    object
```

```
tenure        int64
```

```
PhoneService  object
```

```
MultipleLines object
```

```
InternetService object
```

```
OnlineSecurity object
```

```
OnlineBackup   object
```

```
DeviceProtection object
```

```
TechSupport   object
```

```
StreamingTV   object
```

```
StreamingMovies object
```

```
Contract_Month-to-month
```

```
Contract_One year
```

```
Contract_Two year
```

```
PaperlessBilling_No
```

```
PaperlessBilling_Yes
```

```
PaymentMethod_Bank transfer (automatic)
```

```
PaymentMethod_Credit card (automatic)
```

```
PaymentMethod_Electronic check
```

```
PaymentMethod_Mailed check
```

```
Churn_No
```

```
Churn_Yes
```

b. The variable TotalCharges is conceptually a numeric variable but is read into the data frame as an object variable, i.e., non-numeric. Convert to numeric. As always, audit (verify) any change to the data table. This is one reason why the way in which the variables are read into the system is important to understand before continuing the analysis.

Use the following code for the to_numeric function to convert (where d is the data frame name, but could be any valid Python name).

```
d['TotalCharges'] = pd.to_numeric(d['TotalCharges'], errors='coerce')
```

The errors parameter set to 'coerce' instructs to convert to a NaN any data value that cannot be converted to a legitimate number.

Pre-Process Data

c. Drop the customerID variable.

Hint: Illustrated in several previous notebooks, including 02Wrangle.

```
d.drop('customerID', axis='columns', inplace=True)
```

d. Most of the variables are categorical. Pre-process each categorical variable to become a dummy variable, a type of indicator variable. Retain all k dummy variables for each categorical variable with k levels (to be able to pick and choose the dummy variables to analyze).

Hint: You do not need to list each variable, though could, just the data frame name.

```
d = pd.get_dummies(d)
```

```
d.head().transpose()
```

d.

e. To keep the analysis simpler, and to drop excess dummy variables retain just the following (mostly indicator) variables for analysis.

MonthlyCharges, 'TotalCharges', 'Contract_Month-to-month', 'PaperlessBilling_Yes', 'PaymentMethod_Mailed check', 'PhoneService_Yes', 'tenure', 'Dependents_Yes', 'InternetService_No', 'Churn_Yes'.

Hint: See subsetting in 02Wrangle.

```
d = d.loc[:, ['MonthlyCharges', 'TotalCharges', 'Contract_Month-to-month', 'PaperlessBilling_Yes', 'PaymentMethod_Mailed check', 'PhoneService_Yes', 'Dependents_Yes', 'InternetService_No', 'Churn_Yes']].copy()
```

f. Simplify the variable names. Rename as follows. Audit.

• MonthlyCharges->Charges

• PaperlessBilling_Yes->Paperless

• PaymentMethod_Mailed check->Check

• Dependents_Yes->Dependents

• InternetService_No->InternetNo

• Churn_Yes->Churn

Hint: Several previous examples, including 02Wrangle.

```
d = d.rename(columns={'Contract_Month-to-month': 'Contract', 'PaperlessBilling_Yes': 'Paperless', 'PaymentMethod_Mailed check': 'Check', 'PhoneService_Yes': 'Phone', 'Dependents_Yes': 'Dependents', 'InternetService_No': 'InternetNo', 'Churn_Yes': 'Churn'})
```

g. Check for missing data. If not too much, delete the offenders. If severe, impute the missing values. Audit.

Hint: Done in 02PreProcess.

```
d = pd.DataFrame(d)
```

```
d.isna().sum()
```

```
d.isna().sum().sum()
```

```
mm_scaler = preprocessing.MinMaxScaler()
X = mm_scaler.fit_transform(X)
X = pd.DataFrame(X, columns=['Charges', 'Paperless', 'Check', 'Phone', 'Tenure', 'Dependents', 'InternetNo'])
X.head()

   Charges  Paperless  Check  Phone  Tenure  Dependents  InternetNo
0  0.001275  1.0  0.0  0.0  0.000000  0.0  0.0
1  0.215867  0.0  1.0  0.0  0.464789  0.0  0.0
2  0.010310  1.0  1.0  1.0  0.014085  0.0  0.0
3  0.210241  0.0  0.0  0.0  0.619718  0.0  0.0
4  0.015330  1.0  0.0  1.0  0.014085  0.0  0.0
```

X now has re-scaled variables.

Fit Model and Evaluate with One Hold-Out Sample

o. Do a 70% training data and 30% testing data split of X and y data structures. Show the dimensions of the output data structures.

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.30, random_state=9)

print("size of X data structures: ", X_train.shape, X_test.shape)
print("size of y data structures: ", y_train.shape, y_test.shape)

size of X data structures: (4922, 7) (2110, 7)
size of y data structures: (4922,) (2110,)
```

p. Fit the model to the training data.

```
logistic_model.fit(X_train, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   multi_class="auto", n_jobs=None, penalty="l2",
                   random_state=None, solver="lbfgs", tol=0.0001, verbose=0,
                   warm_start=False)
```

q. Calculate the baseline probability for prediction in the absence of all information regarding X, the null model, the group with the largest proportion.

```
my = y.mean()
max_my = np.max([y.mean(), 1-y.mean()])
print('Proportion of 0\'s (do not churn): %.3f' % (1-my))
print('Proportion of 1\'s (churn): %.3f' % my)
print('Null model accuracy: %.3f' % max_my)

Proportion of 0's (do not churn): 0.734
Proportion of 1's (churn): 0.266
Null model accuracy: 0.734
```

If all customers are predicted to not churn, accuracy is 73.4%. The question: How much better can the logistic regression model do for accuracy greater than 73.4%?

r. As a basis for evaluating forecasting accuracy, get the values fit by the model from the corresponding X values, for training and testing data.

```
y_fit = logistic_model.predict(X_train)
y_pred = logistic_model.predict(X_test)
```

s. For the testing data, calculate the probability of a churn for all the rows of testing data from the values of the features, the predictor variables.

```
probs = [i[1] for i in logistic_model.predict_proba(X_test)]
probs[0:5]

[0.2780896592421815,
 0.157700858618339492,
 0.25350047972517026,
 0.0023574929364177737,
 0.4031213401318494]
```

t. To understand more of what is happening here (for pedagogy), view the true values, forecasted values, and the estimated probability of churning for about 10 or so rows of data. Best display is as a data frame, so convert just to show a more readable display.

```
pred_df = pd.DataFrame({'true values': y_test,
                       'pred values': y_pred,
                       'pred_probs': 'probs'})
pred_df.head(15).transpose().style.format('.3f')

   1888 5398 2622 531 1472 2035 4838 5505 3528 3279 3287 3423 1434 6508
true values 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0
pred values 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
pred_probs 0.278 0.158 0.254 0.0236 0.463 0.153 0.179 0.293 0.118 0.216 0.437 0.339 0.463 0.242
```

u. Assess the accuracy of the model on training and testing data. Any overfitting?

```
from sklearn.metrics import accuracy_score
print('Accuracy for training data: %.3f' % accuracy_score(y_train, y_fit))
print('Accuracy for testing data: %.3f' % accuracy_score(y_test, y_pred))

Accuracy for training data: 0.779
Accuracy for testing data: 0.793
```

By chance, the testing data actually has a higher accuracy count by 1.4%. Clearly no overfitting here.

v. Show the confusion matrix and explicitly identify the True Negatives, True Positives, False Negatives, and False Positives.

```
from sklearn.metrics import confusion_matrix
dc = pd.DataFrame(confusion_matrix(y_test, y_pred))
dc
```

0 1

0 1413 155

1 282 260

print('True Negatives: ', dc.iloc[0,0])
print('True Positives: ', dc.iloc[1,1])
print('False Negatives: ', dc.iloc[0,1])
print('False Positives: ', dc.iloc[1,0])

True Negatives: 1413
True Positives: 260
False Negatives: 155
False Positives: 282

w. Calculate the recall, precision, and F1 metrics. Comment on the meaning of each from the perspective of management.

```
from sklearn.metrics import recall_score, precision_score, f1_score
print('Recall for testing data: %.3f' % recall_score(y_test, y_pred))
print('Precision for testing data: %.3f' % precision_score(y_test, y_pred))
print('F1 for testing data: %.3f' % f1_score(y_test, y_pred))

Recall for testing data: 0.480
Precision for testing data: 0.627
F1 for testing data: 0.543
```

The lowest fit index, recall, is 48%. That means that the model correctly forecasts 48% of customers who churned (true positive). So the model mislabels about 52% of actual customers as churned who did not churn. This 52% comes from the 282 false negatives from the confusion matrix. Clearly a failure from management's point of view, missing so many customers who ended up leaving the company's service plan.

Conclusion: The model is not sensitive to detecting those who will churn.

The precision is somewhat higher, which means that of those the model forecasted as churned, 62.7% actually did churn. Of those forecasted to churn, are, in fact, did not churn, a false positive. As seen in the confusion matrix, only 155 false positives.

The F1 statistic is between recall and precision, their harmonic average, at 54.3%.

Fit Model, then Predict, Evaluate with Multiple Hold-Out Samples

x. Do a 5-fold cross-validation an report individual fold and average values of accuracy, recall, and precision.

Access and instantiate.

```
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=1)
```

Cross-validate with k-fold. Request training data scores also so can evaluate for overfitting by comparing to the corresponding test data scores.

```
from sklearn.model_selection import cross_val_score
scores = cross_val_score(logistic_model, X, y, cv=skf,
                        scoring=('accuracy', 'recall', 'precision'),
                        return_train_score=True)
```

Print fit metrics for each fold.

```
df = pd.DataFrame(scores).round(3)
print(df)

   fit_time  score_time ...  test_precision  train_precision
0  0.043  0.032 ...  0.629  0.614
1  0.049  0.006 ...  0.600  0.626
2  0.032  0.006 ...  0.581  0.629
3  0.033  0.006 ...  0.624  0.627
4  0.052  0.006 ...  0.656  0.618
```

[5 rows x 8 columns]

Print averages on test data across the folds for the three primary fit indices.

```
print('Mean of test accuracy: %.3f' % df['test_accuracy'].mean())
print('Mean of test recall: %.3f' % df['test_recall'].mean())
print('Mean of test precision: %.3f' % df['test_precision'].mean())

Mean of test accuracy: 0.781
Mean of test recall: 0.466
Mean of test precision: 0.618
```

Not far off from the single training/test split, but these averages are the best estimates of the validity of the model.

y. Comment on the worth of the model.

Baseline accuracy is 73.4%, so only a slight improvement by the model, to 78.1%. The primary utility of the model is to identify customers who will churn before they do so. This 5% comes from the 282 false negatives from the confusion matrix. Clearly a failure from management's point of view, missing so many customers who actually churn. Of those forecasted to churn, only 61.8% actually did. Predictions in either direction are not particularly good.

As it exists, the model is not ready for application.

Automated Feature Selection

The model is not working well, so in practice there is less concern for reducing the number of features to see if not much fit is sacrificed when inputting less information into the model. Still, feature selection shows us which features are most useful, providing a core for constructing future models with different information added to what already is somewhat working.

z. Do a univariate feature selection of the top 4 features. Identify these features.

Univariate Selection

```
from sklearn.feature_selection import SelectKBest, f_classif
selector = SelectKBest(f_classif, k=4).fit(X,y)
selected = selector.get_support()
```

array([True, True, False, False, True, True, True])

X2 = X.iloc[:, selected]

X2.head()

Charges Paperless Tenure InternetNo

0 0.001275	1.0	0.000000	0.0
1 0.215867	0.0	0.464789	0.0
2 0.010310	1.0	0.014085	0.0
3 0.210241	0.0	0.619718	0.0
4 0.015330	1.0	0.014085	0.0

Multivariate Selection

aa. Do a multivariate feature selection. Identify the selected features.

The LogisticRegression module has already been instantiated as *model*. Here fit to all of the data, then retrieve the model coefficients.

X.head()

Charges Paperless Check Phone Tenure Dependents InternetNo

0 0.001275	1.0	0.000000	0.0	0.000000	0.0	0.0
1 0.215867	0.0	0.464789	0.0	0.000000	0.0	0.0
2 0.010310	1.0	0.014085	0.0	0.000000	0.0	0.0
3 0.210241	0.0	0.619718	0.0	0.000000	0.0	0.0
4 0.015330	1.0	0.014085	0.0	0.000000	0.0	0.0

ac. Rank the features in importance.

rank = pd.DataFrame()

rank['Feature'] = X.columnsranking

rank.sort_values('Rank').transpose()

0 1 2 3 4 5 6

Rank Charges Paperless Check Phone Tenure Dependents InternetNo

0 0.2780896592421815	0.157700858618339492	0.25350047972517026	0.0023574929364177737	0.4031213401318494	0.0	0.0
1 0.215867	0.0	0.464789	0.0	0.000000	0.0	0.0
2 0.010310	1.0	0.014085	0.0	0.000000	0.0	0.0
3 0.210241	0.0	0.619718	0.0	0.000000	0.0	0.0
4 0.015330	1.0	0.014085	0.0	0.000000	0.0	0.0

ad. Rank the features in importance.

rank = pd.DataFrame()

rank['Feature'] = X.columnsranking

rank.sort_values('Rank').transpose()

0 1 2 3 4 5 6

Rank Charges Paperless Check Phone Tenure Dependents InternetNo

0 0.2780896592421815	0.157700858618339492	0.25350047972517026	0.0023574929364177737	0.4031213401318494	0.0	0.0
1 0.215867	0.0	0.464789	0.0	0.000000	0.0	0.0
2 0.010310	1.0	0.014085	0.0	0.000000	0.0	0.0
3 0.210241	0.0	0.619718	0.0	0.000000	0.0	0.0
4 0.015330	1.0	0.014085	0.0	0.000000	0.0	0.0

ae. Forecast the customer churns from new data.

Access and instantiate.

```
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=1)
```

Cross-validate with k-fold. Request training data scores also so can evaluate for overfitting by comparing to the corresponding test data scores.

```
from sklearn.model_selection import cross_val_score
scores = cross_val_score(logistic_model, X, y, cv=skf,
                        scoring=('accuracy', 'recall', 'precision'),
                        return_train_score=True)
```

Print fit metrics for each fold.

```
df = pd.DataFrame(scores).round(3)
print(df)

   fit_time  score_time ...  test_precision  train_precision
0  0.043  0.032 ...  0.629  0.614
1  0.049  0.006 ...  0.600  0.626
2  0.032  0.006 ...  0.581  0.629
3  0.033  0.006 ...  0.624  0.627
4  0.052  0.006 ...  0.656  0.618
```

[5 rows x 8 columns]

Print averages on test data across the folds for the three primary fit indices.

```
print('Mean of test accuracy: %.3f' % df['test_accuracy'].mean())
print('Mean of test recall: %.3f' % df['test_recall'].mean())
print('Mean of test precision: %.3f' % df['test_precision'].mean())

Mean of test accuracy: 0.781
Mean of test recall: 0.466
Mean of test precision: 0.618
```

Not far off from the single training/test split, but these averages are the best estimates of the validity of the model.