~ Logistic Regression: Solutions #5

David Gerbing

The School of Business
Portland State University
gerbing@pdx.edu

Table of Contents

e 1 Preliminaries
¢ 2 Read and Prepare data

o 2.1 Read and Verify Data
o 2.2 Pre-Process Data

o 2.3 Pre-Analysis Understanding_and Feature Selection
o 2.4 Target Distribution

o 2.5 Feature Relevance

o 2.6 Feature Redundancy

o 2.7 Create Feature and Target Data Structures

3 Fit Model and Evaluate with One Hold-Out Sample
4 Fit Model, then Predict, Evaluate with Multiple Hold-Out Samples
5 Automated Feature Selection

o 5.1 Univariate Selection

o 5.2 Multivariate Selection
o 5.3 Estimate Validated Model on All Data

6_Apply the Model

v Preliminaries

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("$H:3M"))

Analysis on 2021-07-26 at 00:37
import os
os.getcwd()
'/content'
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.linear model import LogisticRegression
logistic _model = LogisticRegression(solver='lbfgs', max iter=500)

~ Read and Prepare data

The following data file contains information on over 7000 customers of a telecom service, including former customers who left the service plan
within the last 30 days the data was collected. Build a model to predict customer churn (customer exists the service plan).

Data: http://web.pdx.edu/~gerbing/data/CustomerChurn.csv

v Read and Verify Data

Read the data into a data frame.

Display the number of rows and columns in the data file, and the first five lines of the data file, including the variable names.
Display all variable names and corresponding data values by transposing the output table.

Display the data type for each variable.

d = pd.read csv('http://web.pdx.edu/~gerbing/data/CustomerChurn.csv')
#d = pd.read csv('data/CustomerChurn.csv')

d.shape

(7043, 21)

d.head().transpose()

(V] 1 2 3 4
5575- 3668-
customerliD 7590-VHVEG GNVDE QPYBK 7795-CFOCW 9237-HQITU
gender Female Male Male Male Female
SeniorCitizen 0 0 0 0 0
Partner Yes No No No No
Dependents No No No No No
tenure 1 34 2 45 2
PhoneService No Yes Yes No Yes
MultipleLines No phqne No No No phone service No
service
InternetService DSL DSL DSL DSL Fiber optic
OnlineSecurity No Yes Yes Yes No
OnlineBackup Yes No Yes No No
DeviceProtection No Yes No Yes No
TechSupport No No No Yes No
StreamingTV No No No No No
StreamingMovies No No No No No
Month-to- Month-to- Month-to-
Contract month One year month One year month
PaperlessBilling Yes No Yes No Yes
Electronic Mailed . Bank transfer Electronic
PaymentMethod check check Mailed check (automatic) check
MonthlyCharges 29.85 56.95 53.85 42.3 70.7
d.dtypes
customerID object
gender object
SeniorCitizen int64
Partner object
Dependents object
tenure inté64
PhoneService object
MultipleLines object
InternetService object
OnlineSecurity object
OnlineBackup object
DeviceProtection object
TechSupport object
StreamingTV object
StreamingMovies object
Contract object
PaperlessBilling object
PaymentMethod object
MonthlyCharges float64
TotalCharges object
Churn object

dtype: object

b. The variable TotalCharges is conceptually a numeric variable but is read into the data frame as an object variable, i.e., non-numeric. Convert to
numeric. As always, audit (verify) any change to the data table. This is one reason why the way in which the variables are read into the system is
important to understand before continuing the analysis.

Use the following code for the to numeric function to convert (where d is the data frame name, but could be any valid Python name).
d['TotalCharges'] = pd.to numeric(d['TotalCharges'], errors='coerce')

The errors parameter setto 'coerce' instructs to convert to a Nan any data value that cannot be converted to a legitimate number.

d['TotalCharges'] = pd.to numeric(d['TotalCharges'], errors='coerce')
d.TotalCharges.dtypes

dtype('float64')

v Pre-Process Data

c. Drop the customerlD variable.

Hint: lllustrated in several previous notebooks, including 02Wrangle.

d.drop('customerID', axis='columns', inplace=True)

d. Most of the variables are categorical. Pre-process each categorical variable to become a dummy variable, a type of indicator variable. Retain all
k dummy variables for each categorical variable with k levels (to be able to pick and choose the dummy variables to analyze.

Hint: You do not need to list each variable, though could, just the data frame name.

d = pd.get dummies(d)
d.head().transpose()

0 1 2 3 4

SeniorCitizen 0.00 0.00 0.00 0.00 0.00

tenure 1.00 34.00 2.00 45.00 2.00
MonthlyCharges 29.85 56.95 53.85 42.30 70.70
TotalCharges 29.85 1889.50 108.15 1840.75 151.65
gender_Female 1.00 0.00 0.00 0.00 1.00
gender_Male 0.00 1.00 1.00 1.00 0.00
Partner_No 0.00 1.00 1.00 1.00 1.00
Partner_Yes 1.00 0.00 0.00 0.00 0.00
Dependents_No 1.00 1.00 1.00 1.00 1.00
Dependents_Yes 0.00 0.00 0.00 0.00 0.00
PhoneService_No 1.00 0.00 0.00 1.00 0.00
PhoneService_Yes 0.00 1.00 1.00 0.00 1.00
MultipleLines_No 0.00 1.00 1.00 0.00 1.00
MultipleLines_No phone service 1.00 0.00 0.00 1.00 0.00
MultipleLines_Yes 0.00 0.00 0.00 0.00 0.00
InternetService_DSL 1.00 1.00 1.00 1.00 0.00
InternetService_Fiber optic 0.00 0.00 0.00 0.00 1.00
InternetService_No 0.00 0.00 0.00 0.00 0.00
OnlineSecurity_No 1.00 0.00 0.00 0.00 1.00
OnlineSecurity_No internet service 0.00 0.00 0.00 0.00 0.00
OnlineSecurity_Yes 0.00 1.00 1.00 1.00 0.00
OnlineBackup_No 0.00 1.00 0.00 1.00 1.00
OnlineBackup_No internet service 0.00 0.00 0.00 0.00 0.00
OnlineBackup_Yes 1.00 0.00 1.00 0.00 0.00
DeviceProtection_No 1.00 0.00 1.00 0.00 1.00
DeviceProtection_No internet service 0.00 0.00 0.00 0.00 0.00
DeviceProtection_Yes 0.00 1.00 0.00 1.00 0.00
TechSupport_No 1.00 1.00 1.00 0.00 1.00
TechSupport_No internet service 0.00 0.00 0.00 0.00 0.00
TechSupport_Yes 0.00 0.00 0.00 1.00 0.00
StreamingTV_No 1.00 1.00 1.00 1.00 1.00
StreamingTV_No internet service 0.00 0.00 0.00 0.00 0.00
StreamingTV_Yes 0.00 0.00 0.00 0.00 0.00
StreamingMovies_No 1.00 1.00 1.00 1.00 1.00
StreamingMovies_No internet service 0.00 0.00 0.00 0.00 0.00
StreamingMovies_Yes 0.00 0.00 0.00 0.00 0.00
Contract_Month-to-month 1.00 0.00 1.00 0.00 1.00
Contract_One year 0.00 1.00 0.00 1.00 0.00
Contract_Two year 0.00 0.00 0.00 0.00 0.00
PaperlessBilling_No 0.00 1.00 0.00 1.00 0.00
PaperlessBilling_Yes 1.00 0.00 1.00 0.00 1.00

PaymentMethod_Bank transfer (automatic) 0.00 0.00 0.00 1.00 0.00

PaymentMethod_Credit card (automatic) 0.00 0.00 0.00 0.00 0.00

PaymentMethod_Electronic check 1.00 0.00 0.00 0.00 1.00
PaymentMethod_Mailed check 0.00 1.00 1.00 0.00 0.00
Churn_No 1.00 1.00 0.00 1.00 0.00
Churn_Yes 0.00 0.00 1.00 0.00 1.00

e. To keep the analysis simpler, and to drop excess dummy variables retain just the following (mostly indicator) variables for analysis.

'MonthlyCharges', 'TotalCharges', 'Contract_Month-to-month', 'PaperlessBilling_Yes', 'PaymentMethod_Mailed check’, 'PhoneService_Yes',
‘tenure’, 'Dependents_Yes', 'InternetService_No, 'Churn_Yes'

Hint: See subsetting in 02Wrangling.

d = d.loc[:, ['MonthlyCharges', 'TotalCharges', 'Contract Month-to-month',
'PaperlessBilling Yes', 'PaymentMethod Mailed check',
'PhoneService Yes', 'tenure', 'Dependents_Yes',
'InternetService No', 'Churn Yes']].copy()

f. Simplify the variable names. Rename as follows. Audit.

¢ MonthlyCharges --> Charges,

¢ Contract_Month-to-month —-> Contract_MtoM,
¢ PaperlessBilling_Yes > Paperless,

¢ PaymentMethod_Mailed check —> Check,

¢ PhoneService_Yes --> Phone,

e tenure --> Tenure,

¢ Dependents_Yes --> Dependents,

¢ InternetService_No --> InternetNo,

e Churn_Yes --> Churn

Hint: Several previous examples, including 02Wrangle.

d = d.rename(columns= {'MonthlyCharges': 'Charges',
'Contract_Month-to-month': 'MtoM',
'PaperlessBilling Yes': 'Paperless',
'PaymentMethod Mailed check': 'Check',
'PhoneService Yes': 'Phone’,
'tenure': 'Tenure',
'Dependents_Yes': 'Dependents’,
'InternetService No': 'InternetNo',
'"Churn_Yes': 'Churn'})

d.head()

Charges TotalCharges MtoM Paperless Check Phone Tenure Dependents Inte

0 29.85 29.85 1 1 0 0 1 0
1 56.95 1889.50 0 0 1 1 34 0
2 53.85 108.15 1 1 1 1 2 0
3 42.30 1840.75 0 0 0 0 45 0
4 70.70 151.65 1 1 0 1 2 0

To review the syntax, everything inside { } is called a Python dictionary, a core Python data structure. The dictionary lists keyword-value
pairs.

g. Check for missing data. If not too much, delete the offenders. If severe, impute the missing values. Audit.

Hint: Done in 02PreProcess.

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Charges
TotalCharges 1
MtoM
Paperless
Check

Phone

Tenure
Dependents
InternetNo
Churn

dtype: inté64

O OO O OO oo+ o

Total Missing: 11
Very little missing data. Of over 7000 rows of data, just 11 with missing data on only one variable. Delete.

print('shape before delete:', d.shape)
d = pd.DataFrame(d.dropna(axis="'rows'))
print('shape after delete:', d.shape)

shape before delete: (7043, 10)
shape after delete: (7032, 10)

Pre-Analysis Understanding and Feature Selection

v Target Distribution

h. Check out the distribution of the target, with a frequency distribution and then the corresponding bar chart.

freq = d['Churn'].value_counts()
freq

0 5163
1 1869
Name: Churn, dtype: inté64

plt.title('Distribution of Churn', fontsize=12)
freq.plot(kind='bar', color="sienna")

<matplotlib.axes._ subplots.AxesSubplot at 0x7£4115620£fd0>
Distribution of Churn

5000

4000

3000

2000

1000 A

If going to run a model focused on forecasting the target, should also understand the nature of the target variable. The distribution is
unbalanced (certainly the company would not want a balanced distribution). Over 5000 customers remain and under 2000 customers left
(churned). One implication is that the base null model accuracy will not be 0.5, but more than 5/7.

v Feature Relevance

i. Are all the features relevant? Examine the difference in means of Churn across the features.

d.groupby('Churn').mean()

Charges TotalCharges MtoM Paperless Check Phone Tenure De
Churn
0 61.307408 2555.344141 0.429983 0.536122 0.251017 0.901220 37.650010

1 74.441332 1531.796094 0.885500 0.749064 0.164794 0.909042 17.979133

All the means appear to differ depending on Gender, so forecasting accuracy should at least be better than the null model. (Thougn not we are
just looking here at the means as descriptive statistics, would be better to do the inferential test, z-test of the mean difference, for each
numerical variable.)

j. Examine the overlap in the distributions of Churn for numerical features TotalCharges, Paperless, and tenure. Which variable is likely the best
predictor of churn?

check = ['TotalCharges', 'Paperless', 'Tenure']
for column in d[check]:
sns.pairplot(d, vars=[column], hue='Churn')

10 1
0.8 1

0.6 1

0.4 1

TotalCharges

0.2 4

0.0

T T T

o 5000 10000
TotalCharges

10 1

It

06 1 H (

|
\

\ Chum
1
0

0.4 1

Paperless

|I I| J

| |I I| ."

“lal
0.0 05

Paperless

L

10 1
0.8 1

0.6 1

TEnure

0.4 1

0.2 4

0.0

The variable tenure (months of being a customer) differentiates the most between those customers who churned and those who stayed. That
makes sense, those customers with the most tenure (customers the longest) stayed (apparently the blue distribution), while those with little
tenure tended to churn (orange distribution).

v Feature Redundancy

k. Check for collinearity. Comment.

Even not having the need to drop features before model estimation as CPU time is not an issue, it is useful to explore relations of the features
with each other, and with the target, to understand more about how the model will perform and not analyze with no understanding of the data.

Because correlations span from negative to positive, use a diverging color palette, with blue indicating positive correlations and red indicating
very small positive to negative correlations.

plt.figure(figsize=(10,8))
sns.heatmap(d.corr().round(2), linewidths=2.0, annot=True,
cmap=sns.diverging palette(5, 250, as_cmap=True))

<matplotlib.axes. subplots.AxesSubplot at 0x7£41193908d0>

10
Charges - 0.06 | 035 025 025 011 0.19
0.8
TotalCharges - 1 016 [029 011 0.83 0.06 0.2
-06
MtoM - 0.06 1 0.17 0.01 0 } .22 0.4
Paperless - 0.35 016 017 0.2 0.0z] . . .

Check - 0.29 0.01 -
Phone - Q.25 011 40
one | 0o
Enure - 0.25 0.83
--02
Dependents - 0.11 0.06 £23 011
- 0.4
Internetho - £.22 D32
-0.6
Chum - 019 0.2 0.4 019 009
i i i i i i i i i i
w i Wi e a i =]
e & ¥ 0§ 0§ & s & 2 §
s 2 = o G £ i b= g g
5] 2 o T
g £ -
i &

In general, collinearity is not bad, feature inter-correlations are generally not high. However, there are some high feature correlations. Charges
correlations —0.76 with InternetNo customers, which makes sense because not having Internet reduces the bill. MtoM, that is, a month-to-
month customer instead of a longer contract customer, correlates —0.65 with tenure, which also logically follows. At least one of these
variables for each pair can likely be dropped from the final model without losing much, if any, forecasting efficiency.

v Create Feature and Target Data Structures

I. Define all feature variables in a data structure X. Define the target variable as a data structure y, a column of 0's and 1's.

y = d['Churn']
pred vars = ['TotalCharges', 'Paperless', 'Check',

'Phone', 'Tenure', 'Dependents', 'InternetNo']
X = d[pred_vars]

X.head()
TotalCharges Paperless Check Phone Tenure Dependents InternetNo
0 29.85 1 0 0 1 0 0
1 1889.50 0 1 1 34 0 0
2 108.15 1 1 1 2 0 0
3 1840.75 0 0 0 45 0 0
4 151.65 1 0 1 2 0 0

Not necessary, but see how many features are defined.
n_pred = len(pred vars)
print ("Number of predictor variables:", n_pred)

Number of predictor variables: 7

Not necessary, but see how many features are defined with code.

n_pred = len(pred vars)
print ("Number of predictor variables:", n_pred)

Number of predictor variables: 7

m. All dummy variables consist of values of only 0 or 1. The numerical variables TotalCharges and Tenure range much more than 0 to 1. Generate
a box plot for these variables to examine their range and check for outliers. Discuss.

plt.figure(figsize=(6,1.5))
sns.boxplot (x=d['TotalCharges'], color='steelblue')

<matplotlib.axes. subplots.AxesSubplot at 0x7£41099dfel0>

T T T T
2000 4000 E000 BOOD
TotalCharges

=

plt.figure(figsize=(6,1.5))
sns.boxplot (x=d['Tenure'], color='steelblue')

<matplotlib.axes._ subplots.AxesSubplot at 0x7£4109987e90>

Q_
S
=
=
5
5
3
=]

TotalCharges ranges from 0 to over 8000 USD. No outliers (no points beyond the whiskers). Tenure ranges from just over 0 to over 70 months.
Again, no outliers. Do not want to covert to a 0 - 1 range with extreme outliers as that would drastically affect all the transformed data values
over a much compressed range except for the extreme outliers transformed at or near 0 or 1.

n. Convert TotalCharges and Tenure these variables to a 0 to 1 range so that all feature variables are on the same scale. As always, verify any
change in the data.

Hint: Re-scaling done in 02PreProcess.

Data Leak Warning: Better to do this analysis with the re-scaling only done on test data, then done again, anew, on the testing data separately.
Otherwise there is data leakage, where the testing data is confounded with the training data because at this point in the analysis, the training
and testing data are together. Characteristics of the training data will impact the way that later test data is tested.

If doing just one train/test split, separate re-scaling of training and testing data can easily be accomplished with what we know. Just rescale
separately the two data sets after forming the split. For the preferred k-fold cross-validation, however, the testing data in each fold needs to be
re-scaled separately. To do so we need to introduce the concept of a pipeline, which starts to be too much after introducing everything else.
To be pure, if on the job for example, should do the separate re-scaling after the train/test split and not do k-fold. Or, even better, learn about
constructing a pipeline, such as here and here. Another straightforward step, not that hard, but enough for now and not included in this
course.

Preferably, we would estimate the re-scaling parameters and then the model itself on all of the data only after successful model validation. This
version of the model would then be used to forecast from new data.

Fortunately, with such a large data set, the re-scaling parameters should be reasonably robust. If not constructing a pipeline, this step of
doing one data rescaling before validation is better than not doing any rescaling at all given the large discrepancies of scales for TotalCharges
and Tenure.

from sklearn import preprocessing

fram cellearn nranrareccina imnnrt+t MinMavQeralar

http://web.pdx.edu/~gerbing/data/CustomerChurn.csv
https://medium.com/vickdata/a-simple-guide-to-scikit-learn-pipelines-4ac0d974bdcf
https://chrisalbon.com/machine_learning/model_evaluation/cross_validation_pipeline/

e e e e i s e e e v ey e e e v cemcecaac v e

mm_scaler = preprocessing.MinMaxScaler ()
X = mm_scaler.fit transform(X)
X = pd.DataFrame(X, columns=['Charges', 'Paperless', 'Check',
'Phone', 'Tenure', 'Dependents', 'InternetNo'])
X.head()

Charges Paperless Check Phone Tenure Dependents InternetNo

0 0.001275 1.0 0.0 0.0 0.000000 0.0 0.0
1 0.215867 0.0 1.0 1.0 0.464789 0.0 0.0
2 0.010310 1.0 1.0 1.0 0.014085 0.0 0.0
3 0.210241 0.0 0.0 0.0 0.619718 0.0 0.0
4 0.015330 1.0 0.0 1.0 0.014085 0.0 0.0

X now has re-scaled variables.

v Fit Model and Evaluate with One Hold-Out Sample

0. Do a 70% training data and 30% testing data split of X and y data structures. Show the dimensions of the output data structures.

from sklearn.model selection import train test split
X _train, X test, y train, y test = train test split(X, y, test size=.30, random state=9)

print("size of X data structures: ", X train.shape, X test.shape)
print("size of y data structures: ", y train.shape, y test.shape)

size of X data structures: (4922, 7) (2110, 7)
size of y data structures: (4922,) (2110,)

p. Fit the model to the training data.

logistic_model.fit(X_train, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit intercept=True,
intercept scaling=1, 11 ratio=None, max_iter=500,
multi class='auto', n_jobs=None, penalty='1l2",
random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
warm_start=False)

q. Calculate the baseline probability for prediction in the absence of all information regarding X, the null model, the group with the largest
proportion.

my = y.mean()

max my = np.max([y.mean(), l-y.mean()])

print('Proportion of 0O\'s (do not churn): %.3f' % (l-my))
print('Proportion of 1\'s (churn): %.3f' % my)
print('Null model accuracy: %.3f' % max my)

Proportion of 0's (do not churn): 0.734
Proportion of 1's (churn): 0.266
Null model accuracy: 0.734

If all customers are predicted to not churn, accuracy is 73.4%. The question: How much better can the logistic regression model do for
accuracy greater than 73.4%?

r. As a basis for evaluating forecasting accuracy, get the values fit by the model from the corresponding X values, for training and testing data.

y_fit = logistic_model.predict(X train)
y_pred = logistic _model.predict (X test)

S. For the testing data, calculate the probability of a churn for all the rows of testing data from the values of the features, the predictor variables.

probs = [i[1l] for i in logistic_model.predict proba(X test)]
probs[0:5]

.2780896592421815,
.15770858618339492,
.25350047972517026,
.0023574929364177837,
.4631213430138494]

o O ©O O o

t. To understand more of what is happening here (for pedagogy), view the true values, forecasted values, and the estimated probability of churning
for about 10 or so rows of data. Best display is as a data frame, so convert just to show a more readable display.

pred df = pd.DataFrame({'true values': y_ test,
'pred_values': y pred,
'pred probs':probs})

pred_df.head(15).transpose().style.format("{:.3}")

1888 5398 2622 531 1472 2035 4838 5505 3528 3279 3287 3423 1434 6508
true_values 0.0 00 00 0.0 10 00 00 00 10 00O 10 10 10 1.0
pred_values0.0 00 00 0.0 00 00 00 00O 00O 00 00 00 00 00
pred_probs 0.278 0.158 0.254 0.00236 0.463 0.153 0.179 0.293 0.118 0.216 0.437 0.339 0.463 0.242

u. Assess the accuracy of the model on training and testing data. Any overfitting?

from sklearn.metrics import accuracy_score
print ('Accuracy for training data: %.3f' % accuracy score(y_train, y fit))
print ('Accuracy for testing data: %.3f' % accuracy score(y_test, y pred))

Accuracy for training data: 0.779
Accuracy for testing data: 0.793
By chance, the testing data actually has a higher accuracy count by 1.4%. Clearly no overfitting here.

v. Show the confusion matrix and explicitly identify the True Negatives, True Positives, False Negatives, and False Positives.

from sklearn.metrics import confusion matrix
dc = pd.DataFrame(confusion matrix(y_ test, y pred))

dc
0 1
0 1413 155
1 282 260

print("True Negatives: ", dc.iloc[0,0])
print("True Positives: ", dc.iloc[1,1])
print("False Negatives: ", dc.iloc[1,0])
print("False Positives: ", dc.iloc[0,1])

True Negatives: 1413
True Positives: 260
False Negatives: 282
False Positives: 155

w. Calculate the recall, precision, and, F1 metrics. Comment on the meaning of each from the perspective of management.

from sklearn.metrics import recall score, precision score, fl score

print ('Recall for testing data: $.3f' % recall score(y_test, y pred))

print ('Precision for testing data: %.3f' % precision score(y_test, y pred))
print ('Fl for testing data: %.3f' % fl score(y_test, y pred))

Recall for testing data: 0.480
Precision for testing data: 0.627
Fl for testing data: 0.543

The lowest fit index, recall (sensitivity) is 48%. That means that the model correctly forecasts 48% of customers who churned (true positive). So
the model mislabels about 52% of actual customers as churned who did not churn. This 52% comes from the 282 false negatives from the
confusion matrix. Clearly a failure from management's point of view, missing so many customers who ended up leaving the company's service
plan.

Conclusion: The model is not sensitive to detecting those who will churn.

The precision is somewhat higher, which means that of those the model forecasted as churned, 62.7% actually did churn. Of those forecasted
to churn, are, in fact, did not churn, a false positive. As seen in the confusion matrix, only 155 false positives.

The F1 statistic is between recall and precision, their harmonic average, at 54.3%.
v Fit Model, then Predict, Evaluate with Multiple Hold-Out Samples

x. Do a 5-fold cross-validation an report individual fold and average values of accuracy, recall, and precision.
Access and instanstiate.

from sklearn.model selection import StratifiedKFold
skf = StratifiedKFold(n_splits=5, shuffle=True, random state=1)

Cross-validate with k-fold. Request training data scores also so can evaluate for overfitting by comparing to the corresponding test data
scores.

from sklearn.model_ selection import cross_validate

scores = cross_validate(logistic_model, X, y, cv=skf,
scoring=('accuracy', 'recall', 'precision'),
return train score=True)

Print fit metrics for each fold.

ds = pd.DataFrame(scores).round(3)

print(ds)
fit time score time ... test precision train precision
0 0.063 0.032 ... 0.629 0.614
1 0.049 0.006 ... 0.600 0.626
2 0.032 0.006 ... 0.581 0.629
3 0.033 0.006 0.624 0.627
4 0.052 0.006 0.656 0.618

[5 rows x 8 columns]
Print averages on test data across the folds for the three primary fit indices.

print('Mean of test accuracy: %.3f' % ds['test_accuracy'].mean())
print('Mean of test recall: %.3f' % ds['test recall'].mean())
print('Mean of test precision: %.3f' % ds['test precision'].mean())

Mean of test accuracy: 0.781
Mean of test recall: 0.466
Mean of test precision: 0.618

Not far off from the single training/test split, but these averages are the best estimates of the validity of the model.
y. Comment on the worth of the model.

Baseline accuracy is 73.4%, so only a slight improvement by the model, to 78.1%. The primary utility of the model is to identify customers who
will churn before they do so. The model does poorly at this task, only identifying 46.6% of the customers who actually churn. Of those
forecasted to churn, only 61.8% actually did. Predictions in either direction are not particularly good.

As it exists, the model is not ready for application.

v Automated Feature Selection

The model is not working well, so in practice there is less concern for reducing the number of features to see if not much fit is sacrificed when
inputting less information into the model. Still, feature selection shows us which features are most useful, providing a core for constructing
future models with different information added to what already is somewhat working.

z. Do a univariate feature selection of the top 4 features. Identify these features.

v Univariate Selection

from sklearn.feature selection import SelectKBest, f classif
SelectKBest(f classif, k=4).fit(X,y)
selected = selector.get_support()

selector

selected

array([True, True, False, False, True, False, True])

X2 = X.iloc[:, selected]
X2.head()

Charges Paperless Tenure InternetNo

0 0.001275 1.0 0.000000 0.0
1 0.215867 0.0 0.464789 0.0
2 0.010310 1.0 0.014085 0.0
3 0.210241 0.0 0.619718 0.0
4 0.015330 1.0 0.014085 0.0

~ Multivariate Selection

aa. Do a multivariate feature selection. Identify the selected features.

The LogisticRegression module has already been instantiated as model.

from sklearn.feature selection import SelectKBest
from sklearn.feature_selection import RFE
selector = RFE(logistic_model, n_features_to select=4, step=1).fit(X,y)

The features are selected, but now the X data frame of feature data must be pared down to just include the selected features. For this there are
two variables that rRFE () created. The support_ vector indicates by True or False the selected variables. The ranking_ vector ranks the
features, with all the selected variables ranked at 1.

print(selector.support)
print(selector.ranking)

[True True False False True False True]
[1124131]

Use the support_ created data variable with the iloc() function to redefine the feature data frame. Here we return to the full data set of the
features, the X data frame.

X _reduced = X.iloc[:, selector.support_]
X reduced.head()

Charges Paperless Tenure InternetNo

0 0.001275 1.0 0.000000 0.0
1 0.215867 0.0 0.464789 0.0
2 0.010310 1.0 0.014085 0.0
3 0.210241 0.0 0.619718 0.0
4 0.015330 1.0 0.014085 0.0

ab. Rank the features in importance.

rnk = pd.DataFrame()

rnk|['Feature'] = X.columns

rnk['Rank']= selector.ranking
rnk.sort_values('Rank').transpose()

0 1 4 6 2 5 3
Feature Charges Paperless Tenure InternetNo Check Dependents Phone

Rank 1 1 1 1 2 3 4

No validation of the reduced model as the full model did not validate. Knowing the most important features serves as a building block to future
models, not to serve as model on its own.

v Estimate Validated Model on All Data

The LogisticRegression classifier has already been instantiated as logistic_model. Here fit to all of the data, then retrieve the model
coefficients.

X.head()

Charges Paperless Check Phone Tenure Dependents InternetNo

0 0.001275 1.0 0.0 0.0 0.000000 0.0 0.0
1 0.215867 0.0 1.0 1.0 0.464789 0.0 0.0
2 0.010310 1.0 1.0 1.0 0.014085 0.0 0.0
3 0.210241 0.0 0.0 0.0 0.619718 0.0 0.0
4 0.015330 1.0 0.0 1.0 0.014085 0.0 0.0

This model is to be fit with seven features, the variables in the X data frame.

logistic _model.fit (X, y)

print("intercept %.3f" % logistic model.intercept , "\n")
cf = pd.DataFrame()

cf['Feature'] = X.columns

print(X.columns)

cf['Coef']= np.transpose(logistic_model.coef).round(3)
cf.transpose()

intercept 0.171

Index(['Charges', 'Paperless', 'Check', 'Phone', 'Tenure', 'Dependents',
'InternetNo'],
dtype='object"')

0 1 2 3 4 5 6
Feature Charges Paperless Check Phone Tenure Dependents InternetNo

Coef 3.455 0.62 -0.553 0.019 -5.581 -0.406 -1.291

Model:
j}Churn =0.171 + 3~455(xCharges) + O~62(xPaperless) - 0-553(xCheck + O~019(xPhone) - 5~581(xTenure) - O~406(xDependents)

- 1.291 (xInternet)

v Apply the Model

ac. Forecast if the customer churns from new data.
Customer data:

e Charges: 200
e Paperless: 1
e Check: 1

e Phone: 1

e Tenure: 12

¢ Dependents: 0
e Internet: 0

Create a list of these data values, making sure to enter in the same order that the variables appear in the X data frame.

Also, because the data was re-scaled, any new data from which to make a prediction also needs to be re-scaled. | do not believe there was an
example of this, so the re-scaling transformation is provided here. Basically, take the mm_scaler construct previously defined from the original
transformation, and then apply the transform() function by itself, without the £it () function.

print('Multiplier:', mm scaler.scale .round(3))
print('Additive:', mm scaler.min .round(3))

Multiplier: [O. 1. 1. 1. 0.014 1. 1.
Additive: [-0.002 O. 0. 0. -0.014 0. 0.]

—

X new = [[200, 1, 1, 1, 12, 0, 0]]
X_new

trz2o0, 1, 1, 1, 12, 0, 0]]
X_new = mm_scaler.transform(X_new)
X new
array([[0.0209093 , 1. ; L. ; L. ; 0.15492958,

0. , 0. 11)

Now from this re-scaled list, create the forecast, Group 0 (not-churn) or Group 1 (churn) and the associated probability.

y_new = logistic_model.predict (X new)
print("Predicted group membership:", y new)
y_prob = logistic_model.predict_proba (X new)
print(round(y_prob[0,1], 3))

Predicted group membership: [0]
0.369

