
Logistic Regression: Solutions #5

David Gerbing

The School of Business

Portland State University

gerbing@pdx.edu

1  Preliminaries
2  Read and Prepare data

2.1  Read and Verify Data
2.2  Pre-Process Data
2.3  Pre-Analysis Understanding and Feature Selection
2.4  Target Distribution
2.5  Feature Relevance
2.6  Feature Redundancy
2.7  Create Feature and Target Data Structures

3  Fit Model and Evaluate with One Hold-Out Sample
4  Fit Model, then Predict, Evaluate with Multiple Hold-Out Samples
5  Automated Feature Selection

5.1  Univariate Selection
5.2  Multivariate Selection
5.3  Estimate Validated Model on All Data

6  Apply the Model

Table of Contents

Preliminaries

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-07-26 at 00:37


/content' '

import os
os.getcwd()

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.linear_model import LogisticRegression
logistic_model = LogisticRegression(solver='lbfgs', max_iter=500)

Read and Prepare data

The following data file contains information on over 7000 customers of a telecom service, including former customers who left the service plan
within the last 30 days the data was collected. Build a model to predict customer churn (customer exists the service plan).

Data: http://web.pdx.edu/~gerbing/data/CustomerChurn.csv

Read and Verify Data

a.

Read the data into a data frame.
Display the number of rows and columns in the data file, and the first five lines of the data file, including the variable names.
Display all variable names and corresponding data values by transposing the output table.
Display the data type for each variable.

d = pd.read_csv('http://web.pdx.edu/~gerbing/data/CustomerChurn.csv')
#d = pd.read_csv('data/CustomerChurn.csv')

d.shape

(7043, 21)

0 1 2 3 4

customerID 7590-VHVEG 5575-
GNVDE

3668-
QPYBK 7795-CFOCW 9237-HQITU

gender Female Male Male Male Female

SeniorCitizen 0 0 0 0 0

Partner Yes No No No No

Dependents No No No No No

tenure 1 34 2 45 2

PhoneService No Yes Yes No Yes

MultipleLines No phone
service No No No phone service No

InternetService DSL DSL DSL DSL Fiber optic

OnlineSecurity No Yes Yes Yes No

OnlineBackup Yes No Yes No No

DeviceProtection No Yes No Yes No

TechSupport No No No Yes No

StreamingTV No No No No No

StreamingMovies No No No No No

Contract Month-to-
month One year Month-to-

month One year Month-to-
month

PaperlessBilling Yes No Yes No Yes

PaymentMethod Electronic
check

Mailed
check Mailed check Bank transfer

(automatic)
Electronic

check

MonthlyCharges 29.85 56.95 53.85 42.3 70.7

d.head().transpose()

d.dtypes

customerID           object

gender               object

SeniorCitizen         int64

Partner              object

Dependents           object

tenure                int64

PhoneService         object

MultipleLines        object

InternetService      object

OnlineSecurity       object

OnlineBackup         object

DeviceProtection     object

TechSupport          object

StreamingTV          object

StreamingMovies      object

Contract             object

PaperlessBilling     object

PaymentMethod        object

MonthlyCharges      float64

TotalCharges         object

Churn                object

dtype: object

b. The variable TotalCharges is conceptually a numeric variable but is read into the data frame as an object variable, i.e., non-numeric. Convert to
numeric. As always, audit (verify) any change to the data table. This is one reason why the way in which the variables are read into the system is
important to understand before continuing the analysis.

Use the following code for the to_numeric  function to convert (where d is the data frame name, but could be any valid Python name).

d['TotalCharges'] = pd.to_numeric(d['TotalCharges'], errors='coerce')

The errors  parameter set to 'coerce'  instructs to convert to a NaN  any data value that cannot be converted to a legitimate number.

d['TotalCharges'] = pd.to_numeric(d['TotalCharges'], errors='coerce')
d.TotalCharges.dtypes

dtype('float64')

Pre-Process Data

c. Drop the customerID variable.

Hint: Illustrated in several previous notebooks, including 02Wrangle.

d.drop('customerID', axis='columns', inplace=True)

d. Most of the variables are categorical. Pre-process each categorical variable to become a dummy variable, a type of indicator variable. Retain all 
 dummy variables for each categorical variable with  levels (to be able to pick and choose the dummy variables to analyze.

Hint: You do not need to list each variable, though could, just the data frame name.

𝑘 𝑘

0 1 2 3 4

SeniorCitizen 0.00 0.00 0.00 0.00 0.00

tenure 1.00 34.00 2.00 45.00 2.00

MonthlyCharges 29.85 56.95 53.85 42.30 70.70

TotalCharges 29.85 1889.50 108.15 1840.75 151.65

gender_Female 1.00 0.00 0.00 0.00 1.00

gender_Male 0.00 1.00 1.00 1.00 0.00

Partner_No 0.00 1.00 1.00 1.00 1.00

Partner_Yes 1.00 0.00 0.00 0.00 0.00

Dependents_No 1.00 1.00 1.00 1.00 1.00

Dependents_Yes 0.00 0.00 0.00 0.00 0.00

PhoneService_No 1.00 0.00 0.00 1.00 0.00

PhoneService_Yes 0.00 1.00 1.00 0.00 1.00

MultipleLines_No 0.00 1.00 1.00 0.00 1.00

MultipleLines_No phone service 1.00 0.00 0.00 1.00 0.00

MultipleLines_Yes 0.00 0.00 0.00 0.00 0.00

InternetService_DSL 1.00 1.00 1.00 1.00 0.00

InternetService_Fiber optic 0.00 0.00 0.00 0.00 1.00

InternetService_No 0.00 0.00 0.00 0.00 0.00

OnlineSecurity_No 1.00 0.00 0.00 0.00 1.00

OnlineSecurity_No internet service 0.00 0.00 0.00 0.00 0.00

OnlineSecurity_Yes 0.00 1.00 1.00 1.00 0.00

OnlineBackup_No 0.00 1.00 0.00 1.00 1.00

OnlineBackup_No internet service 0.00 0.00 0.00 0.00 0.00

OnlineBackup_Yes 1.00 0.00 1.00 0.00 0.00

DeviceProtection_No 1.00 0.00 1.00 0.00 1.00

DeviceProtection_No internet service 0.00 0.00 0.00 0.00 0.00

DeviceProtection_Yes 0.00 1.00 0.00 1.00 0.00

TechSupport_No 1.00 1.00 1.00 0.00 1.00

TechSupport_No internet service 0.00 0.00 0.00 0.00 0.00

TechSupport_Yes 0.00 0.00 0.00 1.00 0.00

StreamingTV_No 1.00 1.00 1.00 1.00 1.00

StreamingTV_No internet service 0.00 0.00 0.00 0.00 0.00

StreamingTV_Yes 0.00 0.00 0.00 0.00 0.00

StreamingMovies_No 1.00 1.00 1.00 1.00 1.00

StreamingMovies_No internet service 0.00 0.00 0.00 0.00 0.00

StreamingMovies_Yes 0.00 0.00 0.00 0.00 0.00

Contract_Month-to-month 1.00 0.00 1.00 0.00 1.00

Contract_One year 0.00 1.00 0.00 1.00 0.00

Contract_Two year 0.00 0.00 0.00 0.00 0.00

PaperlessBilling_No 0.00 1.00 0.00 1.00 0.00

PaperlessBilling_Yes 1.00 0.00 1.00 0.00 1.00

PaymentMethod_Bank transfer (automatic) 0.00 0.00 0.00 1.00 0.00

PaymentMethod_Credit card (automatic) 0.00 0.00 0.00 0.00 0.00

PaymentMethod_Electronic check 1.00 0.00 0.00 0.00 1.00

PaymentMethod_Mailed check 0.00 1.00 1.00 0.00 0.00

Churn_No 1.00 1.00 0.00 1.00 0.00

Churn_Yes 0.00 0.00 1.00 0.00 1.00

d = pd.get_dummies(d)
d.head().transpose()

e. To keep the analysis simpler, and to drop excess dummy variables retain just the following (mostly indicator) variables for analysis.

'MonthlyCharges', 'TotalCharges', 'Contract_Month-to-month',
'PaperlessBilling_Yes', 'PaymentMethod_Mailed check', 'PhoneService_Yes',
'tenure', 'Dependents_Yes',
'InternetService_No', 'Churn_Yes'

Hint: See subsetting in 02Wrangling.

d = d.loc[:, ['MonthlyCharges', 'TotalCharges', 'Contract_Month-to-month',
              'PaperlessBilling_Yes', 'PaymentMethod_Mailed check', 
              'PhoneService_Yes', 'tenure', 'Dependents_Yes',
              'InternetService_No', 'Churn_Yes']].copy()

f. Simplify the variable names. Rename as follows. Audit.

MonthlyCharges --> Charges,
Contract_Month-to-month --> Contract_MtoM,
PaperlessBilling_Yes --> Paperless,
PaymentMethod_Mailed check --> Check,
PhoneService_Yes --> Phone,
tenure --> Tenure,
Dependents_Yes --> Dependents,
InternetService_No --> InternetNo,
Churn_Yes --> Churn

Hint: Several previous examples, including 02Wrangle.

Charges TotalCharges MtoM Paperless Check Phone Tenure Dependents Inte

0 29.85 29.85 1 1 0 0 1 0

1 56.95 1889.50 0 0 1 1 34 0

2 53.85 108.15 1 1 1 1 2 0

3 42.30 1840.75 0 0 0 0 45 0

4 70.70 151.65 1 1 0 1 2 0

d = d.rename(columns= {'MonthlyCharges': 'Charges',
                       'Contract_Month-to-month': 'MtoM', 
                       'PaperlessBilling_Yes': 'Paperless',
                       'PaymentMethod_Mailed check': 'Check',
                       'PhoneService_Yes': 'Phone',
                       'tenure': 'Tenure',
                       'Dependents_Yes': 'Dependents',
                       'InternetService_No': 'InternetNo',
                       'Churn_Yes': 'Churn'})
d.head()

To review the syntax, everything inside { } is called a Python dictionary , a core Python data structure. The dictionary  lists keyword-value
pairs.

g. Check for missing data. If not too much, delete the offenders. If severe, impute the missing values. Audit.

Hint: Done in 02PreProcess.

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Charges          0

TotalCharges    11

MtoM             0

Paperless        0

Check            0

Phone            0

Tenure           0

Dependents       0

InternetNo       0

Churn            0

dtype: int64


Total Missing: 11


Very little missing data. Of over 7000 rows of data, just 11 with missing data on only one variable. Delete.

print('shape before delete:', d.shape)
d = pd.DataFrame(d.dropna(axis='rows'))
print('shape after delete:', d.shape)

shape before delete: (7043, 10)

shape after delete: (7032, 10)


Pre-Analysis Understanding and Feature Selection

Target Distribution

h. Check out the distribution of the target, with a frequency distribution and then the corresponding bar chart.

freq = d['Churn'].value_counts()
freq

0    5163

1    1869

Name: Churn, dtype: int64

<matplotlib.axes._subplots.AxesSubplot at 0x7f4115620fd0>

plt.title('Distribution of Churn', fontsize=12)
freq.plot(kind='bar', color="sienna")

If going to run a model focused on forecasting the target, should also understand the nature of the target variable. The distribution is
unbalanced (certainly the company would not want a balanced distribution). Over 5000 customers remain and under 2000 customers left
(churned). One implication is that the base null model accuracy will not be 0.5, but more than 5/7.

Feature Relevance

i. Are all the features relevant? Examine the difference in means of Churn across the features.

Charges TotalCharges MtoM Paperless Check Phone Tenure De

Churn

0 61.307408 2555.344141 0.429983 0.536122 0.251017 0.901220 37.650010

1 74.441332 1531.796094 0.885500 0.749064 0.164794 0.909042 17.979133

d.groupby('Churn').mean()

All the means appear to differ depending on Gender, so forecasting accuracy should at least be better than the null model. (Thougn not we are
just looking here at the means as descriptive statistics, would be better to do the inferential test, -test of the mean difference, for each
numerical variable.)

𝑡

j. Examine the overlap in the distributions of Churn for numerical features TotalCharges, Paperless, and tenure. Which variable is likely the best
predictor of churn?

check = ['TotalCharges', 'Paperless', 'Tenure']
for column in d[check]:
    sns.pairplot(d, vars=[column], hue='Churn')

The variable tenure (months of being a customer) differentiates the most between those customers who churned and those who stayed. That
makes sense, those customers with the most tenure (customers the longest) stayed (apparently the blue distribution), while those with little
tenure tended to churn (orange distribution).

Feature Redundancy

k. Check for collinearity. Comment.

Even not having the need to drop features before model estimation as CPU time is not an issue, it is useful to explore relations of the features
with each other, and with the target, to understand more about how the model will perform and not analyze with no understanding of the data.

Because correlations span from negative to positive, use a diverging color palette, with blue indicating positive correlations and red indicating
very small positive to negative correlations.

<matplotlib.axes._subplots.AxesSubplot at 0x7f41193908d0>

plt.figure(figsize=(10,8))
sns.heatmap(d.corr().round(2), linewidths=2.0, annot=True, 
            cmap=sns.diverging_palette(5, 250, as_cmap=True))

In general, collinearity is not bad, feature inter-correlations are generally not high. However, there are some high feature correlations. Charges
correlations  with InternetNo customers, which makes sense because not having Internet reduces the bill. MtoM, that is, a month-to-
month customer instead of a longer contract customer, correlates  with tenure, which also logically follows. At least one of these
variables for each pair can likely be dropped from the final model without losing much, if any, forecasting efficiency.

−0.76

−0.65

Create Feature and Target Data Structures

l. Define all feature variables in a data structure X. Define the target variable as a data structure , a column of 0's and 1's.𝑦

TotalCharges Paperless Check Phone Tenure Dependents InternetNo

0 29.85 1 0 0 1 0 0

1 1889.50 0 1 1 34 0 0

2 108.15 1 1 1 2 0 0

3 1840.75 0 0 0 45 0 0

4 151.65 1 0 1 2 0 0

y = d['Churn']
pred_vars = ['TotalCharges', 'Paperless', 'Check',
             'Phone', 'Tenure', 'Dependents', 'InternetNo']
X = d[pred_vars]
X.head()

Not necessary, but see how many features are defined.

n_pred = len(pred_vars)
print("Number of predictor variables:", n_pred)

Number of predictor variables: 7


Not necessary, but see how many features are defined with code.

n_pred = len(pred_vars)
print("Number of predictor variables:", n_pred)

Number of predictor variables: 7


m. All dummy variables consist of values of only 0 or 1. The numerical variables TotalCharges and Tenure range much more than 0 to 1. Generate
a box plot for these variables to examine their range and check for outliers. Discuss.

<matplotlib.axes._subplots.AxesSubplot at 0x7f41099dfe10>

plt.figure(figsize=(6,1.5))
sns.boxplot(x=d['TotalCharges'], color='steelblue')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4109987e90>

plt.figure(figsize=(6,1.5))
sns.boxplot(x=d['Tenure'], color='steelblue')

TotalCharges ranges from 0 to over 8000 USD. No outliers (no points beyond the whiskers). Tenure ranges from just over 0 to over 70 months.
Again, no outliers. Do not want to covert to a 0 - 1 range with extreme outliers as that would drastically affect all the transformed data values
over a much compressed range except for the extreme outliers transformed at or near 0 or 1.

n. Convert TotalCharges and Tenure these variables to a 0 to 1 range so that all feature variables are on the same scale. As always, verify any
change in the data.

Hint: Re-scaling done in 02PreProcess.

Data Leak Warning: Better to do this analysis with the re-scaling only done on test data, then done again, anew, on the testing data separately.
Otherwise there is data leakage, where the testing data is confounded with the training data because at this point in the analysis, the training
and testing data are together. Characteristics of the training data will impact the way that later test data is tested.

If doing just one train/test split, separate re-scaling of training and testing data can easily be accomplished with what we know. Just rescale
separately the two data sets after forming the split. For the preferred -fold cross-validation, however, the testing data in each fold needs to be
re-scaled separately. To do so we need to introduce the concept of a pipeline , which starts to be too much after introducing everything else.
To be pure, if on the job for example, should do the separate re-scaling after the train/test split and not do -fold. Or, even better, learn about
constructing a pipeline , such as here and here. Another straightforward step, not that hard, but enough for now and not included in this
course.

Preferably, we would estimate the re-scaling parameters and then the model itself on all of the data only after successful model validation. This
version of the model would then be used to forecast from new data.

Fortunately, with such a large data set, the re-scaling parameters should be reasonably robust. If not constructing a pipeline , this step of
doing one data rescaling before validation is better than not doing any rescaling at all given the large discrepancies of scales for TotalCharges
and Tenure.

𝑘

𝑘

from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler

http://web.pdx.edu/~gerbing/data/CustomerChurn.csv
https://medium.com/vickdata/a-simple-guide-to-scikit-learn-pipelines-4ac0d974bdcf
https://chrisalbon.com/machine_learning/model_evaluation/cross_validation_pipeline/


Charges Paperless Check Phone Tenure Dependents InternetNo

0 0.001275 1.0 0.0 0.0 0.000000 0.0 0.0

1 0.215867 0.0 1.0 1.0 0.464789 0.0 0.0

2 0.010310 1.0 1.0 1.0 0.014085 0.0 0.0

3 0.210241 0.0 0.0 0.0 0.619718 0.0 0.0

4 0.015330 1.0 0.0 1.0 0.014085 0.0 0.0

from sklearn.preprocessing import MinMaxScaler
mm_scaler = preprocessing.MinMaxScaler()
X = mm_scaler.fit_transform(X)
X = pd.DataFrame(X, columns=['Charges', 'Paperless', 'Check',
                            'Phone', 'Tenure', 'Dependents', 'InternetNo'])
X.head()

X now has re-scaled variables.

Fit Model and Evaluate with One Hold-Out Sample

o. Do a 70% training data and 30% testing data split of X and  data structures. Show the dimensions of the output data structures.𝑦

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.30, random_state=9)

print("size of X data structures: ", X_train.shape, X_test.shape)
print("size of y data structures: ", y_train.shape, y_test.shape)

size of X data structures:  (4922, 7) (2110, 7)

size of y data structures:  (4922,) (2110,)


p. Fit the model to the training data.

logistic_model.fit(X_train, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

                   intercept_scaling=1, l1_ratio=None, max_iter=500,

                   multi_class='auto', n_jobs=None, penalty='l2',

                   random_state=None, solver='lbfgs', tol=0.0001, verbose=0,

                   warm_start=False)

q. Calculate the baseline probability for prediction in the absence of all information regarding X, the null model, the group with the largest
proportion.

my = y.mean()
max_my = np.max([y.mean(), 1-y.mean()])
print('Proportion of 0\'s (do not churn): %.3f' % (1-my))
print('Proportion of 1\'s (churn): %.3f' % my)
print('Null model accuracy: %.3f' % max_my)

Proportion of 0's (do not churn): 0.734

Proportion of 1's (churn): 0.266

Null model accuracy: 0.734


If all customers are predicted to not churn, accuracy is 73.4%. The question: How much better can the logistic regression model do for
accuracy greater than 73.4%?

r. As a basis for evaluating forecasting accuracy, get the values fit by the model from the corresponding X values, for training and testing data.

y_fit = logistic_model.predict(X_train)
y_pred = logistic_model.predict(X_test)

s. For the testing data, calculate the probability of a churn for all the rows of testing data from the values of the features, the predictor variables.

probs = [i[1] for i in logistic_model.predict_proba(X_test)]
probs[0:5]

[0.2780896592421815,

 0.15770858618339492,

 0.25350047972517026,

 0.0023574929364177837,

 0.4631213430138494]

t. To understand more of what is happening here (for pedagogy), view the true values, forecasted values, and the estimated probability of churning
for about 10 or so rows of data. Best display is as a data frame, so convert just to show a more readable display.

1888 5398 2622 531 1472 2035 4838 5505 3528 3279 3287 3423 1434 6508
true_values 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 1.0 0
pred_values 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
pred_probs 0.278 0.158 0.254 0.00236 0.463 0.153 0.179 0.293 0.118 0.216 0.437 0.339 0.463 0.242 0

pred_df = pd.DataFrame({'true_values': y_test,
                        'pred_values': y_pred,
                        'pred_probs':probs})
pred_df.head(15).transpose().style.format("{:.3}")

u. Assess the accuracy of the model on training and testing data. Any overfitting?

from sklearn.metrics import accuracy_score
print ('Accuracy for training data:  %.3f' % accuracy_score(y_train, y_fit))
print ('Accuracy for testing data:  %.3f' % accuracy_score(y_test, y_pred))

Accuracy for training data:  0.779

Accuracy for testing data:  0.793


By chance, the testing data actually has a higher accuracy count by 1.4%. Clearly no overfitting here.

v. Show the confusion matrix and explicitly identify the True Negatives, True Positives, False Negatives, and False Positives.

0 1

0 1413 155

1 282 260

from sklearn.metrics import confusion_matrix
dc = pd.DataFrame(confusion_matrix(y_test, y_pred))
dc

print("True Negatives: ", dc.iloc[0,0])
print("True Positives: ", dc.iloc[1,1])
print("False Negatives: ", dc.iloc[1,0])
print("False Positives: ", dc.iloc[0,1])

True Negatives:  1413

True Positives:  260

False Negatives:  282

False Positives:  155


w. Calculate the recall, precision, and, F1 metrics. Comment on the meaning of each from the perspective of management.

from sklearn.metrics import recall_score, precision_score, f1_score
print ('Recall for testing data:  %.3f' % recall_score(y_test, y_pred))
print ('Precision for testing data:  %.3f' % precision_score(y_test, y_pred))
print ('F1 for testing data:  %.3f' % f1_score(y_test, y_pred))

Recall for testing data:  0.480

Precision for testing data:  0.627

F1 for testing data:  0.543


The lowest fit index, recall (sensitivity) is 48%. That means that the model correctly forecasts 48% of customers who churned (true positive). So
the model mislabels about 52% of actual customers as churned who did not churn. This 52% comes from the 282 false negatives from the
confusion matrix. Clearly a failure from management's point of view, missing so many customers who ended up leaving the company's service
plan.

Conclusion: The model is not sensitive to detecting those who will churn.

The precision is somewhat higher, which means that of those the model forecasted as churned, 62.7% actually did churn. Of those forecasted
to churn, are, in fact, did not churn, a false positive. As seen in the confusion matrix, only 155 false positives.

The F1 statistic is between recall and precision, their harmonic average, at 54.3%.

Fit Model, then Predict, Evaluate with Multiple Hold-Out Samples

x. Do a 5-fold cross-validation an report individual fold and average values of accuracy, recall, and precision.

Access and instanstiate.

from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=1)

Cross-validate with -fold. Request training data scores also so can evaluate for overfitting by comparing to the corresponding test data
scores.

𝑘

from sklearn.model_selection import cross_validate
scores = cross_validate(logistic_model, X, y, cv=skf, 
                        scoring=('accuracy', 'recall', 'precision'),
                        return_train_score=True)

Print fit metrics for each fold.

ds = pd.DataFrame(scores).round(3)
print(ds)

   fit_time  score_time  ...  test_precision  train_precision

0     0.063       0.032  ...           0.629            0.614

1     0.049       0.006  ...           0.600            0.626

2     0.032       0.006  ...           0.581            0.629

3     0.033       0.006  ...           0.624            0.627

4     0.052       0.006  ...           0.656            0.618


[5 rows x 8 columns]


Print averages on test data across the folds for the three primary fit indices.

print('Mean of test accuracy: %.3f' % ds['test_accuracy'].mean())
print('Mean of test recall: %.3f' % ds['test_recall'].mean())
print('Mean of test precision: %.3f' % ds['test_precision'].mean())

Mean of test accuracy: 0.781

Mean of test recall: 0.466

Mean of test precision: 0.618


Not far off from the single training/test split, but these averages are the best estimates of the validity of the model.

y. Comment on the worth of the model.

Baseline accuracy is 73.4%, so only a slight improvement by the model, to 78.1%. The primary utility of the model is to identify customers who
will churn before they do so. The model does poorly at this task, only identifying 46.6% of the customers who actually churn. Of those
forecasted to churn, only 61.8% actually did. Predictions in either direction are not particularly good.

As it exists, the model is not ready for application.

Automated Feature Selection

The model is not working well, so in practice there is less concern for reducing the number of features to see if not much fit is sacrificed when
inputting less information into the model. Still, feature selection shows us which features are most useful, providing a core for constructing
future models with different information added to what already is somewhat working.

z. Do a univariate feature selection of the top 4 features. Identify these features.

Univariate Selection

from sklearn.feature_selection import SelectKBest, f_classif
selector = SelectKBest(f_classif, k=4).fit(X,y)
selected = selector.get_support()
selected

array([ True,  True, False, False,  True, False,  True])

Charges Paperless Tenure InternetNo

0 0.001275 1.0 0.000000 0.0

1 0.215867 0.0 0.464789 0.0

2 0.010310 1.0 0.014085 0.0

3 0.210241 0.0 0.619718 0.0

4 0.015330 1.0 0.014085 0.0

X2 = X.iloc[:, selected]
X2.head()

Multivariate Selection

aa. Do a multivariate feature selection. Identify the selected features.

The LogisticRegression module has already been instantiated as model.

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import RFE
selector = RFE(logistic_model, n_features_to_select=4, step=1).fit(X,y)

The features are selected, but now the X data frame of feature data must be pared down to just include the selected features. For this there are
two variables that RFE()  created. The support_  vector indicates by True or False the selected variables. The ranking_  vector ranks the
features, with all the selected variables ranked at 1.

print(selector.support_)
print(selector.ranking_)

[ True  True False False  True False  True]

[1 1 2 4 1 3 1]


Use the support_  created data variable with the iloc()  function to redefine the feature data frame. Here we return to the full data set of the
features, the X data frame.

Charges Paperless Tenure InternetNo

0 0.001275 1.0 0.000000 0.0

1 0.215867 0.0 0.464789 0.0

2 0.010310 1.0 0.014085 0.0

3 0.210241 0.0 0.619718 0.0

4 0.015330 1.0 0.014085 0.0

X_reduced = X.iloc[:, selector.support_]
X_reduced.head()

ab. Rank the features in importance.

0 1 4 6 2 5 3

Feature Charges Paperless Tenure InternetNo Check Dependents Phone

Rank 1 1 1 1 2 3 4

rnk = pd.DataFrame()
rnk['Feature'] = X.columns
rnk['Rank']= selector.ranking_
rnk.sort_values('Rank').transpose()

No validation of the reduced model as the full model did not validate. Knowing the most important features serves as a building block to future
models, not to serve as model on its own.

Estimate Validated Model on All Data

The LogisticRegression  classifier has already been instantiated as logistic_model. Here fit to all of the data, then retrieve the model
coefficients.

Charges Paperless Check Phone Tenure Dependents InternetNo

0 0.001275 1.0 0.0 0.0 0.000000 0.0 0.0

1 0.215867 0.0 1.0 1.0 0.464789 0.0 0.0

2 0.010310 1.0 1.0 1.0 0.014085 0.0 0.0

3 0.210241 0.0 0.0 0.0 0.619718 0.0 0.0

4 0.015330 1.0 0.0 1.0 0.014085 0.0 0.0

X.head()

This model is to be fit with seven features, the variables in the X data frame.

intercept 0.171 


Index(['Charges', 'Paperless', 'Check', 'Phone', 'Tenure', 'Dependents',

       'InternetNo'],

      dtype='object')


0 1 2 3 4 5 6

Feature Charges Paperless Check Phone Tenure Dependents InternetNo

Coef 3.455 0.62 -0.553 0.019 -5.581 -0.406 -1.291

logistic_model.fit(X, y)
print("intercept %.3f" % logistic_model.intercept_, "\n")
cf = pd.DataFrame()
cf['Feature'] = X.columns
print(X.columns)
cf['Coef']= np.transpose(logistic_model.coef_).round(3)
cf.transpose()

Model:
= 0.171 + 3.455( ) + 0.62( ) − 0.553( + 0.019( ) − 5.581( ) − 0.406( )𝑦 ̂ 𝐶ℎ𝑢𝑟𝑛 𝑥𝐶ℎ𝑎𝑟𝑔𝑒𝑠 𝑥𝑃𝑎𝑝𝑒𝑟𝑙𝑒𝑠𝑠 𝑥𝐶ℎ𝑒𝑐𝑘 𝑥𝑃ℎ𝑜𝑛𝑒 𝑥𝑇𝑒𝑛𝑢𝑟𝑒 𝑥𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠

− 1.291( )𝑥𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡

Apply the Model

ac. Forecast if the customer churns from new data.

Customer data:

Charges: 200
Paperless: 1
Check: 1
Phone: 1
Tenure: 12
Dependents: 0
Internet: 0

Create a list of these data values, making sure to enter in the same order that the variables appear in the X data frame.

Also, because the data was re-scaled, any new data from which to make a prediction also needs to be re-scaled. I do not believe there was an
example of this, so the re-scaling transformation is provided here. Basically, take the mm_scaler construct previously defined from the original
transformation, and then apply the transform()  function by itself, without the fit()  function.

print('Multiplier:', mm_scaler.scale_.round(3))
print('Additive:', mm_scaler.min_.round(3))

Multiplier: [0.    1.    1.    1.    0.014 1.    1.   ]

Additive: [-0.002  0.     0.     0.    -0.014  0.     0.   ]


X_new = [[200, 1, 1, 1, 12, 0, 0]]
X_new

[[200, 1, 1, 1, 12, 0, 0]]

X_new = mm_scaler.transform(X_new)
X_new

array([[0.0209093 , 1.        , 1.        , 1.        , 0.15492958,

        0.        , 0.        ]])

Now from this re-scaled list, create the forecast, Group 0 (not-churn) or Group 1 (churn) and the associated probability.

y_new = logistic_model.predict(X_new)
print("Predicted group membership:", y_new)
y_prob = logistic_model.predict_proba(X_new)
print(round(y_prob[0,1], 3))

Predicted group membership: [0]

0.369


