
check 0s completed at 8:25 PM

Solutions 04 to Worked Problems

David Gerbing

The School of Business

Portland State University

gerbing@pdx.edu

1 Data
2 Regression Analysis
3 Feature Selection

Purpose: For the customers of an online motorcycle clothing company, build a predictive model of Weight from a variety of body measurements
plus Gender.

The data are the body measurements of customers for a motorcycle online clothing retailer.

Data: http://web.pdx.edu/~gerbing/data/BodyMeas2500.xlsx

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-07-13 at 03:24

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Data

a. Read the data.

d = pd.read_excel("http://web.pdx.edu/~gerbing/data/BodyMeas2500.xlsx")
#d = pd.read_excel("~/Documents/BookNew/data/GHC/BodyMeas2500.xlsx")

b. How many samples (rows of data) and columns are there in the data file?

d.shape

(2500, 7)

2501 rows of data with 7 columns

c. Display the first 6 rows of data and the variable names.

Gender Weight Height Waist Hips Chest ArmLength

0 M 135 70 34 38 36 34

1 M 235 66 36 45 48 32

2 M 205 72 38 44 44 36

3 M 190 70 36 41 40 32

4 F 200 64 39 47 45 32

d.head()

d. What are the variables in the data table? (From code or copy and paste.)

d.columns

Index(['Gender', 'Weight', 'Height', 'Waist', 'Hips', 'Chest', 'ArmLength'], dtype='object')

e. Check for missing data. Any action (deletion, imputation) needed?

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Gender 0

Weight 0

Height 0

Waist 0

Hips 0

Chest 0

ArmLength 0

dtype: int64

Total Missing: 0

No missing data. No action needed.

f. Generate a frequency distribution table of Gender.

freq = d['Gender'].value_counts()
freq

M 1908

F 592

Name: Gender, dtype: int64

Quite a few more men than women customers.

g. Generate a bar chart of Gender. (Just need one, here show both Matplotlib and Seaborn versions.)

<matplotlib.axes._subplots.AxesSubplot at 0x7f1ed2b2bd10>

freq.plot(kind='bar')

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a key
 FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f1ed2d90110>

sns.countplot(d['Gender'], order=['F', 'M'])

h. Include Gender in the model to be developed. Convert the two levels of Gender to two dummy variables and use one of them.

Weight Height Waist Hips Chest ArmLength Gender_M

0 135 70 34 38 36 34 1

1 235 66 36 45 48 32 1

2 205 72 38 44 44 36 1

3 190 70 36 41 40 32 1

4 200 64 39 47 45 32 0

d = pd.get_dummies(d, columns=['Gender'], drop_first=True)
d.head()

i. Generate a boxplot of Weight.

<matplotlib.axes._subplots.AxesSubplot at 0x7f1ed2ba3f10>

plt.figure(figsize=(6,1.5))
sns.boxplot(x=d['Weight'], color='steelblue')

j. There are two strong outliers in the data. Why remove them?

The two most extreme outliers are over 400 lbs, so delete these and then in the presentation of results, generalize only to those under 400 lbs.

k. Subset the data frame to remove those rows of data. As always, audit any intended changes in the data frame. Here display the number of rows
in the filtered data frame to demonstrate the deletion.

print(d.shape)
d = d[d['Weight'] < 400]
print(d.shape)

(2500, 7)

(2498, 7)

l. Examine the relevance of each feature according to its correlation with the target.

d.corr()['Weight'].sort_values().round(2)

Gender_M 0.49

ArmLength 0.60

Height 0.63

Hips 0.79

Waist 0.87

Chest 0.88

Weight 1.00

Name: Weight, dtype: float64

All features are relevant, that is, correlate highly with the target.

m. Generate a heat map correlation matrix of the model variables. Comment on collinearity.

<matplotlib.axes._subplots.AxesSubplot at 0x7f1ed255d5d0>

plt.figure(figsize=(12,10))
sns.heatmap(d.corr().round(2), linewidths=2.0, annot=True,
 cmap=sns.diverging_palette(5, 250, as_cmap=True))

Given the small data set with no pressure on computational time, to take a strong stance against data leakage, no features are deleted at this
point in the analysis, though there is clearly much collinearity. In all likelihood, not all of the features will be needed. The worst offenders are
Waist with Hips and Waist with Chest, both correlations of 0.83. Clearly not all three body measurements are needed to forecast Weight.

Regression Analysis

a. Store the features, the predictor variables, in data structure X. Store the target variable in data structure .𝑦

Not necessary, but often useful to store the predictor variables in their own list, here pred_vars. Then invoke this list when needed, such as
defining X.

y = d['Weight']
pred_vars = ['Height', 'Waist', 'Hips', 'Chest', 'ArmLength', 'Gender_M']
X = d[pred_vars]

b. Use code to display the number of features.

The function len() provides the length of a vector, that is, the number of elements of a vector.

n_pred = len(pred_vars)
print("Number of predictor variables:", n_pred)

Number of predictor variables: 6

c. Split the data into 75% training data and 25% testing data.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.25, random_state=7)

b. Do the multiple regression with all possible features. Display the estimated model coefficients.

Access sklearn linear regression.

from sklearn.linear_model import LinearRegression
model = LinearRegression()

Train the machine (i.e., estimate the model).

model.fit(X_train, y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

Display the estimated model (not needed to evaluate forecasting efficiency).

intercept: -329.880

Height Waist Hips Chest ArmLength Gender_M
Coefficients 2.84 1.91 2.17 3.32 0.251 6.13

print("intercept: %.3f" % (model.intercept_), "\n")
cdf = pd.DataFrame(model.coef_, X.columns, columns=['Coefficients'])
cdf.transpose().style.format("{:.3}")

c. For the person who provided the first row of data, manually calculate his fitted weight from the model explicitly from the model coefficients. (For
pedagogy, to show understanding of the model, not normally done here.)

Weight Height Waist Hips Chest ArmLength Gender_M

0 135 70 34 38 36 34 1

d.iloc[0:1, :]

predWt = -329.880 + 2.84*70 + 1.91*34 + 2.17*38 + 3.32*36 + 0.251*34 + 6.13*1
round(predWt,3)

150.504

d. What is the residual for the first person? Comment.

res = d.loc[0, "Weight"] - predWt
round(res,3)

-15.504

The person's fitted weight is about 15 1/2 lbs too large compared to his actual weight.

e. Calculate the forecasted values of , , from the testing data for X.𝑦 𝑦 ̂

y_fit = model.predict(X_train)
y_pred = model.predict(X_test)

f. Visually compare the forecasted values of y from the model applied to the testing data to the obtained values of y in the testing data. Comment

Text(0.5, 1.0, 'y vs. $\\hat{y}$')

plt.scatter(y_test, y_pred, color='gray')
#plt.xlim(0,52)
plt.plot(y_test, y_test, color="darkgray")
plt.xlabel("y")
plt.ylabel("y_pred")
plt.title("y vs. \hat{y}")

Fit appears quite good. There is little scatter about the diagonal line, which represents values where , so should be a small . There is
much variation in Weight, so should be a high . A linear model is clearly appropriate.

𝑦 = 𝑦 ̂ 𝑠𝑒

𝑅2

g. Evaluate model fit to the training data with the standard deviation of residuals and R-squared. Comment

from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(y_train, y_fit)
rsq = r2_score(y_train, y_fit)
print("MSE: %.3f" % mse)
se = np.sqrt(mse)
range95 = 4 * se
print("Stdev of residuals: %.3f " % se)
print("Approximate 95 per cent range of residuals: %.3f " % range95)
print("R-squared: %.3f" % rsq)

MSE: 177.481

Stdev of residuals: 13.322

Approximate 95 per cent range of residuals: 53.289

R-squared: 0.906

The model fits the data on which it was trained. Very high , though the standard deviation of the residuals is somewhat large, resulting in an
approximate 95% range of residuals of about 53 1/4 lbs for the training data (higher in the testing data).

𝑅2

h. Evaluate model fit to the testing data with the standard deviation of residuals and R-squared. Comment.

mse_f = mean_squared_error(y_test, y_pred)
rsq_f = r2_score(y_test, y_pred)
print('Forecasting Mean squared error: %.3f' % mse_f)
print('Forecasting Standard deviation of residuals: %.3f' % np.sqrt(mse_f))
print('Forecasting R-squared: %.3f' % rsq_f)

Forecasting Mean squared error: 171.398

Forecasting Standard deviation of residuals: 13.092

Forecasting R-squared: 0.915

The model fits so well that there was no decrement of performance in the testing data, the true forecasting situation. By chance, there was
even a slight increase.

i. Is the model overfit?

No overfitting whatsoever as there was no decrement in performance from training data to testing data.

j. Cross-validate the data with five randomly selected folds, and evaluate with the average value of the standard deviation of residuals and R-
squared across the folds.

from sklearn.model_selection import KFold, cross_validate
kf = KFold(n_splits=5, shuffle=True, random_state=1)

model = LinearRegression()
scores = cross_validate(model, X, y, cv=kf,
 scoring=('r2', 'neg_mean_squared_error'),
 return_train_score=True)

ds = pd.DataFrame(scores)
ds.rename(columns = {'test_neg_mean_squared_error': 'test_MSE',
 'train_neg_mean_squared_error': 'train_MSE'},
 inplace=True)

ds['test_MSE'] = -ds['test_MSE']
ds['train_MSE'] = -ds['train_MSE']
print(ds.round(4))
print('\n')
print('Mean of test R-squared scores: %.3f' % ds['test_r2'].mean())
print('\n')
print('Mean of test MSE scores: %.3f' % ds['test_MSE'].mean())

se = np.sqrt(ds['test_MSE'].mean())
print('Standard deviation of mean test MSE scores: %.3f' % se)

 fit_time score_time test_r2 train_r2 test_MSE train_MSE

0 0.0088 0.0029 0.8931 0.9116 185.3947 173.6738

1 0.0173 0.0042 0.9092 0.9079 187.1440 173.2429

2 0.0038 0.0018 0.9125 0.9071 169.8875 177.5953

3 0.0028 0.0026 0.9134 0.9070 171.7906 177.0241

4 0.0028 0.0017 0.9082 0.9083 170.8275 177.2383

Mean of test R-squared scores: 0.907

Mean of test MSE scores: 177.009

Standard deviation of mean test MSE scores: 13.304

Nothing quirky about the random train/test split of data. Over 5-fold cross-validation, the same approximate average and values are
obtained.

𝑠𝑒 𝑅2

Feature Selection

Can we obtain the same level of forecasting accuracy with a smaller set of features?

a. Show uniqueness and relevance of each feature in a single table that consists of VIFs and target correlations. Comment.

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprec
 import pandas.util.testing as tm

Predictor VIF Relevance

0 Height 420.252057 1.000

1 Waist 216.690054 0.629

2 Hips 332.174515 0.868

3 Chest 295.450906 0.788

4 ArmLength 394.156902 0.884

5 Gender_M 6.257213 0.598

from statsmodels.stats.outliers_influence import variance_inflation_factor
vif = pd.DataFrame()
vif['Predictor'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i)
 for i in range(X.shape[1])]
cr = d.corr()['Weight'].round(3)
vif['Relevance'] = [cr[i]
 for i in range(X.shape[1])]
vif

All body measurement features have very high VIF's, all much, much larger than the rule of thumb cutoff of 5. So much collinearity. All the
features are also relevant in terms of high correlations with the target, Weight. The result is that this analysis does not provide guidance as to
which features to drop.

b. Run the multivariate feature selection algorithm to retain the top three features.

from sklearn.linear_model import LinearRegression
estimator = LinearRegression()
from sklearn.feature_selection import RFE
selector = RFE(estimator, n_features_to_select=3, step=1).fit(X,y)

print(selector.support_)
print(selector.ranking_)

[False False True True False True]

[2 3 1 1 4 1]

The third, fourth, and sixth features were selected: Hips, Chest, and Gender.

c. Subset a new data frame of the feature variables that contains just these three predictors. Call it X2. Show the first several rows of data.

Hips Chest Gender_M

0 38 36 1

1 45 48 1

2 44 44 1

3 41 40 1

4 47 45 0

X2 = X.iloc[:, selector.support_]
X2.head()

d. Now fit this reduced model to all the data, X2 and . Then generate the predicted scores into a data structure named *y_fit2.𝑦

model.fit(X2, y)
y_fit2 = model.predict(X2)

e. Did fit suffer from reducing the number of features from 5 to 3? Comment.

mse = mean_squared_error(y, y_fit2)
rsq = r2_score(y, y_fit2)
print("MSE: %.3f" % mse)
se = np.sqrt(mse)
range95 = 4 * se
print("Stdev of residuals: %.3f " % se)
print("Approximate 95 per cent range of residuals: %.3f " % range95)
print("R-squared: %.3f" % rsq)

MSE: 279.259

Stdev of residuals: 16.711

Approximate 95 per cent range of residuals: 66.844

R-squared: 0.854

Yes, the three-feature model does not as well. increased from 13.30 to 16.71. decreases from 0.91 to 0.854. The reduction in fit is real.
To evaluate if the enhanced parsimony of fewer predictors is worth the decrease in fit depends on the cost of mis-predicting Weight, which
pertains to the costs involved in a particular set of business transactions.

It would be worth experimenting with the 4-predictor model as well.

𝑠𝑒 𝑅2

http://web.pdx.edu/~gerbing/data/BodyMeas2500.xlsx

