

Solutions 04 to Worked Problems

David Gerbing

The School of business

Portland State University

gerbing@pdx.edu

- [1_Data](#)
- [2_Regression Analysis](#)
- [3_Feature Selection](#)

Purpose: For the customers of an online motorcycle clothing company, build a predictive model of Weight from a variety of body measurements plus Gender.

The data are the body measurements of customers for a motorcycle online clothing retailer.

Data: <http://web.pdx.edu/~gerbing/data/BodyMeas2500.xlsx>

```
from datetime import datetime as dt
now = dt.now()
print("Analysis is on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

Analysis on 2021-07-13 at 03:24
```

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Data

a. Read the data.

```
d = pd.read_excel("http://web.pdx.edu/~gerbing/data/BodyMeas2500.xlsx")
#d = pd.read_excel("~/Documents/BookNew/data/GRC/BodyMeas2500.xlsx")
```

b. How many samples (rows of data) and columns are there in the data file?

d.shape

(2500, 7)

2500 rows of data with 7 columns

c. Display the first 6 rows of data and the variable names.

d.head()

	Gender	Weight	Height	Waist	Hips	Chest	ArmLength
0	M	135	70	34	38	36	34
1	M	235	66	36	45	48	32
2	M	205	72	38	44	44	36
3	M	190	70	36	41	40	32
4	F	200	64	39	47	45	32

d. What are the variables in the data table? (From code or copy and paste.)

d.columns

```
Index(['Gender', 'Weight', 'Height', 'Waist', 'Hips', 'Chest', 'ArmLength'], dtype='object')
```

e. Check for missing data. Any action (deletion, imputation) needed?

print('d.isna().sum()')

```
print ('\nTotal Missing:', d.isna().sum().sum())
```

```
Gender 0
Weight 0
Height 0
Waist 0
Hips 0
Chest 0
ArmLength 0
dtype: int64
```

```
Total Missing: 0
```

No missing data. No action needed.

f. Generate a frequency distribution table of Gender.

```
freq = d['Gender'].value_counts()
```

freq

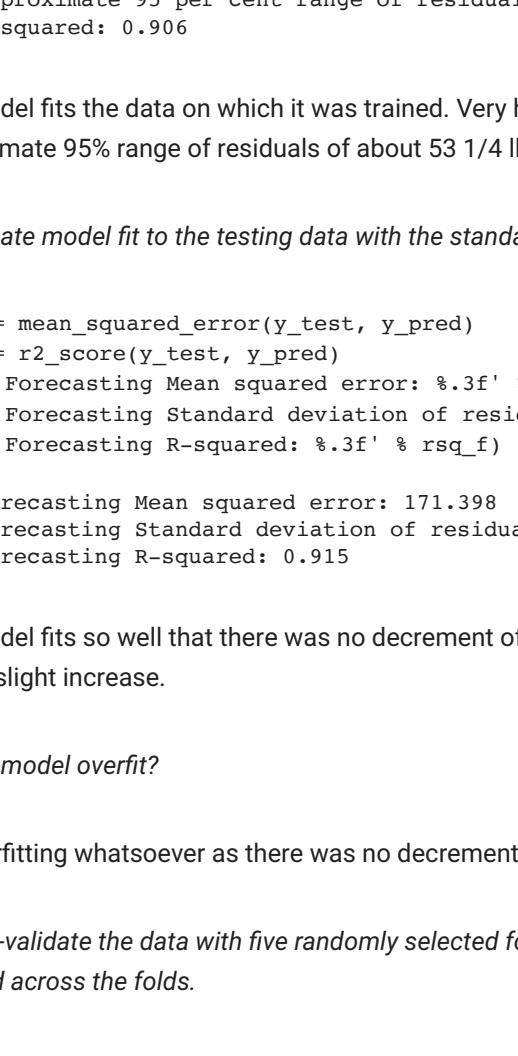
```
M    1908
F    592
Name: Gender, dtype: int64
```

Quite a few more men than women customers.

g. Generate a bar chart of Gender. (Just need one, here show both Matplotlib and Seaborn versions.)

```
freq.plot(kind='bar')
```

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f1e2b2bd10>
```



h. Include Gender in the model to be developed. Convert the two levels of Gender to two dummy variables and use one of them.

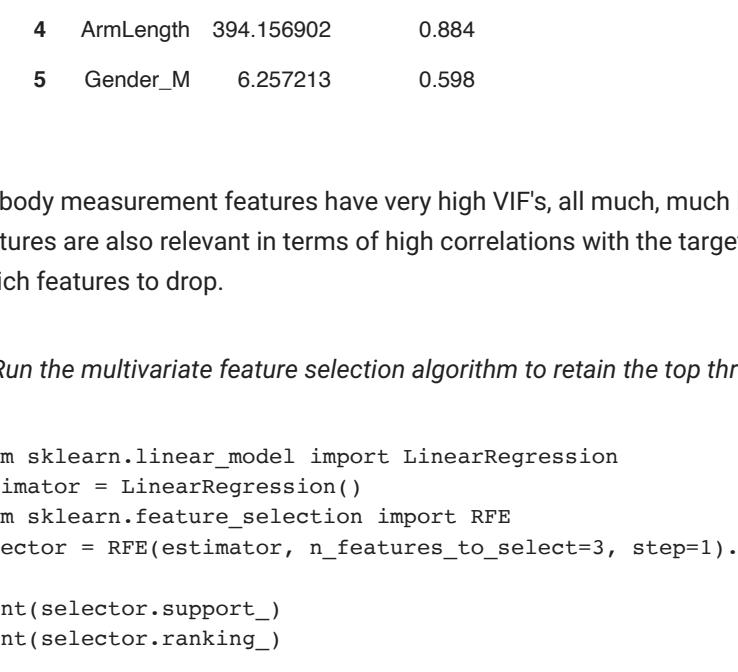
```
d = pd.get_dummies(d, columns=['Gender'], drop_first=True)
```

d.head()

	Weight	Height	Waist	Hips	Chest	ArmLength	Gender_M
0	135	70	34	38	36	34	1
1	235	66	36	45	48	32	1
2	205	72	38	44	44	36	1
3	190	70	36	41	40	32	1
4	200	64	39	47	45	32	0

i. Generate a boxplot of Weight.

```
plt.figure(figsize=(6,1.5))
sns.boxplot(x=d['Weight'], color='steelblue')
```



j. There are two strong outliers in the data. Why remove them?

The two most extreme outliers are over 400 lbs, so delete these and then in the presentation of results, generalize only to those under 400 lbs.

k. Subset the data frame to remove those rows of data. As always, audit any intended changes in the data frame. Here display the number of rows in the filtered data frame to demonstrate the deletion.

print(d.shape)

d = d[d['Weight'] < 400]

print(d.shape)

```
(2500, 7)
```

```
(2498, 7)
```

l. Examine the relevance of each feature according to its correlation with the target.

```
d.corr()['Weight'].sort_values().round(2)
```

Gender_M	Weight	Height	Waist	Hips	Chest	ArmLength
0.49	0.49	0.69	0.63	0.79	0.87	0.88
0.69	0.63	1.00	0.42	0.28	0.45	0.73
0.63	0.42	1.00	0.83	0.83	0.46	0.37
0.79	0.28	0.83	1.00	0.76	0.33	0.16
0.87	0.45	0.83	0.76	1.00	0.5	0.4
0.88	0.46	0.83	0.76	0.5	1.00	0.49
0.49	0.61	0.37	0.16	0.4	0.49	1.00

All features are relevant, that is, correlate highly with the target.

m. Generate a heat map correlation matrix of the model variables. Comment on collinearity.

```
plt.figure(figsize=(12,10))
sns.heatmap(d.corr().round(2), linewidths=2.0, annot=True,
```


Given the small data set with no pressure on computational time, to take a strong stance against data leakage, no features are deleted at this point in the analysis, though there is clearly much collinearity. In all likelihood, not all of the features will be needed. The worst offenders are Waist with Hips and Waist with Chest, both correlations of 0.83. Clearly not all three body measurements are needed to forecast Weight.

Regression Analysis

a. Store the features, the predictor variables, in data structure X. Store the target variable in data structure y.

Not necessary, but often useful to store the predictor variables in their own list, here pred_vars. Then invoke this list when needed, such as defining X.

```
pred_vars = ['Weight', 'Height', 'Waist', 'Hips', 'Chest', 'ArmLength', 'Gender_M']
```

X = df[pred_vars]

y = df['Weight']

X = df[pred_vars].dropna()

y = df['Weight'].dropna()

b. Use code to display the number of features.

The function len() provides the length of a vector that is, the number of elements of a vector.

The function len() provides the length of a vector, that is, the number of elements of a vector.

```
n_pred = len(pred_vars) variables: n_pred
```

```
Number of predictor variables: 6
```

c. Split the data into 75% training data and 25% testing data.

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.25, random_state=7)
```

d. Do the multiple regression with all possible features. Display the estimated model coefficients.

Access `sklearn.linear_regression`.

```
from sklearn.linear_model import LinearRegression
```

```
model = LinearRegression()
```

```
model.fit(X_train, y_train)
```

Train the machine (i.e., estimate the model).

```
model.fit(X_train, y_train)
```

model.coef_, model.intercept_, model.ridgeless_ridge

```
([ 2.84, 1.91, 2.17, 3.32, 0.251, 6.13], 150.504)
```

The person's fitted weight is about 15 1/2 lbs too large compared to his actual weight.

e. Calculate the forecasted values of y, from the testing data for x.

```
y_pred = model.predict(X_train)
```

f. Visually compare the forecasted values of y from the model applied to the testing data to the obtained values of y in the testing data. Comment.

```
plt.scatter(X_test, y_test, color='gray')
```

```
plt.plot(X_test, y_pred, color='darkgray')
```

```
plt.xlabel("y vs y$")
```


Fit appears quite good. There is little scatter about the diagonal line, which represents values where $y = y$, so should be a small S_e . There is much variation in Weight, so should be a high R^2 . A linear model is clearly appropriate.

g. Evaluate model fit to the training data with the standard deviation of residuals and R-squared. Comment.

```
from sklearn.metrics import mean_squared_error, r2_score
```

```
msq = r2_score(y_train, y_train)
```

```
print('R-squared: %3f' % msq)
```

```
0.84
```

```
print('Mean squared error: %3f' % msq)
```

```
150.504
```

The two most extreme outliers are over 400 lbs, so delete these and then in the presentation of results, generalize only to those under 400 lbs.

k. Subset the data frame to remove those rows of data. As always, audit any intended changes in the data frame. Here display the number of rows in the filtered data frame to demonstrate the deletion.

print(d.shape)

```
d = d[d['Weight'] < 400]
```

```
print(d.shape)
```

```
(2498, 7)
```

l. Examine the relevance of each feature according to its correlation with the target.

```
d.corr()['Weight'].sort_values().round(2)
```

Gender_M	Weight	Height	Waist	Hips	Chest	ArmLength
0.49	0.49	0.69	0.63	0.79	0.87	0.88
0.69	0.63	1.00	0.42	0.28	0.45	0.73
0.63	0.42	1.00	0.83	0.83	0.46	0.37
0.79	0.28	0.83	1.00	0.76	0.33	0.16
0.87	0.45	0.83	0.76	1.00	0.5	0.4
0.88	0.46	0.83	0.76	0.5	1.00	0.49
0.49	0.61	0.37	0.16	0.4	0.49	1.00

All features are relevant, that is, correlate highly with the target.

m. Generate a heat map correlation matrix of the model variables. Comment on collinearity.

```
plt.figure(figsize=(12,10))
sns.heatmap(d.corr().round(2), linewidths=2.0, annot=True,
```


The model fits so well that there was no decrement in performance from training data to testing data.

even a slight increase.

No overfitting whatsoever as there was no decrement in performance from training data to testing data.

j. Cross-validate the folds with five randomly selected folds, and evaluate with the average value of the standard deviation of residuals and R-squared.

```
from sklearn.model_selection import KFold
```

```
kf = KFold(n_splits=5, shuffle=True, random_state=7)</pre
```