+ So

lutions 04 to Worked Problems

David Gerbing
The School of Business

Portl

and State University

gerbing@pdx.edu

1 Data
2 Regression Analysis
3 Feature Selection

Purpose: For the customers of an online motorcycle clothing company, build a predictive model of Weight from a variety of body measurements

plus

The

Gender.

data are the body measurements of customers for a motorcycle online clothing retailer.

Data: http://web.pdx.edu/~gerbing/data/BodyMeas2500.xIsx

from datetime import datetime as dt

now

= dt.now()

print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("$H:3M"))

Analysis on 2021-07-13 at 03:24

import pandas as pd

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

v Data

a. Read the data.

d =

pd.read excel("http://web.pdx.edu/~gerbing/data/BodyMeas2500.xlsx")

#d = pd.read excel("~/Documents/BookNew/data/GHC/BodyMeas2500.x1lsx")

b. How many samples (rows of data) and columns are there in the data file?

d.shape

(2500, 7)

2501 rows of data with 7 columns

c. Display the first 6 rows of data and the variable names.

d.head()
Gender Weight Height Waist Hips Chest ArmLength
0 M 135 70 34 38 36 34
1 M 235 66 36 45 48 32
2 M 205 72 38 44 44 36
3 M 190 70 36 41 40 32
4 F 200 64 39 47 45 32

d. What are the variables in the data table? (From code or copy and paste.)

d.columns

Index(['Gender', 'Weight', 'Height', 'Waist', 'Hips', 'Chest', 'ArmLength'], dtype='object')

e. Check for missing data. Any action (deletion, imputation) needed?

print (d.isna().sum())
print ('\nTotal Missing:', d.isna().sum().sum())

Gender
Weight
Height
Waist

Hips

Chest
ArmLength
dtype: inté64

O O O oo oo

Total Missing: 0

No missing data. No action needed.

f. Generate a frequency distribution table of Gender.

freq = d['Gender'].value counts()

freq

M 1908
F 592
Name: Gender, dtype: inté64

Quite a few more men than women customers.

g. Generate a bar chart of Gender. (Just need one, here show both Matplotlib and Seaborn versions.)

freq.plot(kind='bar"')

<matplotlib.axes._ subplots.AxesSubplot at 0x7fled2b2bdl0>
2000

1750

1500 4

1250 4

1000

750 4

500

250 1

sns.countplot(d['Gender'], order=['F', 'M'])
/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43: FutureWarning: Pass the following variable as a key
FutureWarning
<matplotlib.axes. subplots.AxesSubplot at 0x7fled2d90110>
2000
1750 4
1500 4
1250 1
§ 1000 1
g8
750 1
500 4
250
o4
Gender
h. Include Gender in the model to be developed. Convert the two levels of Gender to two dummy variables and use one of them.
d = pd.get dummies(d, columns=['Gender'], drop first=True)
d.head()

Weight Height Waist Hips Chest ArmLength Gender M

0 135 70 34 38 36 34 1
1 235 66 36 45 48 32 1
2 205 72 38 44 44 36 1
3 190 70 36 4 40 32 1
4 200 64 39 47 45 32 0

i. Generate a boxplot of Weight.

plt.
sns.

j. Th

The

figure(figsize=(6,1.5))
boxplot (x=d['Weight'], color='steelblue')

<matplotlib.axes. subplots.AxesSubplot at 0x7fled2ba3f10>

1 I Fﬂﬂ.ii.. L] L] +

T T T T T T T T T
100 150 200 250 300 350 400 450 500
Weight

ere are two strong outliers in the data. Why remove them?

two most extreme outliers are over 400 Ibs, so delete these and then in the presentation of results, generalize only to those under 400 Ibs.

k. Subset the data frame to remove those rows of data. As always, audit any intended changes in the data frame. Here display the number of rows

in th

e filtered data frame to demonstrate the deletion.

print(d.shape)

d =

d[d['Weight'] < 400]

print(d.shape)

(2500, 7)
(2498, 7)

I. Examine the relevance of each feature according to its correlation with the target.

d.corr()['Weight'].sort values().round(2)
Gender_ M 0.49
ArmLength 0.60
Height 0.63
Hips 0.79
Waist 0.87
Chest 0.88
Weight 1.00

Name: Weight, dtype: floaté64

All features are relevant, that is, correlate highly with the target.

m. Generate a heat map correlation matrix of the model variables. Comment on collinearity.

plt.
sns.

Give
poin

figure(figsize=(12,10))
heatmap(d.corr().round(2), linewidths=2.0, annot=True,
cmap=sns.diverging palette(5, 250, as_cmap=True))

<matplotlib.axes. subplots.AxesSubplot at 0x7fled255d5d0>

Weight

Height

Waist

Hips

Chest

ArmLength

"M

n the small data set with no pressure on computational time, to take a strong stance against data leakage, no features are deleted at this
t in the analysis, though there is clearly much collinearity. In all likelihood, not all of the features will be needed. The worst offenders are

Waist with Hips and Waist with Chest, both correlations of 0.83. Clearly not all three body measurements are needed to forecast Weight.

Regression Analysis

a. Store the features, the predictor variables, in data structure X. Store the target variable in data structure y.

Not

necessary, but often useful to store the predictor variables in their own list, here pred_vars. Then invoke this list when needed, such as

defining X.

y =

d['Weight']

pred vars = ['Height', 'Waist', 'Hips', 'Chest', 'ArmLength', 'Gender M']

X =

d[pred vars]

b. Use code to display the number of features.

The

function len() provides the length of a vector, that is, the number of elements of a vector.

n_pred = len(pred_vars)
print("Number of predictor variables:", n pred)

Number of predictor variables: 6

c. Split the data into 75% training data and 25% testing data.

from sklearn.model selection import train test split

X tr

ain, X test, y train, y test = train test split(X, y, test_size=.25, random state=7)

b. Do the multiple regression with all possible features. Display the estimated model coefficients.

Access sklearn linear regression.

from sklearn.linear model import LinearRegression

mode

1 = LinearRegression()

Train the machine (i.e., estimate the model).

mode

Disp

prin
cdf
cdf.

1.fit(X train, y train)

LinearRegression(copy X=True, fit intercept=True, n_jobs=None, normalize=False)

lay the estimated model (not needed to evaluate forecasting efficiency).

t("intercept: %.3f" % (model.intercept), "\n")
= pd.DataFrame(model.coef , X.columns, columns=['Coefficients'])
transpose().style.format("{:.3}")

intercept: -329.880

Height Waist Hips Chest ArmLength Gender_M
Coefficients 2.84 1.91 2.17 3.32 0.251 6.13

c. For the person who provided the first row of data, manually calculate his fitted weight from the model explicitly from the model coefficients. (For
pedagogy, to show understanding of the model, not normally done here.)

d.il

oc[0:1, :]

Weight Height Waist Hips Chest ArmLength Gender M

0 135 70 34 38 36 34 1

predWt = -329.880 + 2.84*70 + 1.91*%34 + 2.17%*38 + 3.32*36 + 0.251*34 + 6.13*1

roun

d(predwt,3)

150.504

d. What is the residual for the first person? Comment.

res
roun

The

= d.loc[0, "Weight"] - predwt
d(res,3)

-15.504

person's fitted weight is about 15 1/2 Ibs too large compared to his actual weight.

e. Calculate the forecasted values of y, y, from the testing data for X.

y_fi
y_pr

t = model.predict (X train)
ed = model.predict(X_test)

f. Visually compare the forecasted values of y from the model applied to the testing data to the obtained values of y in the testing data. Comment

plt.
#plt
plt.
plt.
plt.
plt.

Fit a
muc

scatter(y_test, y pred, color='gray')
.x1im(0,52)

plot(y_test, y test, color="darkgray")
xlabel("y")

ylabel("y pred")

title("y vs. \hat{y}")

Text (0.5, 1.0, 'y vs. $\\hat{y}$')
yvs.y

350 1

T T T
100 150 200 250 300 350

ppears quite good. There is little scatter about the diagonal line, which represents values where y = ¥, so should be a small s,. There is
h variation in Weight, so should be a high R?. Alinear model is clearly appropriate.

g. Evaluate model fit to the training data with the standard deviation of residuals and R-squared. Comment

from sklearn.metrics import mean squared error, r2_ score

mse
rsq
prin
se =
rang
prin
prin
prin

The

= mean_squared_error(y_train, y_ fit)

= r2 score(y_train, y fit)

t("MSE: %.3f" % mse)

np.sqgrt(mse)

e95 = 4 * se

t("Stdev of residuals: %.3f " % se)

t ("Approximate 95 per cent range of residuals: %.3f
t("R-squared: %.3f" % rsq)

% range95)

MSE: 177.481

Stdev of residuals: 13.322

Approximate 95 per cent range of residuals: 53.289
R-squared: 0.906

model fits the data on which it was trained. Very high R?, though the standard deviation of the residuals is somewhat large, resulting in an

approximate 95% range of residuals of about 53 1/4 Ibs for the training data (higher in the testing data).

h. Evaluate model fit to the testing data with the standard deviation of residuals and R-squared. Comment.

mse_f = mean squared error(y_test, y pred)

rsq_f = r2 score(y_test, y pred)

prin
prin
prin

The

t('Forecasting Mean squared error: %$.3f' % mse f)
t('Forecasting Standard deviation of residuals: %.3f' % np.sqrt(mse_f))
t('Forecasting R-squared: %$.3f' % rsq f)

Forecasting Mean squared error: 171.398
Forecasting Standard deviation of residuals: 13.092
Forecasting R-squared: 0.915

model fits so well that there was no decrement of performance in the testing data, the true forecasting situation. By chance, there was

even a slight increase.

i. Is the model overfit?

No overfitting whatsoever as there was no decrement in performance from training data to testing data.

j. Cross-validate the data with five randomly selected folds, and evaluate with the average value of the standard deviation of residuals and R-
squared across the folds.

from sklearn.model_ selection import KFold, cross_validate

kf =

mode
scor

ds =
ds.r

ds['
ds['
prin
prin
prin
prin
prin

se =
prin

KFold(n_splits=5, shuffle=True, random_ state=1)

1 = LinearRegression()

es = cross_validate(model, X, y, cv=kf,
scoring=('r2', 'neg mean_ squared_error'),
return_train_score=True)

pd.DataFrame(scores)
ename (columns = {'test neg mean squared error': 'test MSE',
'train _neg mean squared _error': 'train MSE'},
inplace=True)

test MSE'] = -ds['test MSE']

train MSE'] = -ds['train MSE']

t(ds.round(4))

t('\n")

t('Mean of test R-squared scores: %$.3f' % ds['test r2'].mean())
t('\n")

t('Mean of test MSE scores: %$.3f' % ds['test MSE'].mean())

np.sqrt(ds['test MSE'].mean())
t('Standard deviation of mean test MSE scores: %.3f' % se)

fit time score time test r2 train r2 test MSE train MSE
0.0088 0.0029 0.8931 0.9116 185.3947 173.6738
0.0173 0.0042 0.9092 0.9079 187.1440 173.2429
0.0038 0.0018 0.9125 0.9071 169.8875 177.5953
0.0028 0.0026 0.9134 0.9070 171.7906 177.0241
0.0028 0.0017 0.9082 0.9083 170.8275 177.2383

= W N - o

Mean of test R-squared scores: 0.907

Mean of test MSE scores: 177.009
Standard deviation of mean test MSE scores: 13.304

Nothing quirky about the random train/test split of data. Over 5-fold cross-validation, the same approximate average s, and R? values are

obta

Can

ined.

Feature Selection

we obtain the same level of forecasting accuracy with a smaller set of features?

a. Show uniqueness and relevance of each feature in a single table that consists of VIFs and target correlations. Comment.

from
vif

vif[
vif[

cr =
vif[

vif

Allb

statsmodels.stats.outliers_influence import variance_inflation_ factor
= pd.DataFrame()
'Predictor'] = X.columns
'VIF'] = [variance_inflation_ factor(X.values, i)
for i in range(X.shape[l])]
d.corr()['Weight'].round(3)
'Relevance'] = [cr[i]
for i in range(X.shape[l])]

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/ testing.py:19: FutureWarning: pandas.util.testing is deprec
import pandas.util.testing as tm

Predictor VIF Relevance
0 Height 420.252057 1.000
1 Waist 216.690054 0.629
2 Hips 332.174515 0.868
3 Chest 295.450906 0.788
4 ArmLength 394.156902 0.884
5 Gender_M 6.257213 0.598

ody measurement features have very high VIF's, all much, much larger than the rule of thumb cutoff of 5. So much collinearity. All the

features are also relevant in terms of high correlations with the target, Weight. The result is that this analysis does not provide guidance as to
which features to drop.

b. Run the multivariate feature selection algorithm to retain the top three features.

from
esti
from
sele

prin
prin

sklearn.linear model import LinearRegression
mator = LinearRegression()
sklearn.feature selection import RFE
ctor = RFE(estimator, n_ features_ to_select=3, step=1l).fit(X,y)

t(selector.support)
t(selector.ranking)

[False False True True False True]
[231141]

The third, fourth, and sixth features were selected: Hips, Chest, and Gender.

c. Subset a new data frame of the feature variables that contains just these three predictors. Call it X2. Show the first several rows of data.

X2 =
X2.h

X.iloc[:, selector.support]
ead()

Hips Chest Gender M

0 38 36 1
1 45 48 1
2 44 44 1
3 41 40 1
4 47 45 0

d. Now fit this reduced model to all the data, X2 and y. Then generate the predicted scores into a data structure named *y_fit2.

mode
y_fi

1.£fit(X2, y)
t2 = model.predict(X2)

e. Did fit suffer from reducing the number of features from 5 to 3? Comment.

mse
rsq
prin
se =
rang
prin
prin
prin

Yes,

= mean_squared_error(y, y_£fit2)
= r2 score(y, y_£fit2)
t("MSE: %.3f" % mse)
np.sqgrt(mse)
e95 = 4 * se
t("Stdev of residuals: %.3f " % se)
t ("Approximate 95 per cent range of residuals: %.3f
t("R-squared: %$.3f" % rsq)

% range95)

MSE: 279.259

Stdev of residuals: 16.711

Approximate 95 per cent range of residuals: 66.844
R-squared: 0.854

the three-feature model does not as well. s, increased from 13.30 to 16.71. R? decreases from 0.91 to 0.854. The reduction in fit is real.

To evaluate if the enhanced parsimony of fewer predictors is worth the decrease in fit depends on the cost of mis-predicting Weight, which
pertains to the costs involved in a particular set of business transactions.

It would be worth experimenting with the 4-predictor model as well.

v 0s completed at 8:25 PM ® X

http://web.pdx.edu/~gerbing/data/BodyMeas2500.xlsx

