
HW 2 Solutions to Worked Problems

David Gerbing
The School of Business
Portland State University
gerbing@pdx.edu

1 Data Wrangling, Pre-Processing I
2 Data Wrangling, Pre-Processing II
3 Missing Data

The following shows some useful data manipulations that are applicable to all data
analysis: subsetting a data table, converting variable types, and variable transformations.

Analysis on 2020-07-10 at 11:23

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Data Wrangling, Pre-Processing I

a. Read the data)le.

d = pd.read_csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

7/9/21, 2:46 PM
Page 1 of 14

b. How many examples (rows of data) are there in the data)le?

(506, 15)

d.shape

There are 506 rows of data.

c. List the)rst 5 rows and the variable names.

Unnamed:
0 crim zn indus chas nox rm age dis rad tax ptratio

0 1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296

1 2 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242

2 3 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242

3 4 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222

4 5 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222

d.head()

d. Convert lstat from a percentage to a proportion. Name the new variable anything you
wish. Verify by displaying the)rst six rows of the revised data frame.

To do a variable transformation just enter the equation that deQnes the transformation. To
convert a percentage to a proportion, divide by 100. Here name the new variable
lstat_prop.

7/9/21, 2:46 PM
Page 2 of 14

Unnamed:
0 crim zn indus chas nox rm age dis rad tax ptratio

0 1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296

1 2 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242

2 3 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242

3 4 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222

4 5 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222

d['lstat_prop'] = d['lstat']/100
d.head()

e. Display just the average number of rooms for the second row of data.

6.421

d.loc[1,'rm']

f. To build a model to forecast median house price, analysts wish to focus on three predictor
variables: crim, rm, and rad. Display the)rst)ve rows of data for just these three variables.

i. with the variable names

crim rm rad

0 0.00632 6.575 1

1 0.02731 6.421 2

2 0.02729 7.185 2

3 0.03237 6.998 3

4 0.06905 7.147 3

d.loc[0:4, ['crim', 'rm', 'rad']]

ii. with the variable indices

7/9/21, 2:46 PM
Page 3 of 14

crim rm rad

0 0.00632 6.575 1

1 0.02731 6.421 2

2 0.02729 7.185 2

3 0.03237 6.998 3

4 0.06905 7.147 3

d.iloc[0:5, [1, 6, 9]]

g. List all the rows of data with the median value of the home less than 8000 USD.

Unnamed:
0 crim zn indus chas nox rm age dis rad tax

385 386 16.81180 0.0 18.10 0 0.700 5.277 98.1 1.4261 24 666

387 388 22.59710 0.0 18.10 0 0.700 5.000 89.5 1.5184 24 666

398 399 38.35180 0.0 18.10 0 0.693 5.453 100.0 1.4896 24 666

399 400 9.91655 0.0 18.10 0 0.693 5.852 77.8 1.5004 24 666

400 401 25.04610 0.0 18.10 0 0.693 5.987 100.0 1.5888 24 666

401 402 14.23620 0.0 18.10 0 0.693 6.343 100.0 1.5741 24 666

405 406 67.92080 0.0 18.10 0 0.693 5.683 100.0 1.4254 24 666

414 415 45.74610 0.0 18.10 0 0.693 4.519 100.0 1.6582 24 666

415 416 18.08460 0.0 18.10 0 0.679 6.434 100.0 1.8347 24 666

416 417 10.83420 0.0 18.10 0 0.679 6.782 90.8 1.8195 24 666

489 490 0.18337 0.0 27.74 0 0.609 5.414 98.3 1.7554 4 711

d.query('medv < 8')

h. Use code (i.e., do not manually count) to display the number of homes with median value
< $8000.

7/9/21, 2:46 PM
Page 4 of 14

11

(d
 .query('medv <8')
 .shape[0]
)

Note: .shape gives rows and columns of the data frame. The reference to .shape[0]
gives just the Qrst element, that is, the number of rows. Could also just do .shape and
verbally indicate that the Qrst element is the number of rows. Could also store in a
separate data frame and then do .shape of that new data frame.

i. Analysts want to build a model to forecast the median value of a house. Construct the box
plot of the corresponding variable medv.

plt.figure(figsize=(6,1.5))
sns.boxplot(x=d['medv'], color='steelblue')
plt.xlabel('Median House Value in $1000s', fontsize=14)
plt.show()

j. Describe the distribution of medv from the box plot including any outliers.

Half of the distribution consists of values between about 18,000 USD and 25,000 USD.
Only a small number of values are larger than about 37,000 USD, which makes the
distribution somewhat asymmetric. Moreover, those relatively small number of large
values are outliers.

7/9/21, 2:46 PM
Page 5 of 14

k. For the three predictor variables of interest, rescale into a data object called X three ways,
each time showing the)rst)ve rows of rescaled data.

Going to need the preprocessing module from sklearn .

from sklearn import preprocessing

i. MinMax, and also show the minimum and maximum of the rescaled variables.

crim rm rad

0 0.00632 6.575 1

1 0.02731 6.421 2

2 0.02729 7.185 2

3 0.03237 6.998 3

4 0.06905 7.147 3

X = d[['crim', 'rm', 'rad']].copy()
X.head()

0 1 2

0 0.000000 0.577505 0.000000

1 0.000236 0.547998 0.043478

2 0.000236 0.694386 0.043478

3 0.000293 0.658555 0.086957

4 0.000705 0.687105 0.086957

mm_scaler = preprocessing.MinMaxScaler()
X = mm_scaler.fit_transform(X)
X = pd.DataFrame(X)
X.head()

7/9/21, 2:46 PM
Page 6 of 14

0 0.0
1 0.0
2 0.0
dtype: float64

X.min()

0 1.0
1 1.0
2 1.0
dtype: float64

X.max()

All three variables re-scaled to range from 0 to 1.

ii. Standardize, and also show the mean and standard deviation of the rescaled variables.

crim rm rad

0 0.00632 6.575 1

1 0.02731 6.421 2

2 0.02729 7.185 2

3 0.03237 6.998 3

4 0.06905 7.147 3

X = d[['crim', 'rm', 'rad']].copy()
X.head()

from sklearn.preprocessing import StandardScaler
s_scaler = preprocessing.StandardScaler()

7/9/21, 2:46 PM
Page 7 of 14

0 1 2

0 -0.419782 0.413672 -0.982843

1 -0.417339 0.194274 -0.867883

2 -0.417342 1.282714 -0.867883

3 -0.416750 1.016303 -0.752922

4 -0.412482 1.228577 -0.752922

Xst = s_scaler.fit_transform(X)
Xst = pd.DataFrame(Xst)
Xst.head()

0 -0.0
1 -0.0
2 0.0
dtype: float64

round(Xst.mean(), 4)

The mean of a standardized variable is 0.

0 1.001
1 1.001
2 1.001
dtype: float64

round(Xst.std(), 4)

The standard deviation of a standardized variable is 1.

0 -0.419782
1 -3.880249
2 -0.982843
dtype: float64

Xst.min()

7/9/21, 2:46 PM
Page 8 of 14

0 9.933931
1 3.555044
2 1.661245
dtype: float64

Xst.max()

There is a really large outlier for variable crim if anything close to a normal distribution. If
normally distributed then most values should be within -3 and 3. It is not right or wrong for
a distribution to be normal or not, but a z-score of almost 10 indicates either an extremem
outlier or an strong asymetric distribution. ... These are the issues that need to be explored
in data analysis before you begin the machine learning.

iii. Robust Scale

from sklearn.preprocessing import RobustScaler
r_scaler = preprocessing.RobustScaler()

0 1 2

0 -0.069593 0.496612 -0.20

1 -0.063755 0.287940 -0.15

2 -0.063760 1.323171 -0.15

3 -0.062347 1.069783 -0.10

4 -0.052144 1.271680 -0.10

Xrb = r_scaler.fit_transform(X)
Xrb = pd.DataFrame(Xrb)
Xrb.head()

7/9/21, 2:46 PM
Page 9 of 14

0 0.9338
1 0.1032
2 0.2275
dtype: float64

round(Xrb.mean(), 4)

0 2.3926
1 0.9521
2 0.4354
dtype: float64

round(Xrb.std(), 4)

0 -0.0696
1 -3.5874
2 -0.2000
dtype: float64

round(Xrb.min(), 4)

0 24.6784
1 3.4844
2 0.9500
dtype: float64

round(Xrb.max(), 4)

Data Wrangling, Pre-Processing II

d = pd.read_excel("http://web.pdx.edu/~gerbing/data/SupermarketTransactions.xlsx

The standard d.head() does not work well here because there are so many columns.
Could transpose the display, but here just speciQed the Qrst three rows and the ending
columns. For the index of the ending column, just enter a large number to get all columns
at the end.

7/9/21, 2:46 PM
Page 10 of 14

City State Country Family Dept Category Units_Sold Revenue

0 Los
Angeles CA USA Food Snack

Foods
Snack
Foods 5 27.38

1 Los
Angeles CA USA Food Produce Vegetables 5 14.90

Snack Snack

d.iloc[0:3, 8:30]

a. How many examples (rows of data) are there in the data)le?

14059

d.shape[0]

b. Convert the value of Country, USA, to USofA.

City State Country Family Dept Category Units_Sold Revenue

0 Los
Angeles CA USofA Food Snack

Foods
Snack
Foods 5 27.38

1 Los
Angeles CA USofA Food Produce Vegetables 5 14.90

Snack Snack

d = d.replace({'Country': {'USA': 'USofA'}})
d.iloc[0:3, 8:30]

c. Sales took place in three countries. Convert the categorical variable Country to dummy
variables for later numerical processing.

One of the dummy variables needs to be dropped before ready for later analysis.

7/9/21, 2:46 PM
Page 11 of 14

City State Family Dept Category Units_Sold Revenue Country_Mexico

0 Los
Angeles CA Food Snack

Foods
Snack
Foods 5 27.38

1 Los
Angeles CA Food Produce Vegetables 5 14.90

Snack Snack

d = pd.get_dummies(d, columns=['Country'], drop_first=True)
d.iloc[0:3, 8:20]

Missing Data

d = pd.read_excel("http://web.pdx.edu/~gerbing/data/employee.xlsx")

a. How many samples (rows of data) are there in the data)le?

37

d.shape[0]

b. Display rows of data that include the row of data with the missing data.

Name Years Gender Dept Salary JobSat Plan Pre Post

1 Wu, James NaN M SALE 84494.58 low 1 62 74

3 Jones, Alissa 5.0 F NaN 43772.58 NaN 1 65 62

30 Korhalkar, Jessica 2.0 F ACCT 62502.50 NaN 2 74 87

d[d.isna().any(axis='columns')]

c. Impute the median for the missing data of Years employed at the company.

7/9/21, 2:46 PM
Page 12 of 14

Will do the transformation on a subset of the d data frame, here named X, which is
consistent with machine learning, where X contains the predictor variables, the features
for the subsequent machine learning.

A programming "gotcha", however, is that subsetting from a data frame of only a single
variable, here Years, results in a pandas data structure called a Series , a single column in
a pandas data frame, instead of a data frame of only one column. Convert this Series
back to a full data frame with the pandas function DataFrame() . Then display the
missing data for James Wu for variable Years.

When things go wrong, check the types of your data structures. There are several more
that we do not cover in this class. The type of structure is a fundamental data concept.

nan

X = d.loc[:, 'Years']
X = pd.DataFrame(X)
X.iloc[1, 0]

from sklearn.impute import SimpleImputer
imp_med = SimpleImputer(missing_values=np.nan, strategy='median')
imp_med = imp_med.fit(X)
X = imp_med.transform(X)

d. Display rows of data that include the row of data with the imputed data to verify that the
missing data has been properly imputed to show the change from missing to the imputed
median for each variable.

9.0

X = pd.DataFrame(X)
X.iloc[1,0]

7/9/21, 2:46 PM
Page 13 of 14

7/9/21, 2:46 PM
Page 14 of 14

