

## HW 2

Due: 11 February 2026

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

1. Suppose that  $C$  is a category with zero objects. Choose any  $A \in \text{Obj}(C)$ . Let's write  $0_A$  for the zero morphism in  $\text{Hom}_C(A, A)$  and  $\text{id}_A$  for the identity morphism in  $\text{Hom}_C(A, A)$ . Prove that  $A$  is a zero object if and only if  $0_A = \text{id}_A$ .
2. Suppose that  $C, D$  are categories with zero objects, and  $F: C \rightarrow D$  is a functor. Suppose that  $F$  has the property that it sends zero morphisms to zero morphisms. Prove that if  $Z$  is a zero object in  $\text{Obj}(C)$ , then  $F(Z)$  is a zero object in  $\text{Obj}(D)$ . (Recall that functors must send identity morphisms to identity morphisms.)
3. Suppose  $R$  is a commutative ring and  $U$  is a multiplicative subset of  $R$  such that  $1 \in U$  and  $0 \notin U$ . Prove that  $U^{-1}R \otimes_R M$  and  $U^{-1}M$  are isomorphic as  $U^{-1}R$ -modules. (See [Ash10, Exercises 8.5.3 and 8.5.4] for the definition of  $U^{-1}M$ .)
4. Suppose  $R$  is a commutative ring and  $U$  is a multiplicative subset of  $R$  such that  $1 \in U$  and  $0 \notin U$ .
  - Let  $U^{-1}$  be the functor from  $R\text{-Mod}$  to  $U^{-1}R\text{-Mod}$  described in [Ash10, Exercises 8.5.3 and 8.5.4]. In particular, for any  $R$ -module  $M$ , we have  $U^{-1}(M) = U^{-1}M$ .
  - Let  $T$  be the functor from  $R\text{-Mod}$  to  $U^{-1}R\text{-Mod}$  that acts on objects via  $T(M) := U^{-1}R \otimes_R M$  and on morphisms via the universal property of tensor products.

Find a natural transformation from  $U^{-1}$  to  $T$  and prove it is natural.

5. [Ash10, Problems 1–3, Section 10.5]

## References

[Ash10] Robert B. Ash, *Abstract Algebra: The Basic Graduate Year*, 2010.