As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

- 1. Problems 2–5 from [Ash10, Section 4.3]. Then read and think about Problem 6 from [Ash10, Section 4.3] for five minutes.
- 2. Problem 1 from [Ash10, Section 4.4].
- 3. Problems 1–3 from [Ash10, Section 4.7]
- 4. Let $\alpha = \sqrt{-5}$ and $M = \mathbb{Z}[\alpha]$. Choose any $(a,b) \in \mathbb{Z}^2$. Define a function:

$$T_{(a,b)}: M \to M$$

 $\beta \mapsto (a+b\alpha)\beta.$

- (a) Prove that M is a free \mathbb{Z} -module by finding a \mathbb{Z} -basis for M and proving it is a \mathbb{Z} -basis.
- (b) Prove that $T_{(a,b)}$ is a \mathbb{Z} -module homomorphism.
- (c) What is the matrix for $T_{(a,b)}$ in terms of the basis you found in part (a)?
- (d) For which $a, b \in \mathbb{Z}$ is $T_{(a,b)}$ invertible?
- (e) Pretend I said $\alpha = \sqrt{5}$. Find at least six pairs $(a,b) \in \mathbb{Z}^2$ for which $T_{(a,b)}$ is invertible.
- 5. Let

$$M = \{ f \in \mathbb{R}[x] \mid \deg f < 5 \}.$$

Define a function:

$$\partial: M \to M$$
 $f \mapsto f'$

- (a) Convince yourself the M is a free \mathbb{R} -module and write down a basis for M.
- (b) Convince yourself that ∂ is a linear transformation and write down a matrix for ∂ in terms of the basis you chose in part (a).

References

[Ash10] Robert B. Ash, Abstract Algebra: The Basic Graduate Year, 2010.