HW 1

Due: 8 October 2025

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

- 1. Problems 3,4,5 from [Ash10, Section 4.1].
- 2. Suppose that R, S are rings, that M is an S-module, and $\phi: R \to S$ is a homomorphism or rings. Define the operation " \bullet " by

for all
$$r \in R$$
 and $m \in M$: $r \bullet m = \phi(r)m$

Prove that (M, \bullet) is an R-module.

3. Let V be the inner product space \mathbb{R}^2 (with the dot product). Let M be the sub- \mathbb{Z} -module of V generated by $\begin{bmatrix} 143 \\ 100 \end{bmatrix}$ and $\begin{bmatrix} 356 \\ 249 \end{bmatrix}$. Find a generating set for M consisting of vectors of length less than 6.

References

[Ash10] Robert B. Ash, Abstract Algebra: The Basic Graduate Year, 2010.