HW 8

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

1. Prove that for all $n \in \mathbb{N}$,

$$1 + 3 + \dots + (2n + 1) = (n + 1)^2$$
.

Proof. We will use induction. To see that the base case is true, we note that $1 = (0+1)^2$. For the induction step, assume that $k \in \mathbb{N}$ and $1+3+\dots+(2k+1)=(k+1)^2$. Note that

$$1 + 3 + \dots + (2k + 1) + (2(k + 1) + 1) = (1 + 3 + \dots + (2k + 1)) + (2k + 3)$$
(algebra)
$$= (k + 1)^{2} + (2k + 3)$$
(induction hypothesis)
$$= k^{2} + 4k + 4$$
(algebra)
$$= (k + 2)^{2}$$
(more algebra).

- 2. (a) Prove: for all n ∈ Z_{≥3}, n² > 2n + 1.
 (b) Prove: for all n ∈ Z_{≥5}, 2ⁿ > n².
 - *Proof.* (a) We will use induction. To see that the base case is true, we note that $3^2 = 9 > 7 = 2(3) + 1$. For the induction step, assume that $k \in \mathbb{Z}_{\geq 3}$ and $k^2 > 2k + 1$. Note that

$(k+1)^2 = k^2 + 2k + 1$	(algebra)
>(2k+1)+2k+1	(induction hypothesis)
= 2(k+1) + 2k	(algebra)
> 2(k+1) + 1	(since $k \ge 3$).

(b) We will use induction. To see that the base case is true, we note that $2^5 = 32 > 25 = 5^2$. For the induction step, assume that $k \in \mathbb{Z}_{\geq 5}$ and $2^k > k^2$. Note that

$2^{k+1} = 2\left(2^k\right)$	(algebra)
$> 2(k^2)$	(induction hypothesis)
$= (k+1)^2 + k^2 - 2k - 1$	(algebra)
$>(k+1)^{2}+(2k+1)-2k-1$	(by part (a))
$> (k+1)^2$	(more algebra).

3. Let α be a nonzero real number with the property that $\alpha + \frac{1}{\alpha}$ is an integer. Prove

for all
$$n \in \mathbb{N}$$
, $\alpha^n + \frac{1}{\alpha^n}$ is an integer.

Proof. We will use induction. To see that the base case is true, we note that since $\alpha \neq 0$,

$$\alpha^0 + \frac{1}{\alpha^0} = 2 \in \mathbb{Z}.$$

Moreover, we know that $\alpha^1 + \frac{1}{\alpha^1} \in \mathbb{Z}$ by hypothesis.

For the (strong) induction step, assume that $k \in \mathbb{Z}_{\geq 1}$ and for all $j \in \{0, \ldots, k\}$,

$$\alpha^j + \frac{1}{\alpha^j} \in \mathbb{Z}.$$

Note that

4. Define a sequence (a_n) by setting $a_0 = 1$, and for all $n \in \mathbb{N}$:

$$a_{n+1} = a_n - \frac{1}{2}a_n^2.$$

Then define a new sequence (b_n) by setting, for all $n \in \mathbb{N}$,

$$b_n = \frac{2}{a_n}.$$

- (a) Prove that for all $n \in \mathbb{N}$, $0 < a_n \leq 1$. (Thanks to this part, the sequence (b_n) is well-defined, phew.)
- (b) Prove that for all $n \in \mathbb{N}, b_n \ge n+2$.

Proof. (a) We will use induction. To see that the base case is true, we note that $0 < 1 \le 1$. For the induction step, assume that $k \in \mathbb{N}$ and $0 < a_k \le 1$. Note that

$$a_{k+1} = a_k - \frac{1}{2}a_k^2 \qquad (\text{definition of } (a_n))$$

$$\leq 1 - 0 \qquad (\text{squares are positive}).$$

Moreover,

$$\begin{aligned} a_{k+1} &= a_k - \frac{1}{2}a_k^2 & (\text{definition of } (a_n)) \\ &= a_k \left(1 - \frac{1}{2}a_k\right) & (\text{algebra}) \\ &> a_k \left(1 - \frac{1}{2}(1)\right) & (\text{since } a_k > 0 \text{ and } a_k \le 1 \text{ by the induction hypothesis}) \\ &= \frac{a_k}{2} & (\text{algebra}) \\ &> 0 & (\text{since } a_k > 0 \text{ by the induction hypothesis}). \end{aligned}$$

(b) We will use induction. To see that the base case is true, we note that $b_0 = \frac{2}{1} = 2 \ge 0 + 2$. For the induction step, assume that $k \in \mathbb{N}$ and $b_k \ge k + 2$. Note that

$b_{k+1} = \frac{2}{a_{k+1}}$	(definition of (b_n))
$=\frac{2}{a_k - \frac{1}{2}a_k^2}$	(definition of (a_n))
$=\frac{4}{a_k\left(2-a_k\right)}$	(algebra)
$=\frac{4-2a_{k}+2a_{k}-a_{k}^{2}+a_{k}^{2}}{a_{k}\left(2-a_{k}\right)}$	(algebra)
$=\frac{4-2a_k}{a_k(2-a_k)}+\frac{2a_k-a_k^2}{a_k(2-a_k)}+\frac{a_k^2}{a_k(2-a_k)}$	(algebra)
$=\frac{2}{a_k}+1+\frac{a_k}{2-a_k}$	(algebra)
$= \frac{2}{a_k} + 1 + \frac{1}{\frac{2}{a_k} - 1}$	(algebra)
$=b_k+1+\frac{1}{b_k-1}$	(definition of (b_n))
$\geq (k+2) + 1 + \frac{1}{b_k - 1}$	(induction hypothesis)
$= k + 3 + \frac{1}{b_k - 1}$	(algebra)
> k + 3 + 0	(the induction hypothesis tells us $b_k - 1 > 0$).