HW 6

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

- 1. For any $n \in \mathbb{N}$, let p_n be the number of lattice paths from (n, n) to $(n^2, n+2)$.
 - (a) What is p_4 ?
 - (b) Write down a closed formula for p_n .

Solution. (a)
$$p_4 = \binom{(16-4)+(6-4)}{6-4} = \binom{14}{2}$$

(b) $p_n = \binom{(n^2-n)+(n+2-n)}{n+2-n} = \binom{n^2-n+2}{2}.$

2. (a) Let
$$a_0 = 1$$
, and for any $n \in \mathbb{Z}_{\geq 1}$, let $a_n = a_{n-1}^2 + 1$. What is a_6 ?

(b) Prove: for any $d \in \mathbb{Z}$ and $n \in \mathbb{N}$, if $d \mid a_n$ and $d \mid a_{n+1}$, then $d = \pm 1$.

Solution. (a)

a_0		= 1
a_1	$= 1^2 + 1$	= 2
a_2	$= 2^2 + 1$	= 5
a_3	$=5^{2}+1$	= 26
a_4	$= 26^2 + 1$	= 677
a_5	$= 677^2 + 1$	= 458330
a_6	$=458330^2 + 1$	= 210066388901

(b) Choose any $d \in \mathbb{Z}$ and $n \in \mathbb{N}$ and suppose that $d \mid a_n$ and $d \mid a_{n+1}$. By the definition of divide, there exist $j, k \in \mathbb{Z}$ such that

$$a_n = dj$$
$$a_{n+1} = dk.$$

Then by the definition of $(a_n)_{n \in \mathbb{N}}$, we see

$$dk = a_{n+1} = (a_n^2) + 1 = (dj)^2 + 1 = d^2j^2 + 1,$$

 \mathbf{SO}

$$1 = dk - d^{2}j^{2} = d(k - dj^{2}).$$

That is, we see that $d \mid 1$, so that $d = \pm 1$.

3. Suppose that $(a_n)_{n \in \mathbb{N}}$ is an arithmetic sequence. If $a_4 = 32$ and $a_7 = 53$, what are a_5 and a_6 ?

Solution. $a_5 = 39$ and $a_6 = 46$.

1

4. Let $(a_n)_{n \in \mathbb{N}}$ be the arithmetic sequence $a_n = 5n + 2$. For which primes p and nonnegative integers n does p divide both a_n and a_{n+1} ?

Proof. We will prove that there are no such primes p and nonnegative integers n. For our first step, we will prove

$$(\forall \text{ primes } p)(\forall n \in \mathbb{N}) \Big(((p \mid a_n) \land (p \mid a_{n+1})) \rightarrow (p = 5) \Big).$$

To do so, choose any prime p and nonnegative integer n, and suppose that $p \mid a_n$ and $p \mid a_{n+1}$. By the definition of divide, there exist $j, k \in \mathbb{Z}$ such that

$$a_n = pj$$
$$a_{n+1} = pk.$$

Then by the definition of $(a_n)_{n \in \mathbb{N}}$, we see

$$pk = a_{n+1} = a_n + 5 = pj + 5,$$

 \mathbf{SO}

5 = pk - pj = p(k - j).

That is, we see that $p \mid 5$, so that p = 5 since p is prime.

We will conclude by proving

$$(\forall n \in \mathbb{N})(5 \neq a_n).$$

To do so, suppose for a contradiction that there exists $n \in \mathbb{N}$ such that $5 \mid a_n$. Then by definition of divide, there exists $\ell \in \mathbb{Z}$ such that $a_n = 5\ell$. Using the definition of $(a_n)_{n \in \mathbb{N}}$, this means that

$$5\ell = a_n = 5n + 2,$$

so that $2 = 5\ell - 5n = 5(\ell - n)$, so that $5 \mid 2$ by the definition of divide. But of course we know that $5 \nmid 2$, so we have achieved our contradiction.

5. Suppose that $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are geometric sequences. Suppose that for all $n \in \mathbb{Z}_{\geq 0}$, we know $b_n \neq 0$. Prove that the sequence $(c_n)_{n \in \mathbb{N}}$ defined by $c_n = a_n/b_n$ is also geometric.

Proof. By the definition from [Lev24, Section 4.2.3], we know there are common ratios $r \in \mathbb{R}$ and $s \in \mathbb{R}$ for $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$, respectively. Since we know that for all $n \in \mathbb{N}$, the real number b_n is nonzero, we know that $s \neq 0$. In particular, we know that $r/s \in \mathbb{R}$.

To show that $(c_n)_{n \in \mathbb{N}}$ is geometric, we will show it has common ratio r/s. To this end, choose any $n \in \mathbb{N}$. Then

$$c_{n+1} = \frac{a_{n+1}}{b_{n+1}} = \frac{ra_n}{sb_n} = \left(\frac{r}{s}\right) \left(\frac{a_n}{b_n}\right) = \left(\frac{r}{s}\right) c_n.$$

References

[Lev24] Oscar Levin, Discrete Mathematics—An Open Introduction, fourth ed., 2024.