Name:	

- Put your name in the "_____ " above.
- Answer at least five problems, your best five will count.
- Proofs are graded for both clarity and rigor.
- Good luck!
- 1. (a) Write a truth table for $(p \lor q) \to (p \land q)$.

P	0\	PVQ \	PAQ	PVQ-P/Q	
Company of the Compan	TETE	T T F	TFFF		William Communication of the C

(b) Write an expression that is logically equivalent to the statement above but does not use an implication arrow (\rightarrow) or a bi-implication arrow (\leftrightarrow) .

- (c) Let P(x,y) be the predicate " $x^2+1\geq y^2$. What are the truth values of the following? (No proof necessary.)
 - i. $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(P(x,y))$

- ii. $(\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z})(P(x,y))$
- iii. $(\forall y \in \mathbb{Z})(\exists x \in \mathbb{Z})(P(x,y))$
- iv. $(\exists y \in \mathbb{Z})(\forall x \in \mathbb{Z})(P(x,y))$ $\qquad \qquad \qquad (\forall \exists y \in \mathbb{Z})(P(x,y))$

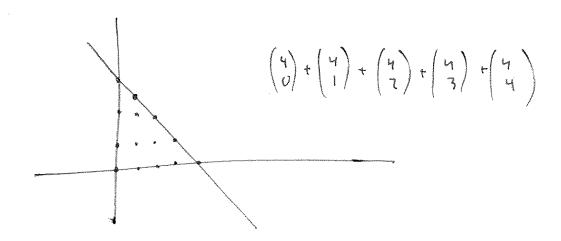
- 2. This problem is about counting ways to walk from the origin of the xy-plan using only
 - "right step", moving to the right a distance of one, and
 - "up step", moving up a distance of one.

Answers to the following questions may contain binomial coefficients (that is, expressions of the form $\binom{n}{m}$ for nonnegative integers n, m with $n \ge m$.)

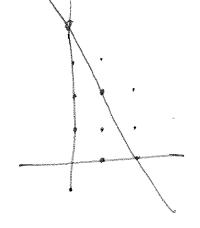
(a) How many ways are there to walk from the point (1,1) to the point (12,19), passing through the point (6,7)?

$$\binom{11}{5}\binom{18}{6}$$

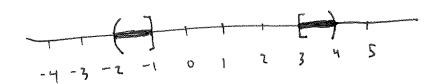
(b) How many ways are there to walk from from the point (0,0) to a point on the line y = -x + 4?



(c) How many ways are there to walk from from the point (0,0) to a point on the line y = -2x + 4?



- 3. For every $n \in \mathbb{Z}_{\geq 0}$, let $C_n = \{x \in \mathbb{R} \mid n-1 \leq |x-1| < n\}$, and let $\mathcal{C} = \{C_n \mid n \in \mathbb{Z}_{\geq 0}\}$.
 - (a) Draw a picture of C_3 .



(b) Prove that \mathcal{C} is not a partition of \mathbb{R} .

ove that C is not a partition of
$$\mathbb{R}$$
.

Note that
$$C_0 = \begin{cases} x \in \mathbb{R} \\ -1 \le |x-1| \le 0 \end{cases}$$

Since no real numbers have negative absolute value.

Thus, C is not a partition. D

(c) You can remove one set from C to make a partition of \mathbb{R} . Which one? (No proof necessary.)

- 4. How many integer solutions to w + x + y + z = 20 are there
 - (a) with w, x, y, z nonnegative?

(b) with w, x, y, z nonnegative and $w \le 3$?

$$\left(\begin{array}{c}23\\3\end{array}\right)-\left(\begin{array}{c}19\\3\end{array}\right)$$

$$\begin{pmatrix} 22 \\ 2 \end{pmatrix} + \begin{pmatrix} 71 \\ 2 \end{pmatrix} + \begin{pmatrix} 70 \\ 2 \end{pmatrix} + \begin{pmatrix} 19 \\ 2 \end{pmatrix}$$

(c) with w, x, y, z all nonnegative and even?

- 5. Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$.
 - (a) Compute $|A \cup B|$.

(b) Compute $|A \cap B|$.

(c) Write down all elements of $(A \cap B) \times (A \cap B)$.

(d) For any set S, define $\mathcal{P}(S)$ to be the set of all subsets of S. Write down all elements of $\mathcal{P}(A) \cap \mathcal{P}(B)$.

6. Recall that for any integers a, b we say that a divides b when there is some integer c such that ac = b. Prove that for all integers n,

if 3 does not divide $(n-1)^2 + 2$, then 3 does not divide n.

we will prove this statement using the contrapositive, so suppose that 3 divides no. Then there is some integer a such that
$$n=3a$$
, so that $(n-1)^2+2=(3a-1)^2+2$

$$= 9a^2-6a+1+2$$

$$= 9a^2-6a+1+2$$

$$= 9a^2-6a+1+2$$

$$= 3a^2-2a+1),$$
and we see $(n-1)^2+2$ is divisible by definition. \square

7. We say that two positive integers a, b are multiplicatively independent whenever

$$\forall m, n \in \mathbb{Z}_{\geq 0} \left(\left(a^m = b^n \right) \to \left(\left(m = 0 \right) \wedge \left(n = 0 \right) \right) \right).$$

(a) Negate (and simplify) the above quantified statement.

(b) Prove that for all integers a, the pair a, 1 are not multiplicatively independent.

note that
$$a^0 = 1 = 1^2$$
, so we may take $m = 0$ and $n = 2$.

(c) Find a pair of distinct integers, both greater than one, which are not multiplicatively independent.

Extra credit (if you have extra time)

Suppose that a,b are integers greater than one. Prove that for all $a,b\in\mathbb{Z}_{\geq 2},$

a,b are not multiplicatively independent if and only if $\frac{\ln a}{\ln b} \in \mathbb{Q}$

[E]

Suppose a, b are not multiplicatively independent.

Then there are m, n \(\frac{2}{2}\) o such that $q^m = b^n$ and either m or n are nonzero.

If m nonzero, then the fact that as!

implies $b^n = a^m > 1$, so n nonzero as well.

Similarly, if n nonzero, then m is as well.

That is, both m, n are nonzero and $a^m = b^n$ $\ln(a^m) = \ln(b^n)$ $\ln(a^m) = \ln(b^n)$

Suppose $\frac{\ln a}{\ln b} \in \mathbb{Q}$, so there exist $m, n \in \mathbb{Z}$ such that $m \neq 0$ and $\frac{\ln a}{\ln b} = \frac{n}{m}$. Since $a, b \geq 2$, we know $\ln a, \ln b \geq 0$, so

he mais assume min >0. Then

 $\frac{1}{\ln b} = \frac{1}{\ln b}$ $\frac{1}{\ln a} = \frac{1}{\ln b}$ $\frac{1}{\ln a} = \frac{1}{\ln b}$

a = b, so a,b not unitiplicatively independent.