Name:	

- Put your name in the " " above.
- Answer at least five problems, your best five will count.
- Proofs are graded for clarity, rigor, neatness, and style.
- · Good luck!
- 1. (a) Write a truth table for $p \land (p \rightarrow q)$.

P	9	p -> 2	p1(p>q)
-	T	Ţ	T
7	F		grand from
F	1	T	
F	F -	V T	gran. Grand

(b) Write an expression that is logically equivalent to the statement above but does not use an implication arrow (\rightarrow) or a bi-implication arrow (\leftrightarrow) .

- (c) Recall that for $a, b \in \mathbb{Z}$, we write $a \mid b$ if there exists some $c \in \mathbb{Z}$ such that ac = b. Let P(a, b) be the predicate " $a \mid (b^2 + 3)$ ". What are the truth values of the following? (No proof necessary.)
 - i. $(\forall a \in \mathbb{Z})(\exists b \in \mathbb{Z})(P(a,b))$

(a=0)

ii. $(\exists a \in \mathbb{Z})(\forall b \in \mathbb{Z})(P(a,b))$

iii. $(\forall b \in \mathbb{Z})(\exists a \in \mathbb{Z})(P(a,b))$

(n=1)

iv. $(\exists b \in \mathbb{Z})(\forall a \in \mathbb{Z})(P(a,b))$

- 2. This problem is about counting ways to walk from the origin of the xy-plan using only
 - "right step", moving to the right a distance of one, and
 - "up step", moving up a distance of one.

Answers to the following questions may contain binomial coefficients (that is, expressions of the form $\binom{n}{m}$ for nonnegative integers n, m with $n \ge m$.)

(a) How many ways are there to walk from the point (-1, -2) to the point (12, 19)?

(b) How many ways are there to walk from from the point (-1, -2) to the point (12,19) without passing through the point (4,5)?

$$\begin{pmatrix} 34 \\ 13 \end{pmatrix} - \begin{pmatrix} 12 \\ 5 \end{pmatrix} \begin{pmatrix} 22 \\ 8 \end{pmatrix}$$

(c) How many ways are there to walk from from the point (-1,-2) to the point (12,19) without stepping on the positive y-axis? (In other words, without stepping on any point in $\{(0,k) \mid k \in \mathbb{Z}_{>0}\}$?)

$$\binom{1}{1}\binom{32}{32}$$
 + $\binom{2}{1}\binom{31}{11}$ + $\binom{3}{1}\binom{30}{11}$

- 3. For every $(a,b) \in \mathbb{Z}^2$, let $C_{(a,b)} = \{(x,y) \in \mathbb{R}^2 \mid a < x \le a+1 \text{ and } b < y \le b+1\}$, and let $C = \{C_{(a,b)} \mid (a,b) \in \mathbb{Z}^2\}$.
 - (a) Draw a picture of $C_{(3,4)}$.

- (b) If you had to prove that C is a partition of \mathbb{R}^2 , you would have to prove three things. Prove one of the three things (any one you like).
- Choose any $(x,y) \in \mathbb{R}^2$. Let $a,b \in \mathbb{Z}$ be the largest integers such that a < x and b < y, respectively. But this means $a + 1 \ge x$ and $b + 1 \ge y$, so $(x,y) \in C(a,b)$. Thus $O(C(a,b)) = \mathbb{R}^2$.
- · (house and any (a,b) & Z2. Note that (a+1,b+1) + (a,b),
 so that ((a,b) + Ø.
- (house any (a,b), ((,d) $\in \mathbb{R}^2$ with (a,b) \neq ((,d). (ase 1: $a \neq c$, so let's say a < c. This means that $a \leq c-1$, so if $(x,y) \in C(a,b)$, then $x \leq a+1 \leq (c-1)+1=c$, so $(x,y) \notin C(c,d)$. (ase 7: $b \neq d$ is similar.

4. Prove that for all $n \in \mathbb{Z}_{>0}$, there exist $a, b \in \mathbb{Z}$ such that $5^n = a^2 + b^2$. (Hint: do two base cases, and for the induction step, choose some $n \in \mathbb{Z}_{\geq 2}$ and use strong induction to use the n-2 case.)

we will use strong induction.

(ase: Note that 5' = 5 = 1+4 and 52 = 25 = 9+16,

so the base case is true.

Induction Step: \$ n = Zn and for all j { } 1, ..., N-13, we can write 5 i as the sum of two squares. By our strong induction by pothesis, there exist a, b & Z such that 5 n-2 = 92+62. Then [n= 525 n-2 = 52 (92+62) = (50)2+(56)2,

as desired.

- 5. Let A be the set of even numbers between 0 and 18 (inclusive) and let B be the set of multiples of 3 between 0 and 18 (inclusive). $A = \begin{cases} 6 & 6 \\ 3 & 6 \end{cases}$
 - (a) Compute $|A \cup B|$.

$$A = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18\}$$

 $B = \{0, 3, 6, 9, 12, 15, 18\}$

13

(b) Compute $|A \cap B|$.

4

(c) Write down all elements of $(A \cap B) \times (A \cap B)$.

$$(6,0)$$
 $(6,6)$ $(0,12)$ $(0,18)$
 $(6,0)$ $(6,6)$ $(6,11)$ $(6,18)$
 $(12,0)$ $(12,6)$ $(12,12)$ $(12,18)$
 $(18,0)$ $(18,6)$ $(18,12)$ $(16,18)$

(d) Write down all elements of $\mathcal{P}(B \setminus A)$.

$$B \setminus A = \{3, 9, 15\}, so$$

(e) Suppose the universe consists of integers between 0 and 18 (inclusive). Write down all elements of $A \cap B^c$.

6. Prove that for all $x \in \mathbb{R}$,

if
$$x^2 - 10x + 1 < 0$$
, then $x > 0$.

we will use contraposition. Suppose
$$x \in \mathbb{R}$$
 and $x \leq 0$.

Multiplying by 10 yields -10×20 , so

$$x^{2} - 10 \times +1 = x^{2} + (-10 \times) +1$$

$$= x^{2} + 0 +1 \quad (by above)$$

$$= x^{2} +1$$

$$7 0 \quad (since $x^{2} \geq 0$),
as desired. $\square$$$

7. If $S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$, we say that x is a limit point of S whenever

$$(\forall \epsilon \in \mathbb{R}_{>0}) (\exists s \in S) (|x-s| < \epsilon).$$

(a) Negate (and simplify) the above quantified statement.

(b) Let $T = \left\{ \frac{1}{n} \mid n \in \mathbb{Z}_{>0} \right\}$. Is 0 a limit point of T? (No proof necessary.)

(c) Prove that for all $S \subseteq \mathbb{R}$ and for all $x \in \mathbb{R}$: if $x \in S$, then x is a limit point of S.

Assume
$$x \in S$$
 and choose any $x \in \mathbb{R}_{>0}$. Since $x \in S$, we may take $s = x$. Then we see that $|x-s| = |x-x| = 0 < \varepsilon$, as desired. \square

Extra credit (if you have extra time)

Prove your answer to 7.(b).

Choose any $\epsilon \in \mathbb{R}_{>0}$. Since $(\frac{1}{n})$ converges to 0 (if is the harmonic sequence), there exists some $n \in \mathbb{Z}_{>0}$ such that $\frac{1}{n} \in \mathbb{R}$. We can take $s = \frac{1}{n}$, so that $\frac{1}{n} \in \mathbb{R}$, as desired. \square