Midterm

Name:

- Put your name in the "_____" above.
- Answer at least five problems, your **best five** will count.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!
- 1. (a) Write a truth table for $p \land (p \rightarrow q)$.

(b) Write an expression that is logically equivalent to the statement above but does not use an implication arrow (\rightarrow) or a bi-implication arrow (\leftrightarrow) .

(c) Recall that for a, b ∈ Z, we write a | b if there exists some c ∈ Z such that ac = b. Let P(a, b) be the predicate "a | (b² + 3)". What are the truth values of the following? (No proof necessary.)
i. (∀a ∈ Z)(∃b ∈ Z)(P(a, b))

ii. $(\exists a \in \mathbb{Z})(\forall b \in \mathbb{Z})(P(a, b))$

iii. $(\forall b \in \mathbb{Z})(\exists a \in \mathbb{Z})(P(a, b))$

iv. $(\exists b \in \mathbb{Z})(\forall a \in \mathbb{Z})(P(a, b))$

- 2. This problem is about counting ways to walk from the origin of the xy-plan using only
 - "right step", moving to the right a distance of one, and
 - "up step", moving up a distance of one.

Answers to the following questions may contain binomial coefficients (that is, expressions of the form $\binom{n}{m}$ for nonnegative integers n, m with $n \ge m$.)

(a) How many ways are there to walk from the point (-1, -2) to the point (12, 19)?

(b) How many ways are there to walk from from the point (-1, -2) to the point (12,19) without passing through the point (4,5)?

(c) How many ways are there to walk from from the point (-1, -2) to the point (12, 19) without stepping on the positive y-axis? (In other words, without stepping on any point in $\{(0, k) | k \in \mathbb{Z}_{>0}\}$?)

3. For every $(a,b) \in \mathbb{Z}^2$, let $C_{(a,b)} = \{(x,y) \in \mathbb{R}^2 \mid a < x \le a+1 \text{ and } b < y \le b+1\}$, and let $\mathcal{C} = \{C_{(a,b)} \mid (a,b) \in \mathbb{Z}^2\}$. (a) Draw a picture of $C_{(3,4)}$.

(b) If you had to prove that C is a partition of \mathbb{R}^2 , you would have to prove three things. Prove one of the three things (any one you like).

4. Prove that for all $n \in \mathbb{Z}_{>0}$, there exist $a, b \in \mathbb{Z}$ such that $5^n = a^2 + b^2$. (Hint: do two base cases, and for the induction step, choose some $n \in \mathbb{Z}_{>2}$ and use strong induction to use the n - 2 case.)

- 5. Let A be the set of even numbers between 0 and 18 (inclusive) and let B be the set of multiples of 3 between 0 and 18 (inclusive).
 - (a) Compute $|A \cup B|$.

(b) Compute $|A \cap B|$.

(c) Write down all elements of $(A \cap B) \times (A \cap B)$.

(d) Write down all elements of $\mathcal{P}(B \smallsetminus A)$.

(e) Suppose the universe consists of integers between 0 and 18 (inclusive). Write down all elements of $A \cap B^c$.

6. Prove that for all $x \in \mathbb{R}$,

if $x^2 - 10x + 1 < 0$, then x > 0.

7. If $S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$, we say that x is a *limit point* of S whenever

$$(\forall \epsilon \in \mathbb{R}_{>0}) (\exists s \in S) (|x - s| < \epsilon).$$

(a) Negate (and simplify) the above quantified statement.

(b) Let $T = \left\{\frac{1}{n} \mid n \in \mathbb{Z}_{>0}\right\}$. Is 0 a limit point of T? (No proof necessary.)

(c) Prove that for all $S \subseteq \mathbb{R}$ and for all $x \in \mathbb{R}$: if $x \in S$, then x is a limit point of S.

Extra credit (if you have extra time)

Prove your answer to 7.(b).