Final

" above.

Name:

- Put your name in the "_____
- Answer at least five problems, your **best five** will count.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!
- 1. Define the subset L of $\mathbb{Z} \times \mathbb{Z}$ by setting

$$L = \{ (2a, 2b) \mid a, b \in \mathbb{Z} \}.$$

Define the relation \sim on $\mathbb{Z} \times \mathbb{Z}$ by the rule

 $(a,b) \sim (c,d)$ if and only if $(a-c,b-d) \in L$.

- (a) Prove that \sim is an equivalence relation.
 - *Proof.* To see that ~ is reflexive, choose any $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ and note that $(a-a,b-b) = (0,0) = (2 \cdot 0, 2 \cdot 0)$, so $(a,b) \sim (a,b)$.
 - To see that ~ is symmetric, choose any $(a,b), (c,d) \in \mathbb{Z} \times \mathbb{Z}$ and assume that $(a,b) \sim (c,d)$. By the definition of ~, there are $m, n \in \mathbb{Z}$ such that (a-c,b-d) = (2m,2n). Note that (c-a,d-b) = (-(a-c), -(b-d)) = (-(2m), -(2n)) = (2(-m), 2(-n)), so $(c,d) \sim (a,b)$.
 - To see that ~ is transitive, choose any $(a,b), (c,d), (e,f) \in \mathbb{Z} \times \mathbb{Z}$ and assume that $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. By the definition of ~, there are $k, \ell, m, n \in \mathbb{Z}$ such that $(a-c,b-d) = (2k,2\ell)$ and (c-e,d-f) = (2m,2n). Note that $(a-e,b-f) = ((a-c)+(c-e), (b-d)+(d-f)) = (2k+2m,2\ell+2n) = (2(k+m),2(\ell+n))$, so $(a,b) \sim (e,f)$.
- (b) Write down an element from every equivalence class of this equivalence relation.

Solution. (0,0), (1,0), (0,1), (1,1)

- 2. Let's make a password by rearranging all of the letters in the word PASSWORD.
 - (a) How many arrangements are possible?
 - (b) How many if the two S's cannot be next to each other?
 - (c) How many that don't begin with the letter P?

Solution. (a) $\frac{8!}{2!}$. (b) $\frac{8!}{2!} - 7!$. (c) $\frac{8!}{2!} - \frac{7!}{2!}$

3. Let $S = \{2, 4, 5, 6, 9, 10, 15, 30, 36, 48, 50, 60\}$, and consider the partial order on S given by divisibility.

- (a) Draw the Hasse diagram.
- (b) List all maximum elements.
- (c) List all maximal elements.

- (d) List all minimum elements.
- (e) List all minimal elements.
- (f) List all lower bounds of $\{2, 9\}$.
- (g) List all upper bounds of $\{2, 9\}$.

4. If the following functions are invertible, state their inverse. If they are not invertible, prove they are not.

- (a) $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x|.
- (b) $g: \mathbb{R} \setminus \{-1\} \to \mathbb{R} \setminus \{1\}$ defined by $g(x) = \frac{x-2}{x+1}$.
- (c) $h: \mathcal{P}(\{1, 2, 3, 4, 5\}) \to \mathcal{P}(\{1, 2, 3, 4, 5\})$ defined by $h(S) = \{1, 2, 3, 4, 5\} \setminus S$.

Solution. (a) Since f(-1) = 1 = f(1), we see that f is not injective.

- (b) The inverse of g is the function $j: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{-1\}$ defined by $j(x) = \frac{x+2}{1-x}$.
- (c) The function h is its own inverse.

5. Suppose that A is a set of size 7 and B is a set of size 10.

- (a) How many functions are there from A to B?
- (b) How many relations are there from A to B?
- (c) How many 1-1 functions are there from A to B?
- (d) How many onto functions are there from A to B?
- (e) How many symmetric relations are there on A?
- (f) How many reflexive relations are there on A?

Solution. (a) 10^7 . (b) 2^{70} . (c) 10 * 9 * 8 * 7 * 6 * 5 * 4. (d) 0. (e) $2^{1+2+3+4+5+6+7} = 2^{28}$. (f) 2^{42} .

6. Let $A = \{a, b\}$ and let F be the set of functions from A to Z. Prove that F is countable. (Hint: we know lots of sets are countable—you can show any of these sets are in bijection with F.)

Proof. We know from class that $\mathbb{Z} \times \mathbb{Z}$ is countable, since \mathbb{Z} is countable. We will prove that the cardinality of F is equal to the cardinality of $\mathbb{Z} \times \mathbb{Z}$. To do so, define

$$\phi: F \to \mathbb{Z} \times \mathbb{Z}$$
$$f \mapsto (f(a), f(b))$$

- To see that ϕ is surjective, choose any $(m, n) \in \mathbb{Z} \times \mathbb{Z}$ and define a function $g: A \to \mathbb{Z}$ by g(a) = m and g(b) = n. Then $\phi(g) = (g(a), g(b)) = (m, n)$.
- To see that ϕ is injective, choose any $g, h \in F$ and assume that $\phi(g) = \phi(h)$. Let's say that $\phi(g) = (m, n) = \phi(h)$ for $m, n \in \mathbb{Z}$ To prove that g = h, we note that the definition of ϕ tells us g(a) = m = h(a) and g(b) = n = h(b).
- 7. Find the coefficient of b^n in the expansion of $(2a^2 + b)^{2n+1}$. Don't simplify!

Solution.
$$2^{n+1}a^{2(n+1)}\binom{2n+1}{n+1}$$