Name:	
• Put your name in the "	" above.
• Answer at least five problems, your best five will count.	
• Proofs are graded for clarity, rigor, neatness, and style.	

- Good luck!
- 1. Define the subset L of $\mathbb{Z} \times \mathbb{Z}$ by setting

$$L = \{(2a, 2b) \mid a, b \in \mathbb{Z}\}.$$

Define the relation \sim on $\mathbb{Z} \times \mathbb{Z}$ by the rule

$$(a,b) \sim (c,d)$$
 if and only if $(a-c,b-d) \in L$.

(a) Prove that \sim is an equivalence relation.

(b) Write down an element from every equivalence class of this equivalence relation.

2. Let's make a password by rearranging all of the letters in the word PASS							
	(a) How many arrangements are possible?						
	(b) How many if the two C's connet he next to each other?						
	(b) How many if the two S's cannot be next to each other?						
	(c) How many that don't begin with the letter P?						

- 3. Let $S = \{2, 4, 5, 6, 9, 10, 15, 30, 36, 48, 50, 60\}$, and consider the partial order on S given by divisibility.
 - (a) Draw the Hasse diagram.
 - (b) List all maximum elements.
 - (c) List all maximal elements.
 - (d) List all minimum elements.
 - (e) List all minimal elements.
 - (f) List all lower bounds of $\{2,9\}$.
 - (g) List all upper bounds of $\{2,9\}$.

- 4. If the following functions are invertible, state their inverse. If they are not invertible, prove they are not.
 - (a) $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x|.

(b) $g: \mathbb{R} \setminus \{-1\} \to \mathbb{R} \setminus \{1\}$ defined by $g(x) = \frac{x-2}{x+1}$.

(c) $h: \mathcal{P}(\{1,2,3,4,5\}) \to \mathcal{P}(\{1,2,3,4,5\})$ defined by $h(S) = \{1,2,3,4,5\} \setminus S$.

Sup	ose t	that A	is a set of size 7 and B is a set of size 10 .
(a)	How	many	functions are there from A to B ?
(1)			
(b)	How	many	relations are there from A to B ?
(c)	How	many	1-1 functions are there from A to B ?
(d)	How	many	onto functions are there from A to B ?
(e)	How	many	symmetric relations are there on A ?
(-)			-,
(0)			
(1)	How	many	reflexive relations are there on A ?

5.

6.	Let $A = \{a, b\}$ and let F be the set of functions from A to \mathbb{Z} . Prove that F is countable. lots of sets are countable—you can show any of these sets are in bijection with F .)	(Hint: v	ve know

7. Find the coefficient of b^n in the expansion of $(2a^2 + b)^{2n+1}$. Don't simplify!