

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

1 Computations

1. Write down every subgroup of \mathbb{Z}_5 . (You can use “generator” notation. For example, $\langle 1 \rangle = \{0, 1, 2, 3, 4\}$.)
2. Write down every subgroup of \mathbb{Z}_{10} .
3. Write down every subgroup of \mathbb{Z}_{70} .
4. Do you have a conjecture about the number of subgroups of cyclic groups? (No need to turn in your answer to this question.)
5. How many surjective functions are there from $\mathbb{Z}_2 \times \mathbb{Z}_2$ to \mathbb{Z}_2 ? How many injective functions?
6. True/False:
 - (a) \mathbb{Q} is a subgroup of \mathbb{R} .
 - (b) \mathbb{Q} is a cyclic subgroup of \mathbb{R} .

2 Proofs

(I) Let G be a group, and define

$$C = \{g \in G \mid \text{for all } x \in G, xg = gx\}.$$

Prove that C is a subgroup of G .

(II) Let G be a group, let H be a subgroup of G , and choose any $g \in G$. Let's use the notation

$$gHg^{-1} = \{ghg^{-1} \mid h \in H\}.$$

Prove gHg^{-1} is a subgroup of G .

(III) Let A be a set and $a \in A$. Define

$$G = \{f \in S_A \mid f(a) = a\}.$$

Prove that G is a subgroup of S_A .