

HW 2 Solutions

1 Computations

1. Write down every element of $\mathbb{Z}_3 \times \mathbb{Z}_3$, and write down its inverse. (For one example, note that the element $(0, 0)$ has inverse $-(0, 0) = (0, 0)$.)

Solution. • $(0, 0)$ has inverse $-(0, 0) = (0, 0)$,
 • $(1, 0)$ has inverse $-(1, 0) = (2, 0)$,
 • $(2, 0)$ has inverse $-(2, 0) = (1, 0)$,
 • $(0, 1)$ has inverse $-(0, 1) = (0, 2)$,
 • $(1, 1)$ has inverse $-(1, 1) = (2, 2)$,
 • $(2, 1)$ has inverse $-(2, 1) = (1, 2)$,
 • $(0, 2)$ has inverse $-(0, 2) = (0, 1)$,
 • $(1, 2)$ has inverse $-(1, 2) = (2, 1)$, and
 • $(2, 2)$ has inverse $-(2, 2) = (1, 1)$.

□

2. Write down every multiple of $(1, 1)$ in the group $\mathbb{Z}_6 \times \mathbb{Z}_3$.

Solution. $\{n(1, 1) \mid n \in \mathbb{Z}\} = \{(1, 1), (2, 2), (3, 0), (4, 1), (5, 2), (0, 0)\}$. □

3. Write down three elements (a, b) of $\mathbb{Z}_6 \times \mathbb{Z}_3$ with the property

$$|\{n(a, b) \mid n \in \mathbb{Z}\}| = 3.$$

Solution. There are 8 such elements: $(2, 0), (4, 0), (0, 1), (2, 1), (4, 1), (0, 2), (2, 2), (4, 2)$. □

4. For now and for the rest of the class, for any positive integer n , we will write

$$\mathbb{B}^n = \overbrace{\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2}^{n \text{ times}}.$$

Furthermore, in this situation only, we will allow ourselves to omit commas and parentheses when writing elements of these sets; as an example, we will write $1100 \in \mathbb{B}^4$.

- (a) How many elements of \mathbb{B}^3 have exactly two 1s?
- (b) How many elements of \mathbb{B}^4 have exactly two 1s?
- (c) How many elements of \mathbb{B}^5 have exactly two 1s?
- (d) Let $n \in \mathbb{Z}_{\geq 2}$. Write down a formula for the number of elements of \mathbb{B}^n with exactly two 1s. (No proof required.)

Solution. (a) 3.

(b) 6.

(c) 10.

(d) There is more than one way to write down a formula, but one could write:

$$\binom{n}{2} = \frac{n(n-1)}{2},$$

or one could define a sequence by setting $a_2 = 1$, and defining, for all $n \in \mathbb{Z}_{\geq 2}$:

$$a_{n+1} = a_n + n.$$

□

2 Proofs

(I) Let G be a group with identity elements e_1, e_2 . Prove that $e_1 = e_2$.

Proof. Note that by the definition of identity element,

$$\begin{aligned} e_1 &= e_1 e_2 & (e_2 \text{ is an identity, so we scale } e_1 \text{ by } e_2 \text{ on the right}) \\ &= e_2 & (e_1 \text{ is also an identity, so we scale } e_2 \text{ by } e_1 \text{ on the left}). \end{aligned}$$

□

(II) Let G, H be groups. Prove that if G, H are both abelian, then $G \times H$ is abelian.

Proof. Choose any $(a, b), (c, d) \in G \times H$. Note that

$$\begin{aligned} (a, b)(c, d) &= (ac, bd) & (\text{definition of products of groups}) \\ &= (ca, db) & (\text{both } G \text{ and } H \text{ are abelian}) \\ &= (c, d)(a, b) & (\text{definition of products of groups}). \end{aligned}$$

□

(III) Let G be a group, and let $g, h \in G$. Assume that

for all $x \in G$, we have $xg = gx$.

Prove that

$$\text{for all } x \in G, \text{ we have } x(hgh^{-1}) = (hgh^{-1})x.$$

Proof. Let's write e for the identity element of G . Choose any $x \in G$ and note that

$$\begin{aligned} x(hgh^{-1}) &= ((xh)g)h^{-1} & (\text{associativity}) \\ &= (g(xh))h^{-1} & (\text{by hypothesis, applied to } (xh)) \\ &= (gx)(hh^{-1}) & (\text{associativity}) \\ &= gx & (\text{definition of inverse}) \\ &= gex & (\text{definition of identity}) \\ &= g(hh^{-1})x & (\text{definition of inverse}) \\ &= (gh)(h^{-1}x) & (\text{associativity}) \\ &= (hg)(h^{-1}x) & (\text{by hypothesis, applied to } h) \\ &= (hgh^{-1})x & (\text{associativity}). \end{aligned}$$

□

(IV) One might remark that for any positive integer n , every element of \mathbb{B}^n is its own inverse. Prove: if G is a group with the property that every element is its own inverse, then G is abelian.

Proof. Let e be the identity of G . Choose any $g, h \in G$ and note

$$\begin{aligned} gh &= (gh)e & (\text{definition of identity}) \\ &= gh((hg)(hg)) & (\text{by hypothesis, applied to } hg) \\ &= g(hh)ghg & (\text{associativity}) \\ &= geghg & (\text{by hypothesis, applied to } h) \\ &= (gg)hg & (\text{definition of identity}) \\ &= ehg & (\text{by hypothesis, applied to } g) \\ &= hg & (\text{definition of identity}), \end{aligned}$$

so G is abelian.

□

(V) Let G, H be groups with identities, e_G, e_H , respectively. Prove that $\{(e_G, h) \mid h \in H\}$ is a subgroup of $G \times H$. (A similar proof shows that $\{(g, e_H) \mid g \in G\}$ is a subgroup of $G \times H$, but you don't need to write this up.)

Proof. Let's write K for $\{(e_G, h) \mid h \in H\}$.

- Since $(e_G, e_H) \in K$, we see $K \neq \emptyset$.
- Choose any $(e_G, h_1), (e_G, h_2) \in K$, then note that

$$(e_G, h_1)(e_G, h_2) = (e_G e_G, h_1 h_2) = (e_G, h_1 h_2) \in K.$$

- Finally, if we choose any $(e_G, h) \in K$, we recall that the inverse of (e_G, h) is (e_G, h^{-1}) ; and (e_G, h^{-1}) is in K by definition of K .

Thus, we see that K is a subgroup of $G \times H$ by the subgroup test. \square