

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

1 Computations

1. Write down every element of $\mathbb{Z}_3 \times \mathbb{Z}_3$, and write down its inverse. (For one example, note that the element $(0, 0)$ has inverse $-(0, 0) = (0, 0)$.)
2. Write down every multiple of $(1, 1)$ in the group $\mathbb{Z}_6 \times \mathbb{Z}_3$.
3. Write down three elements (a, b) of $\mathbb{Z}_6 \times \mathbb{Z}_3$ with the property

$$|\{n(a, b) \mid n \in \mathbb{Z}\}| = 3.$$

4. For now and for the rest of the class, for any positive integer n , we will write

$$\mathbb{B}^n = \overbrace{\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2}^{n \text{ times}}.$$

Furthermore, in this situation only, we will allow ourselves to omit commas and parentheses when writing elements of these sets; as an example, we will write $1100 \in \mathbb{B}^4$.

- (a) How many elements of \mathbb{B}^3 have exactly two 1s?
- (b) How many elements of \mathbb{B}^4 have exactly two 1s?
- (c) How many elements of \mathbb{B}^5 have exactly two 1s?
- (d) Let $n \in \mathbb{Z}_{\geq 2}$. Write down a formula for the number of elements of \mathbb{B}^n with exactly two 1s. (No proof required.)

2 Proofs

- (I) Let G be a group with identity elements e_1, e_2 . Prove that $e_1 = e_2$.
- (II) Let G, H be groups. Prove that if G, H are both abelian, then $G \times H$ is abelian.
- (III) Let G be a group, and let $g, h \in G$. Assume that

for all $x \in G$, we have $xg = gx$.

Prove that

$$\text{for all } x \in G, \text{ we have } x(hgh^{-1}) = (hgh^{-1})x.$$

- (IV) One might remark that for any positive integer n , every element of \mathbb{B}^n is its own inverse. Prove: if G is a group with the property that every element is its own inverse, then G is abelian.
- (V) Let G, H be groups with identities, e_G, e_H , respectively. Prove that $\{(e_G, h) \mid h \in H\}$ is a subgroup of $G \times H$. (A similar proof shows that $\{(g, e_H) \mid g \in G\}$ is a subgroup of $G \times H$, but you don't need to write this up.)