

Name: _____

- Put your name in the “ _____ ” above.
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!

Computations

1. For the following element f of S_9 , do the following:

- compute $f \circ f \circ f \circ f(9)$,
- write the smallest positive integer n such that

$$\overbrace{f \circ \cdots \circ f}^{n \text{ times}}(9) = 9,$$

and

- write down an element m in $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ with the property that $f \circ f \circ f(m) = m$.

$$f: \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$1 \mapsto 7$$

$$2 \mapsto 2$$

$$3 \mapsto 4$$

$$4 \mapsto 5$$

$$5 \mapsto 3$$

$$6 \mapsto 1$$

$$7 \mapsto 8$$

$$8 \mapsto 9$$

$$9 \mapsto 6$$

Solution. (a) 8

(b) 5

(c) 2.

□

2. Suppose that G is a group with a subgroup H . For any $g \in G$, define $gH = \{gh \mid h \in H\}$.

- (a) Write down two elements A of D_4 such that $F \in A\langle R \rangle$. (For example, we see that $A = I$ does not work since $I\langle R \rangle = \{I, R, R^2, R^3\}$ does not contain F .)
- (b) Write down three distinct subgroups of D_4 of size 2.
- (c) Write down three elements B in D_5 such that $\langle B \rangle = \langle R \rangle$.

Proof. (a) Elements that work are F, FR, FR^2, FR^3 .

(b) Subgroups of size 2 are $\{I, R^2\}, \{I, F\}, \{I, FR\}, \{I, FR^2\}, \{I, FR^3\}$.

(c) Elements that work are R, R^2, R^3, R^4 .

□

Proofs

(I) Let $H = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid \text{both } m \text{ and } n \text{ are even}\}$. Prove that H is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.

Proof. We must prove three things.

- Since $(0, 0) = (2 \cdot 0, 2 \cdot 0)$, we see that $(0, 0) \in H$, so that $H \neq \emptyset$.
- Suppose that $m_1, n_1, m_2, n_2 \in \mathbb{Z}$, so that $(2m_1, 2n_1), (2m_2, 2n_2)$ are arbitrary in H . Then

$$\begin{aligned}(2m_1, 2n_1) + (2m_2, 2n_2) &= (2m_1 + 2m_2, 2n_1 + 2n_2) && (\text{this is the operation on } \mathbb{Z} \times \mathbb{Z}) \\ &= (2(m_1 + m_2), 2(n_1 + n_2)) && (\text{how integers work}),\end{aligned}$$

so we see that $(2m_1, 2n_1) + (2m_2, 2n_2) \in H$ by the definition of H .

- Finally, choose any $m, n \in \mathbb{Z}$, so that $(2m, 2n)$ is arbitrary in H . Then we see that

$$-(2m, 2n) = (-2m, -2n) = (2(-m), 2(-n)),$$

so $-(2m, 2n) \in H$ by the definition of H .

□

(II) Suppose that G is a group and write

$$H = \{g^{130} \mid g \in G\}.$$

Prove: if G is commutative, then H is a subgroup of G .

Proof. To show H is a subgroup of G , there are three steps. As usual, let e be the identity of G .

- Note that $e = e^{130}$, by the definition of the identity 129 times. Hence, we see $e \in H$, so $H \neq \emptyset$.
- Suppose that $a, b \in G$, so that a^{130} and b^{130} are arbitrary elements of H . Note that

$$\begin{aligned} a^{130}b^{130} &= \underbrace{a \cdots a}_{130 \text{ times}} \cdot \underbrace{b \cdots b}_{130 \text{ times}} && \text{(definition of exponents)} \\ &= \underbrace{(ab) \cdots (ab)}_{130 \text{ times}} && \text{(since } G \text{ is commutative),} \end{aligned}$$

so $a^{130}b^{130} \in H$ by the definition of H .

- Finally suppose that $c \in G$, so that c^{130} is arbitrary in H , and note that

$$\begin{aligned} c^{130}(c^{-1})^{130} &= \underbrace{c \cdots c}_{130 \text{ times}} \cdot \underbrace{c^{-1} \cdots c^{-1}}_{130 \text{ times}} && \text{(definition of exponents)} \\ &= \underbrace{(cc^{-1}) \cdots (cc^{-1})}_{130 \text{ times}} && \text{(since } G \text{ is commutative)} \\ &= e^{130} && \text{(definition of inverses)} \\ &= e && \text{(definition of identity 129 times).} \end{aligned}$$

That is, we know by fact from class that $(c^{130})^{-1} = (c^{-1})^{130} \in H$.

□

(III) Define the operation \star on \mathbb{R} by setting $x \star y = x^2 + y^2$. Either prove that (\mathbb{R}, \star) is a group or prove that it is not a group.

Proof. Let's prove that there is no identity element in (\mathbb{R}, \star) , thereby showing that (\mathbb{R}, \star) is *not* a group. To do this, choose an arbitrary $z \in \mathbb{R}$ and note that since z^2 is positive:

$$2 \star z = 2^2 + z^2 = 4 + z^2 > 2.$$

So z is not the identity of (\mathbb{R}, \star) ; and since z was arbitrary, we conclude that (\mathbb{R}, \star) has no identity. \square

Extra Credit (if you have extra time)

Suppose that G is a group with two subgroups I and J . Prove that

$$I \cup J \text{ is a subgroup of } G \quad \text{if and only if} \quad \text{either } I \subseteq J \text{ or } J \subseteq I.$$

Proof. • If $I \subseteq J$, then $I \cup J = J$ is a subgroup of G by hypothesis. Likewise, if $J \subseteq I$, then $I \cup J = I$ is a subgroup of G by hypothesis.

- Conversely, suppose that $I \cup J$ is a subgroup of G . If $I \subseteq J$, we are done! So we suppose that $I \not\subseteq J$; that is, there is some $i \in I$ with $i \notin J$. We must show that $J \subseteq I$, so take an arbitrary $j \in J$. Since $I \cup J$ is a subgroup, we know that $ij \in I \cup J$. There are two cases:

- Suppose $ij \in J$. Since J is a subgroup, we know $j^{-1} \in J$. Closure of J now implies $i = (ij)j^{-1} \in J$ —but this is not the case by our choice of i , so we see $ij \notin J$.
- Suppose $ij \in I$. Since I is a subgroup, we know $i^{-1} \in I$. Closure of I now implies $j = i^{-1}(ij) \in I$, as desired.

□